
Linear systems formulation of scattering theory for rough
surfaces with arbitrary incident and scattering angles

Andrey Krywonos, James E. Harvey,* and Narak Choi

The Center for Research and Education in Optics and Lasers (CREOL), P.O. Box 162700, 4000 Central Florida Boulevard,
The University of Central Florida, Orlando, Florida 32826, USA

*Corresponding author: harvey@creol.ucf.edu

Received February 9, 2011; accepted March 25, 2011;
posted April 8, 2011 (Doc. ID 142395); published May 19, 2011

Scattering effects frommicrotopographic surface roughness are merely nonparaxial diffraction phenomena result-
ing from random phase variations in the reflected or transmitted wavefront. Rayleigh–Rice, Beckmann–Kirchhoff.
or Harvey–Shack surface scatter theories are commonly used to predict surface scatter effects. Smooth-surface
and/or paraxial approximations have severely limited the range of applicability of each of the above theoretical
treatments. A recent linear systems formulation of nonparaxial scalar diffraction theory applied to surface scatter
phenomena resulted first in an empirically modified Beckmann–Kirchhoff surface scatter model, then a general-
ized Harvey–Shack theory that produces accurate results for rougher surfaces than the Rayleigh–Rice theory and
for larger incident and scattered angles than the classical Beckmann–Kirchhoff and the original Harvey–Shack
theories. These new developments simplify the analysis and understanding of nonintuitive scattering behavior
from rough surfaces illuminated at arbitrary incident angles. © 2011 Optical Society of America

OCIS codes: 290.0290, 290.1483, 290.5825, 290.5835, 290.5880, 290.3200.

1. INTRODUCTION
Surface scatter phenomena continues to be an important issue
in diverse areas of science and engineering in the 21st century.
Two historical approaches, the Rayleigh–Rice (1951) [1,2] and
the Beckmann–Kirchhoff (1963) [3] theories, are commonly
used to predict surface scatter behavior. Harvey and Shack
(1976) developed a linear systems formulation of surface scat-
ter phenomena in which the scattering behavior is character-
ized by a surface transfer function [4,5]. This treatment
provided insight and understanding not readily gleaned from
the two previous theories.

The Rayleigh–Rice vector perturbation theory agrees well
with experimental wide-angle scatter measurements from
“smooth” (4πσrel cos θi=λ ≪ 1) surfaces for arbitrary incident
and scattering angles. However, not all applications of interest
satisfy the smooth-surface criterion. The Beckmann–Kirchhoff
scattering theory is valid for rougher surfaces, but contains a
paraxial (small-angle) assumption that limits its ability to accu-
rately handle wide-angle scattering and large angles of inci-
dence. The two most widely used surface scattering theories
are thus complementary, but not all-inclusive; i.e., neither of
them, nor the combination of them, adequately describes
scattering behavior for moderately rough surfaces with large
incident and scattering angles. Applications involving this gen-
eral situation provided the motivation for developing the gen-
eralized surface scatter theory reported in this paper.

More than 10 years ago, an empirical modification of the
Beckmann–Kirchhoff surface scatter theory was developed
that appeared to satisfactorily combine the advantages of both
the Rayleigh–Rice and the Beckmann–Kirchhoff theories
without the disadvantages of either [6]. However, because
it was empirically developed rather than theoretically derived,
this work was only recently published in the archival literature
[7]. In spite of that, the modified Beckmann–Kirchhoff surface

scatter model has been evaluated, implemented, and refer-
enced by researchers in the computer vision and computer
animation fields who are less interested in rigorously solving
the surface scatter problem than merely having a surface scat-
ter model that results in the rendering of realistic surfaces,
textures, objects, and scenes under a wide variety of illumina-
tion conditions [8–17].

The purpose of the current paper is to describe a linear sys-
tems formulation of a generalized surface scatter theory that
allows the calculation of surface scatter behavior for moder-
ately rough surfaces with arbitrary incident and scattered
angles. We refer the reader to Section 1 of [7] for an exhaus-
tive historical review of surface scatter theory. However, we
do mention a critical survey of approximate scattering wave
theories from random rough surfaces by Elfouhaily and Guer-
in in 2004 [18]. They attempted to classify and characterize
more than 30 different approximate methods. These were
all variants of the small perturbation method (Rayleigh–Rice),
the Kirchhoff approach, or the so-called unified methods that
tried to bridge the gap between the two. This exhaustive sur-
vey included 260 references. They concluded that “there does
not seem to be a universal method that is to be preferred sys-
tematically. All methods present a compromise between
versatility, simplicity, numerical efficiency, accuracy and ro-
bustness.” Their final statement was “There is still room for
improvement in the development of approximate scattering
methods.”

We also state in advance that surface scatter phenomena is
merely a diffraction process, and [19–21] describe in detail the
nonparaxial scalar diffraction theory that forms the basis of
the generalized Harvey–Shack (GHS) surface scatter theory
discussed in the body of this paper. Section 2 of [7] succinctly
summarizes that nonparaxial scalar diffraction theory.
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2. SURFACE CHARACTERISTICS
The behavior of light scattered from randomly rough surfaces
is dictated by the statistical surface characteristics. Consider
the surface profile illustrated in Fig. 1. The surface has a zero
mean with the surface height, h, illustrated as a function of
position along a one-dimensional trace of finite length. Two
relevant statistical surface characteristics are the surface
height distribution function and the surface autocovariance
(ACV) function. Fortunately, for many cases of interest, the
surface heights are normally distributed (i.e., the surface
height distribution function is Gaussian). The root-mean-
square (rms) surface roughness, σs, is the standard deviation
of that normal distribution.

Although it would be convenient (mathematically) if the
surface ACV function were also Gaussian, in most instances
that is not the case. Instead, the ACV function is material and
process dependent. The ACV length, ℓ, is defined as the half-
width of the ACV function at the 1=e height.

The surface power spectral density (PSD) function and the
surface ACV function are Fourier transforms of each other.
Note from Fig. 1 that the value of the surface ACV function
at the origin is equal to the surface variance, σ2s . From the cen-
tral ordinate theorem of Fourier transform theory, we there-
fore know that the volume under the two-dimensional surface
PSD is also equal to the surface variance.

The surface PSD can be thought of as a plot of surface var-
iance as a function of the spatial frequency of the surface
irregularities. We can thus talk about several different relevant
spatial-frequency regimes that have distinctly different effects
upon image quality, as illustrated in Fig. 2.

The low-spatial-frequency regime (“figure” errors) gives
rise to conventional wavefront aberrations. The high-spatial-
frequency regime (“finish” errors or microroughness) pro-
duces wide-angle scattering effects that redistribute radiant
energy from the image core into a broad scattered halo with-
out substantially affecting the width of the image core. And
the mid-spatial-frequency regime that spans the gap between
the traditional figure and finish errors produces small-angle
scatter that broadens or smears out the image core [22,23].

Historically, optical fabrication tolerances have been speci-
fied by placing a tolerance only upon the figure and finish
errors. It has only recently become common practice to also
specify a tolerance upon the mid-spatial-frequency surface
irregularities.

The astronomer’s classical definition of resolution has been
the full width at half-maximum (FWHM) of the point spread
function (PSF). For bright point sources, this image quality
criterion is quite insensitive to wide-angle scatter resulting
from high-spatial-frequency microroughness since the width
of the image core is not significantly broadened. However,
for faint point sources, the wide-angle scattered halo causes
severe signal-to-noise problems and a substantial loss of im-
age contrast. The small-angle scatter produced by the mid-
spatial-frequency surface irregularities does broaden the
image core and, therefore, causes a significant decrease in re-
solution (larger FWHM). It is thus imperative that optical fab-
rication tolerances be specified (and measured) over the
entire range of relevant spatial frequencies.

A uniformly rough surface is one whose roughness is homo-
geneous and isotropic; i.e., the surface height distribution
function and the ACV function do not change with location
or orientation of the (finite) measured surface profile. For

Fig. 1. Schematic diagram of a surface profile and its relevant
statistical parameters.

Fig. 2. Different spatial-frequency regimes and their resulting effects upon image quality.
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such a surface, the PSD is a two-dimensional, rotationally
symmetric function. Church has reported upon the fractal nat-
ure of many surface finishes, thus suggesting that the surface
PSD can be modeled as exhibiting an inverse power law
behavior [24].

It is important to recognize that the relevant surface rough-
ness is not an intrinsic surface characteristic, but a band-
limited quantity that depends upon the wavelength and
incident angle [2,25]. For normal incidence, those spatial fre-
quencies greater than 1=λ produce evanescent (imaginary)
waves that do not result in radiant power being scattered from
the specular beam; i.e., spatial frequencies greater than 1=λ
are completely irrelevant with regard to scattered light. For an
arbitrary incident angle, θi, the two-dimensional boundary of
the appropriate band-limited portion of the surface PSD is il-
lustrated in Fig. 3(a), i.e., a circle of radius 1=λwhose center is
shifted to a spatial frequency given by [26]

f o ¼
sin θo
λ ; θo ¼ −θi: ð1Þ

The corresponding relevant roughness, σrel, is given by the
square root of the volume under the relevant portion of the
surface PSD illustrated in Fig. 3(b). It is thus calculated by
the following integral [26]:

σrelðλ; θiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

1=λþf o

−1=λþf o

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=λ2−ðf x−f oÞ2

p

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=λ2−ðf x−f oÞ2

p PSDðf x; f yÞdf xdf y
s

: ð2Þ

It is the above relevant roughness, σrel, that determines the
fraction of the total reflected light contained in the specular

beam and the associated scattering function. For normal
incidence, the relevant roughness expressed by Eq. (2)
simplifies to

σrelðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

Z
1=λ

f¼0
PSDðf Þf df

s
: ð3Þ

For some applications there is a nonzero low-spatial-
frequency band limit, 1=L, where L represents an inherent
measurement bandwidth limit [27–29].

3. LINEAR SYSTEMS FORMULATION OF
SURFACE SCATTER THEORY
A linear systems formulation of surface scatter phenomena,
utilizing the same Fourier techniques that have proven so suc-
cessful in the area of image formation, shows great promise
for not only simplifying the actual calculation of scattered
light behavior, but for providing new insight and understand-
ing concerning a topic that is generally perceived as being
very complicated. In this section, we present the evolution
of the current GHS surface scatter theory from its origin in [4].

A. Original Harvey–Shack Surface Scatter Theory
Harvey and Shack (1976) first developed a linear systems
formulation of surface scatter phenomena in which the scat-
tering behavior is characterized by a surface transfer function
[4,5]:

Hsðx̂; ŷÞ ¼ expf−ð4πσ̂sÞ2½1 − Csðx̂; ŷÞ=σ2s �g; ð4Þ

where σs is the rms surface roughness (the concept of a band-
limited relevant roughness had not yet been considered) and
Csðx̂; ŷÞ is the surface ACV function. The scattered light dis-
tribution, called an angle spread function (ASF) in analogy
with the PSF of imaging systems, is given by the Fourier trans-
form of this surface transfer function.

The surface transfer function of Eq. (4) can also be written
in the form

Hðx̂; ŷÞ ¼ Aþ BGðx̂; ŷÞ; ð5Þ

where

A ¼ exp½−ð4πσ̂sÞ2�; ð6Þ

B ¼ 1 − exp½−ð4πσ̂sÞ2�; ð7Þ

are the fraction of the total reflected radiant power contained
in the specular and the scattered components, respectively,
and

Gðx̂; ŷÞ ¼ exp½ð4πÞ2Csðx̂; ŷÞ� − 1

expð4πσ̂sÞ2 − 1
: ð8Þ

From Eq. (5), we see that the surface transfer function can be
written as the sum of two separate components. The ASF is
therefore expressed as the sum of the Fourier transforms of
the two components making up the surface transfer function:

ASFðα; βÞ ¼ FfHðx̂; ŷÞg ¼ Aδðα; βÞ þ Sðα; βÞ; ð9Þ

where the scattering function, Sðα; βÞ, is given by

Fig. 3. (Color online) (a) Illustration of the two-dimensional bound-
ary of the appropriate band-limited portion of the surface PSD for an
arbitrary incident angle, θi. (b) Illustration of the relevant portion of
the surface PSD, whose integral yields the square of the relevant rms
surface roughness.
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Sðα; βÞ ¼ BFfGðx̂; ŷÞg: ð10Þ

Therefore, the scattering surface reflects an incident beam of
light as a specularly reflected beam (the delta function) of di-
minished intensity surrounded by a halo of scattered light.

The ASF, and the corresponding scattering function are
scattered radiance functions, which is consistent with the fact
that the bidirectional reflectance distribution function
(BRDF) was defined by Nicodemus in 1970 as the reflected
(or scattered) radiance divided by the incident irradiance [30]:

BRDF ¼ f ðθi;ϕi; θs;ϕsÞ ¼
dLðθi;ϕi; θs;ϕsÞ

dEðθi;ϕiÞ
: ð11Þ

The four-dimensional BRDF is made up of a superposition
of the above two-dimensional ASFs, one for every possible
angle of incidence:

BRDFðθi;ϕi; θs;ϕsÞ ¼
X
θi ;ϕi

RASFðα; βÞ: ð12Þ

Here R is the scalar reflectance of the scattering surface.
Alternatively, for a given angle of incidence, the BRDF is
related to the ASF by

BRDFðθi;ϕi; θs;ϕsÞjθi;ϕi
¼ RASFðα; βÞ: ð13Þ

Starting with the assumption that the two-dimensional sur-
face height variation constitutes a Gaussian random process
that is homogeneous and isotropic, Eq. (4) was derived using
the same procedure as that used in image evaluation; i.e., the
surface transfer function is defined as the normalized autocor-
relation of the complex pupil function. In addition to [4], this
derivation has been repeated in [31,32].

Note that a scaled coordinate system has been used in
which the spatial variables are normalized by the wavelength
of the light (x̂ ¼ x=λ, ŷ ¼ y=λ, etc.). The reciprocal variables α
and β are thus the direction cosines of the propagation vectors
of the angular spectrum of plane waves discussed by Ratcliff
[33], Goodman [34], and Gaskill [35]. These direction cosines
α, β, and γ are related to the angular variables θ and ϕ in con-
ventional spherical coordinates by the following expressions
[36]:

α ¼ sin θ cosϕ; β ¼ sin θ sinϕ; γ ¼ cos θ: ð14Þ

Although there was no explicit smooth-surface approxima-
tion in this original Harvey–Shack (OHS) surface scatter the-
ory, the derivation of Eq. (4) did suffer from the same paraxial
limitations as the classical Beckmann–Kirchhoff theory. With-
in those limitations, for a broad class of scattering surfaces,
including optical surfaces polished with conventional abra-
sive grinding and polishing techniques on ordinary glassy
amorphous materials, the ASF exhibits shift-invariant behav-
ior in direction cosine space with respect to incident angle
[4,5,37]. This led to a modest following among the radiometric
community of BRDF curves plotted in the Harvey–Shack β −
βo format. Breault made extensive use of this format in build-
ing a catalog of BRDF data from various materials and
surfaces for use in his APART baffle design program [38]. To-
day the ASAP, Trace-Pro, ZEMAX, and FRED codes all use
some form of the Harvey–Shack BRDF model [39–42], and
the Optical Society of America Optics Classification and In-
dexing Scheme includes a code for Harvey scattering [43].

Also, if one does make the smooth-surface approximation,
the quantity Gðx̂; ŷÞ reduces to the normalized surface ACV
function, Csðx̂; ŷÞ=σ2s , and the scattering function becomes
proportional to the surface PSD function. This is similar to
the result predicted by the classical Rayleigh–Rice theory
as discussed in Subsection 4.C [1,25].

B. Modified Harvey–Shack Surface Scatter Theory
The above transfer function characterization of scattering sur-
faces was modified in the 1980s to include grazing incidence
effects in x-ray telescopes, and mid-spatial-frequency surface
errors that span the gap between figure and finish errors [44].
This allowed an understanding of image degradation due to
scattering effects from residual optical fabrication errors on
NASA’s Chandra Observatory and NOAA’s Solar X-ray Imager
[45,46].

Figure 4 shows a ray incident upon a scattering surface at
an arbitrary angle of incidence θi. The optical path difference
(OPD) experienced by a ray reflected from the surface in the
specular (θo ¼ −θi) direction is given by

OPD ¼ ðγi þ γoÞhðx̂; ŷÞ ¼ 2γihðx̂; ŷÞ; ð15Þ

where γi ¼ cos θi and γo ¼ cos θo. The corresponding phase
variation is given by

ϕðx̂; ŷÞ ¼ ð2π=λÞOPD ¼ 4πγiĥðx̂; ŷÞ: ð16Þ

Provided that the scattering angles are small relative to the
angle of specular reflection, the phase function of Eq. (16)
describes the phase variations introduced upon reflection
from a scattering surface for a wavefront incident at an arbi-
trary angle.

Krywonos showed that the surface transfer function for an
arbitrary incident angle (assuming small-angle scattering) can
be expressed as [32]

Hsðx̂; ŷ; γiÞ ¼ expf−ð4πγiσ̂refÞ2½1 − Csðx̂; ŷÞ=σ2s �g: ð17Þ

This can again be written in the form

Hsðx̂; ŷ; γiÞ ¼ AðγiÞ þ BðγiÞGðx̂; ŷ; γiÞ; ð18Þ

where

AðγiÞ ¼ exp½−ð4πγiσ̂relÞ2�; BðγiÞ ¼ 1 − exp½−ð4πγiσ̂relÞ2�;
ð19Þ

Fig. 4. Illustration of the OPD for a specularly reflected ray.
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Gðx̂; ŷ; γiÞ ¼
exp½ð4πγiÞ2Csðx̂; ŷÞ� − 1
exp½ð4πγiσ̂relÞ2� − 1

: ð20Þ

In Eq. (17) we have used the relevant surface roughness,
σrel, introduced in Eq. (2) since spatial frequencies lying out-
side of the band-limited portion of the surface PSD do not con-
tribute to the scattered radiation [47]. The surface ACV
function is divided by the total, or intrinsic, roughness, σs,
as its purpose is to normalize the height of the surface ACV
function to unity. Equation (19) expresses the fraction of
the total reflected radiant power contained in the specular
beam, and in the scattered component, after reflection from
a single moderately rough surface [48–50,3,25]. These rela-
tionships are very important to the following discussion.
We thus bring to the attention of the reader the brief historical
perspective of these relationships presented on p. 51 of [50].

A wavefront incident on the scattering surface at an angle
θi introduces a linear phase variation across the pupil. Since
the ASF is given by the Fourier transform of the surface trans-
fer function, we can apply the shift theorem of Fourier trans-
form theory to Eq. (18) and obtain

ASFðα; β − βo; γiÞ ¼ FfHsðx̂; ŷ; γiÞ expð−i2πŷβoÞg
¼ AðγiÞδðα; β − βoÞ þ Sðα; β − βo; γiÞ; ð21Þ

where

Sðα; β − βo; γiÞ ¼ BðγiÞFfGðx̂; ŷ; γiÞ expð−i2πŷβoÞg;
βo ¼ −βi: ð22Þ

This is the sum of a delta function at the location of the spec-
ular direction surrounded by a scattering function, S, where
the fraction of the total reflected radiant power in the specular
beam is given by AðγiÞ, and the fraction of total reflected ra-
diant power in the scattering function, i.e., the total integrated
scatter (TIS), is given by BðγiÞ. From Eq. (19), clearly AðγiÞ þ
BðγiÞ ¼ 1 and the ASF has unit volume. If the volume of the
scattering function, S, calculated by integrating Eq. (22) is not
equal to TIS, the scattering function will need to be renorma-
lized in accordance with the nonparaxial scalar diffraction
theory described in [19–21]. The renormalization constant,
KðγiÞ, for the scattering function is given by the following
expression:

KðγiÞ ¼ BðγiÞ
�Z

1

α¼−1

Z ffiffiffiffiffiffiffi
1−α2

p

β¼−

ffiffiffiffiffiffiffi
1−α2

p Sðα; β − βo; γiÞdαdβ
�

−1
; ð23Þ

and only differs from unity for large incident and scattered
angles where the scattered radiance distribution function ex-
tends beyond the unit circle in direction cosine space (i.e.,
only if evanescent waves are produced) [19].

Recall that the ASF is a radiance function of unit volume.
We can convert the ASF to radiant intensity by multiplying
by the total reflected radiant power and Lambert’s cosine
function:

Iðα; β − βo; γiÞ ¼ RPiASFðα; β − βo; γiÞ cos θs: ð24Þ

Clearly the surface scatter process is no longer shift invar-
iant with respect to incident angle, as reported in [4], since

Eq. (17) can be interpreted as a one-parameter family of sur-
face transfer functions; i.e., a different surface transfer func-
tion is required for each incident angle. This is analogous to
imaging in the presence of field-dependent aberrations, where
a different optical transfer function is required for each
field angle.

C. Generalized Harvey–Shack Surface Scatter Theory
The modified version of the Harvey–Shack (MHS) theory is a
significant improvement over the OHS theory, especially for
large incident angles. However, the restriction of small scat-
tering angles is still very limiting. Furthermore, the OHS and
the MHS surface scatter theories were restricted to mirror sur-
faces, and did not include the more general situation of scat-
tering from a random rough interface between two media with
arbitrary refractive indices.

Figure 5 illustrates the OPD introduced when an incident
ray at an arbitrary angle of incidence, θi, is scattered at an
arbitrary angle, θs, by a moderately rough interface between
two media with arbitrary refractive indices [26].

The OPD introduced by scattering from such an interface
can be written as

OPDðx̂; ŷÞ ¼ −ðn1 cos θi − n2 cos θsÞhðx̂; ŷÞ; ð25Þ

where n1 and n2 are the refractive indices of the media before
and after the interface, respectively.

The phase variation introduced for light scattered at an
arbitrary angle is thus given by the following expression:

ϕðx̂; ŷ; γi; γsÞ ¼ ð2π=λÞOPD ¼ −2πðn1 cos θi∓n2 cos θsÞĥðx̂; ŷÞ:
ð26Þ

Because of the well-known π phase change experienced by
an electromagnetic wave upon external reflection (n2 ≥ n1)
from the boundary between two dielectric media [51], the
minus sign is used when n2 ≤ n1 and the plus sign is used when
n2 ≥ n1.

Returning to the derivation of the OHS theory [4,31,32], we
find that the following two-parameter family of surface trans-
fer functions is required to characterize the scattering process
for arbitrary incident and scattering angles [26]:

Hsðx̂; ŷ; γi; γsÞ ¼ expf−½2πσ̂relðn1γi∓n2γsÞ�2½1 − Csðx̂; ŷÞ=σ2s �g;
ð27Þ

Fig. 5. Illustration of both forward (transmitted) and backward
(reflected) scattering from a moderately rough interface between
two media with arbitrary refractive indices.
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where

γi ¼ cos θi; γs ¼ cos θs: ð28Þ
This general expression for the surface transfer function

may be used to model either reflective or transmissive scatter,
the latter being of interest, for example, in calculating the in-
creased efficiency of thin-film photovoltaic silicon solar cells
by utilizing enhanced roughness on the TCO–Si interface
[52–54]. However, the discussion in this paper will be re-
stricted to applications of scattering from mirror surfaces,
i.e., n2 ¼ −n1. If the mirror is immersed in air (or vacuum),
n1 ¼ 1 and Eq. (27) can be written as

Hsðx̂; ŷ; γi; γsÞ ¼ expf−½2πσ̂relðγi þ γsÞ�2½1 − Csðx̂; ŷÞ=σ2s �g:
ð29Þ

A separate surface transfer function is thus required for
each incident angle and each scattering angle. Note that we
are again representing the effective rms surface roughness
with the band-limited relevant rms roughness, σ̂rel, defined
previously in Eq. (2). The σ2s at the end of Eqs. (27) and (29)
remains as the square of the total, or intrinsic, surface rough-
ness, as its purpose is to merely normalize the surface ACV
function to unit height.

Since the Fourier transform of the above surface transfer
function yields the ASF for normal incidence, we can again
invoke the shift theorem of Fourier transform theory and
express the scattered radiance distribution for an arbitrary
incident angle, θi ¼ −θo, by

ASFðαs; βs; γi; γsÞ ¼ FfHsðx̂; ŷ; γi; γsÞ expð−i2πβoŷÞgjα¼αs;β¼βs :

ð30Þ

Equation (30) corresponds to the scattered radiance in the
αs, βs direction. The direction cosines αs and βs are related
to γs by

γs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2s − β2s

q
: ð31Þ

The surface transfer function can again be written in the form

Hsðx̂; ŷ; γi; γsÞ ¼ Aðγi; γsÞ þ Bðγi; γsÞGðx̂; ŷ; γi; γsÞ; ð32Þ

where

Aðγi; γsÞ ¼ expf−½2πðγi þ γsÞσ̂rel�2g; ð33Þ

Bðγi; γsÞ ¼ 1 − expf−½2πðγi þ γsÞσ̂rel�2g; ð34Þ

Gðx̂; ŷ; γi; γsÞ ¼
exp

n
½2πðγi þ γsÞ�2 σ2rel

σ2s
Csðx̂; ŷÞ

o
− 1

exp½2πðγi þ γsÞ�2σ̂2rel − 1
: ð35Þ

The ASF can thus be written as the sum of a shifted δ function
(specularly reflected beam) and an associated scattering func-
tion, Sðα; β; γi; γsÞ:

ASFðαs; βs; γi; γsÞ ¼ ½Aðγi; γsÞδðα; β − βoÞ
þ Sðα; β; γi; γsÞ�jα¼αs;β¼βs ; ð36Þ

where

Sðα; β; γi; γsÞ ¼ Bðγi; γsÞFfGðx̂; ŷ; γi; γsÞ expð−i2πβoŷÞg: ð37Þ

Equations (29) and (37) indicate that, for a given incident
angle, a different Fourier transform needs to be performed for
each scattering angle in order to calculate the ASF. This pro-
cess can be avoided if the Fourier transform can be solved
analytically. When this is the case, γs is just treated as a con-
stant since it is not a function of the variables of integration, x̂
and ŷ. When a numerical solution is required, multiple trans-
forms will indeed have to be performed in order to calculate
the entire ASF.

When numerical solutions of Eq. (37) are required, the pa-
rameters γs and γi have to be specified before performing the
Fourier transform. Calculating the scattering distribution over
the entire observation space for a given angle of incidence will
therefore require a different transfer function and Fourier
transform calculation for every scattering angle.

Direction cosine space is a very convenient space in which
to perform the necessary calculations, as the entire observa-
tion hemisphere can be reduced to a circle with unit radius in
the α, β plane. This unit circle corresponds to θs ¼ 90° for all
values of ϕs in the spherical coordinate system. It is straight-
forward to create a numerical grid as a two-dimensional array
and then perform the calculation of the scattering function, S,
given by Eq. (37), for each point in the array. For points that lie
outside of the unit circle, we can simply assign a value of zero
to S, since γs is not a real number at those locations. The cal-
culation of the entire scattering function can thus be written
as

Sjkðα; β; γiÞ ¼ KðγiÞ
X
j

X
k

Sðαj ; βk; γi; γjkÞ; ð38Þ

where,

Sðαj ; βk; γi; γjkÞ ¼ FfGðx̂; ŷ; γi; γjkÞ expði2πβoŷÞgjαs¼αj ;βs¼βk ;

ð39Þ

γjk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2j − β2k

q
; ð40Þ

and KðγiÞ is the renormalization constant given by Eq. (23).
The process described above is very computationally inten-

sive, since, for each scattering angle, we have to perform a
two-dimensional discrete Fourier transform of the surface
transfer function. This yields a numerical array referred to
as an intermediate ASF. From this array, we extract the
one data point corresponding to that scattering angle and then
repeat the process for all other desired scattering angles. If the
surface roughness is isotropic, the surface transfer function
will be rotationally symmetric, and the two-dimensional
Fourier transform operation in Eq. (39) reduces to a Hankel
transform. Since the Hankel transform operation is one di-
mensional, this can help to reduce the computation time sig-
nificantly. The process is still the same, except that, at each
step, a numerical Hankel transform is performed, yielding the
radial profile of the circularly symmetric intermediate ASF
[32]. Using this profile, it is a simple matter to perform a
one-dimensional interpolation to obtain the one point corre-
sponding to αj , βk.
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Since the delta function in Eq. (36) is equal to zero except
when β ¼ βo, Eq. (33) yields the percentage of the total re-
flected power that resides in the specularly reflected light
when γs ¼ −γi, and, hence, also in the scattering function
(i.e., the TIS). After S is known over the entire observation
hemisphere, Eq. (23) is used to renormalize the volume of
the scattering function to unity and thus ensure conservation
of energy.

For the rough surface scattering predictions that follow, we
utilized a quasi-discrete Hankel transform algorithm based on
a Fourier–Bessel series expansion [55].

D. Comparison of Performance Predictions and
Experimental Validation
Using the procedure for the GHS theory outlined in
Subsection 3.C, we have performed a comparison of the scat-
tered intensity predicted by the OHS theory, the MHS theory,
and the GHS theory for a wavelength of 10:6 μm at incident
angles of 20°, 40°, 60°, and 70°. The surface modeled was mea-
sured by O’Donnell and Mendez to have a Gaussian ACV func-
tion of the form

Csðx̂; ŷÞ ¼ σ2s exp½−ðr2=ℓ2cÞ�; ð41Þ
where σs ¼ 2:27 μm and ℓc ¼ 20:9 μm [56]. Experimental data
taken from [56] for incident angles of 20° and 70° is also
plotted for comparison in Fig. 6. For this wavelength, the sur-

face can be considered moderately rough since σs=λ ¼ 0:214.
It will also produce fairly wide angle scatter since the ACV
width, normalized by the wavelength, is given by ℓc=λ ¼ 1:97.

For an incident angle of 20°, Fig. 6(a) indicates that the GHS
theory predicts a peak intensity that is about 27% higher than
the OHS theory, and slightly higher than the MHS theory.
Although there is no significant specular reflection (TIS ∼ 1),
the peak of the scattered intensity distribution lies essentially
in the specular direction for all three theories. Since we do not
know the absolute radiometric values, we have normalized the
peak values of the experimental data to be equal to that of the
GHS theory. The shapeof the experimental curve is in excellent
agreement with that of the GHS theory.

For the 40° angle of incidence illustrated in Fig. 6(b), the
three theories still all predict that there is no significant spec-
ular reflection (TIS ≥ 0:986). The MHS and GHS theories pre-
dict almost identical peak intensities (about 100% higher than
the OHS theory), and the peak of the GHS intensity is centered
upon the specular direction. The intensity distribution pre-
dicted by the MHS theory is shifted to slightly smaller angles.
The OHS scattered intensity distribution is considerably
broader than that predicted by the other two theories.

For an incident angle of 60°, Fig. 6(c) shows that the
peak intensity predicted by the MHS and GHS theories has
increased another 25% to 30%, with the MHS peak being some-
what higher than that of the GHS theory. The GHS and MHS

Fig. 6. (Color online) Comparison of scattered intensity predictions from the OHS, MHS, and GHS theories for different incident angles.
Experimental data is also displayed for incident angles of 20° and 70°. The difference between the MHS and GHS theories is modest but significant,
and the experimental data provides excellent agreement with the GHS predictions.

Krywonos et al. Vol. 28, No. 6 / June 2011 / J. Opt. Soc. Am. A 1127



theories now predict a TIS equal to 0.792, which implies that
∼21% of the reflected radiation is now contained in the spec-
ular beam. The OHS intensity distribution has a peak intensity
about 30% as high as the other two theories, and is substan-
tially broader.

Finally, for an angle of incidence of 70°, the peak intensities
of the scattering function predicted by the GHS and MHS the-
ories are now substantially lower, as the predicted value of the
TIS has dropped to 0.438. Figure 6(d) shows a more pro-
nounced asymmetry in the scattered intensity distribution pre-
dicted by the MHS and GHS theories. The GHS theory is an
excellent fit to the experimental data, and a substantial im-
provement over the MHS theory. It should also be noted that
experimental data is absent for those angles that represent the
location of the specular beam (presumably to protect the de-
tector), and the peak of both the measured and predicted scat-
tered intensity distributions are shifted substantially (∼10°)
from the specular direction. This was one of the nonintuitive
effects that the authors of [56] were unable to explain. We now
understand that this shift occurs when the predicted trun-
cated scattered radiance distribution is multiplied by the
Lambert cosine function to convert it to a scattered intensity
distribution.

In Fig. 7, we compare our predictions from the MHS and
GHS theories with those from the experimental measure-
ments and the classical Beckmann–Kirchhoff theory as pre-
sented by O’Donnell and Mendez for an incident angle of
70° with light of wavelength of λ ¼ 0:6328 μm. For this wave-
length, the surface can be considered very rough since
σs=λ ¼ 3:59. Clearly all of the light will be diffusely scattered.

The peak of the MHS theory is shifted substantially from the
peak of the GHS theory, and is also about 40% higher. The clas-
sical Beckmann–Kirchhoff theory has its peak at approxi-
mately the same angle as that of the GHS theory, and it
exhibits a nonphysical discontinuity at −90°. The shapes of all
three theoretical profiles are thus quite different. The agree-
ment between the GHS theory and the experimental data is
again excellent, especially considering that this is a very rough
surface with a large incident angle. Figures 6 and 7 provide a
convincing experimental validation of the GHS surface scatter
theory for rough surfaces at large incident and scatter angles.

4. BRDF PREDICTIONS FOR ROUGH
SURFACES WITH INVERSE POWER LAW
PSDs
The GHS surface scatter theory described in Subsection 3.C
has been shown to agree with experimental data for rough
surfaces with large incident and scattered angles. We can
now use the GHS surface scatter theory with confidence to
calculate BRDFs for surfaces that do not satisfy the
smooth-surface approximation.

Calculating BRDFs using the GHS theory does require a
separate two-dimensional numerical Fourier transform to
be calculated for each scattering angle of interest. It was quite
computationally intense, but manageable, to make surface
scatter predictions for surfaces characterized by a Gaussian
PSD. Unfortunately, optical surfaces fabricated by conven-
tional abrasive grinding and polishing techniques on ordinary
amorphous glassy materials do not exhibit Gaussian PSDs.
Instead, they typically exhibit an inverse power law behavior
[57–59].

A. ABC or K-Correlation Function PSD
The K -correlation, or ABC, function (actually a modified
Lorentzian function) has proven to be very convenient for
fitting to actual metrology data from real optical surfaces
[25,57–59]:

PSDðf xÞ1−D ¼ A

½1þ ðBf xÞ2�C=2
: ð42Þ

Assuming isotropic roughness, this one-dimensional surface
PSD can be converted to the following two-dimensional
surface PSD that relates more directly to the surface scatter
behavior, and hence to the resulting image degradation:

PSDðf Þ2−D ¼ K
AB

½1þ ðBf Þ2�ðCþ1Þ=2 ;

K ¼ 1
2

ffiffiffiπp ΓððC þ 1Þ=2Þ
ΓðC=2Þ : ð43Þ

There is also a convenient analytical expression for the two-
dimensional Fourier transform of the above two-dimensional
surface PSD. This surface ACV function is given by

ACVðrÞ ¼ ð2πÞ1=2 A
B

2−C=2

ΓðC=2Þ
�
2πr
B

�ðC−1Þ=2
KðC−1Þ=2

�
2πr
B

�
: ð44Þ

In the above expressions, A, B, and C are fitting parameters.
From the hemispherical grating equation, we obtain

f x ¼ sin θs cosϕs − sin θi
λ ; f y ¼ sin θs sinϕs

λ : ð45Þ

Also f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2x þ f 2y

q
, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, and Kðc−1Þ=2 is the modified

Bessel function of the second kind.
This inverse power law PSD does not fall to negligible val-

ues as quickly as the Gaussian PSD of the O’Donnell–Mendez
surface discussed in Subsection 3.D of this paper. Hence the
metrology data from typical ground and polished mirrors
frequently spans 6–8 decades of dynamic range in spatial
frequency. The total integral of the two-dimensional surface

Fig. 7. (Color online) GHS predictions compared to MHS and clas-
sical Beckmann–Kirchhoff predictions. Excellent agreement is indi-
cated between the GHS theory and the O’Donnell–Mendez
experimental data for this rough surface with a large incident angle.
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PSD of Eq. (43) is equal to

σ2total ¼
2πKAB
ðC − 1ÞB2 ; for C > 1:0: ð46Þ

For C ≤ 1:0, the integral does not converge, and the total (or
intrinsic) surface roughness is infinite. However, for all values
of C, the maximum relevant surface roughness is finite be-
cause roughness with a spatial frequency greater than that
which would diffract, or scatter, light into an angle greater
than 90° from the surface normal produces only evanescent
waves, which do not result in additional scattered light losses.

B. Implementation of the FFTLog Hankel Transform
Algorithm
Performing the required Fourier transforms numerically using
traditional fast Fourier transform (FFT) algorithms becomes
very computationally intensive (prohibitively so for surface
PSDs requiring a large dynamic range in spatial frequency).
In addition, the quasi-discrete Hankel transform algorithm
discussed in Subsection 3.C does not seem to work well with
the K -correlation functions described above. We therefore
utilized an implementation of the FFTLog algorithm [60] to
calculate BRDFs from surface metrology data expressed in
the form of an inverse power law surface PSD.

The FFTLog algorithm is used to compute the fast Fourier
or Hankel (i.e., Fourier–Bessel) transform of a periodic se-
quence of logarithmically spaced data points. It is particularly
useful for applications where the power spectrum extends
over many orders of magnitude in spatial frequency, f , and
varies smoothly in log f . It has been numerically validated
to be accurate over a very impressive 25 decades of dynamic
range in spatial frequency when Fourier transforming a well-
behaved ABC function [61].

C. BRDF Predictions from Actual Optical Surface
Metrology Data
Figure 8 illustrates a surface PSD constructed from metrology
data from an actual state-of-the-art extreme-UV (EUV) tele-
scope mirror. Note that each metrology instrument is inher-
ently band limited; hence, the surface PSD, over the entire
range of relevant spatial frequencies, was pieced together
from the results of measurements from separate metrology in-

struments. An ABC function of the form described by Eq. (43)
was then fit to the metrology data.

The ABC function fit to themetrology data was then Fourier
transformed using the analytic expression given by Eq. (44).
The resulting ACV function was substituted into Eq. (29) for
the surface transfer function of the GHS surface scatter theory
described in Subsection 3.C. This two-parameter family of sur-
face transfer functions was then numerically Fourier trans-
formed multiple times (using the FFTLog algorithm
discussed in Subsection 4.B) according to Eq. (30) to obtain
the BRDF profiles illustrated in Fig. 9 [61].

In accordance with the nonparaxial scalar diffraction the-
ory [19–21] upon which the GHS surface scatter theory is
based, each BRDF profile was renormalized (by varying the
parameter A) such that the integral of the scattered intensity
over a complete hemisphere equals the value of TIS predicted
by Eq. (34) when θs ¼ −θi. Figure 9 shows BRDF profiles cal-
culated for eight different wavelengths ranging from 1000Å
(vacuum UV) to 93:9Å (EUV). The values of the ABC param-
eters characterizing the mirror surface are indicated on the
figure. Note that the TIS, as calculated by Eq. (34), varies from
less than 1% for λ ¼ 1000Å to over 56% for λ ¼ 93:9Å.

In Fig. 10, the same BRDF profiles are plotted as a function
of β ¼ sin θs on a log–log scale. They appear to have the same
shape as the surface PSD, as expected for the long wave-
lengths that satisfy the smooth-surface approximation of
the classical Rayleigh–Rice expression [25]:

BRDFðθsÞ ¼
16π2
λ4 cos θi cos θsQPSDðf Þ; f ¼ sin θs=λ:

ð47Þ

The Rayleigh–Rice surface scatter theory is a rigorous vector
perturbation theory; hence Q is the polarization reflectance
that is discussed thoroughly by Stover [25]. The relevant
roughness is only implicit in the PSD of Eq. (47). The TIS
historically associated with the Rayleigh–Rice theory is given
by [25]

TISRR ¼ ð4π cos θiσs=λÞ2: ð48Þ

However, today it would be agreed that the σs should be re-
placed by the relevant roughness, σrel.

Fig. 8. (Color online) Composite surface PSD function determined from four different metrology instruments. An ABC, or K -correlation, function
has been fit to the experimental data to characterize the surface over the entire range of relevant spatial frequencies.

Krywonos et al. Vol. 28, No. 6 / June 2011 / J. Opt. Soc. Am. A 1129



Note that, in Fig. 10, the scattered radiance increases and
the position of the shoulder shifts to the left with decreasing
wavelength. The slope of the inverse power law behavior does
not appear to change significantly with wavelength. However,
this slope does begin to change significantly as σrel=λ becomes
larger.

In Fig. 11 we compare the BRDF profile for λ ¼ 93:9Å as
predicted by the GHS and the Rayleigh–Rice surface scatter
theories [61]. Although the difference appears small on this
log–log plot covering almost 20 decades on the vertical axis,
the expanded inset shows that the peak of the BRDF function
predicted by the Rayleigh–Rice theory is more than a factor of
2 higher than that predicted by the GHS theory. The corre-
sponding percent error in the peak value of the BRDF
predicted by the Rayleigh–Rice theory for the other wave-
lengths is also tabulated in Fig. 10. This percent error de-

creases monotonically with increasing wavelength, reducing
to less than 0.3% error for a wavelength of 1000Å. Again, this
is to be expected as σrel=λ ¼ 0:00657 for λ ¼ 1000Å, and this
is well within the smooth-surface approximation of the
Rayleigh–Rice vector perturbation theory.

There is a second inset in Fig. 11 that shows an expanded
view of the two curves as they approach a scattering angle of
90°. The BRDF predicted by the Rayleigh–Rice theory dives to
zero as it approaches 90°, whereas the BRDF predicted by the
GHS theory makes a modest dip but remains distinctly finite.
This behavior is caused by the different obliquity factors of the
two theories, and will be discussed in detail in Section 5. This
forcing of the BRDF to zero at 90° by the Rayleigh–Rice
obliquity factor is perhaps the cause of the ubiquitous “hook”
in surface PSDs predicted by surface scatter measure-
ments [62,63].

5. SMOOTH-SURFACE APPROXIMATION TO
THE GHS SURFACE SCATTER THEORY
When the roughness of the surface is small compared to the
wavelength of the incident light (σ̂rel ≪ 1), the surface transfer
function is still given by Eq. (29); however, we can make the
following explicit approximations to its constituent parts
expressed in Eq. (32)–(34):

Aðγi; γsÞ ≈ 1 − ½2πσ̂relðγi þ γsÞ�2; ð49Þ

Bðγi; γsÞ ≈ ½2πσ̂relðγi þ γsÞ�2; ð50Þ

Gðx̂; ŷÞ ≈ Csðx̂; ŷÞ=σ2s : ð51Þ

The scattering function is still given by Eq. (39), and the BRDF
by Eq. (13); hence

Fig. 9. (Color online) These BRDF profiles were numerically
calculated from the real metrology data (surface PSD) illustrated
in Fig. 8. The GHS surface scatter theory was used for this moder-
ately rough surface. The FFTLog algorithm was implemented in the
calculations.

Fig. 10. (Color online) The BRDF profiles illustrated in Fig. 9 are plotted here on a log–log scale as a function of β ¼ sinðθÞ. They now exhibit the
shape of the surface PSD as expected from the Rayleigh–Rice theory for the long wavelengths.
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BRDF ¼ 4π2
λ4 Kðcos θi þ cos θsÞ2Q

σ2rel
σ2s

PSDðf x; f yÞ: ð52Þ

Here the PSDðf x; f yÞ is the two-sided, two-dimensional sur-
face PSD function and f x and f y are given by Eq. (45). Note
that we have quasi-vectorized our scalar scattering theory by
merely substituting the polarization reflectance, Q, from the
Rayleigh–Rice theory for the scalar reflectance R.

A. Comparison with the Rayleigh–Rice Theory
Before proceeding to compare the predictions of the smooth-
surface approximation of the GHS theory with the classical
Rayleigh–Rice theory, we briefly review the definitions of a
few radiometric quantities [64]. This will aid in the following
discussion of the effects of different obliquity factors in the
two theories:

Irradiance ¼ E ¼ dP
dA

ðradiant power=areaÞ;

Radiant Intensity ¼ I ¼ dP
dω ðradiant power=steradianÞ;

Radiance ¼ L ¼ d2P
dωdA cos θ

ðradiant power

=steradian projected areaÞ: ð53Þ
In the past, scientists have generally used the word inten-

sity to mean the flow of energy per unit area per unit time.
However, by international, if not universal, agreement, that
term is slowly being replaced by the word irradiance [65].
Furthermore, the definition of intensity provided by
Eq. (53) is one of seven SI base quantities (including length,
mass, time, etc.) from which all other physical quantities are
derived [66].

The BRDF, previously defined in Eq. (11) as the reflected
radiance divided by the incident irradiance, is a computed

quantity calculated by dividing the measured radiant intensity
by the cosine of the scattered angle. Angle-resolved scatter
(ARS) is a term used by some segments of the radiometric
community for this measured scattered intensity [67]. The dif-
ferential scattered intensity predicted from the classical
Rayleigh–Rice vector perturbation theory is given by [1,25]

ARSðθs;ϕsÞdωs ¼
1
Pi

�
dP
dω

�
s
dωs

¼ 16π2
λ4 cos θicos2θsQPSDðf x; f yÞdωs; ð54Þ

where dωs ¼ sin θsdθsdϕs is the differential solid angle sub-
tended by the small collecting aperture of the instrument
scanned over the observation hemisphere when making the
ARS measurements.

Recalling that radiant intensity is obtained by multiplying
radiance by Lambert’s cosine function (cos θs) [64], the corre-
sponding quantity predicted by the smooth-surface approxi-
mation to the GHS surface scatter theory is obtained from
Eq. (52):

ARSðθs;ϕsÞdωs ¼
1
Ps

�
dP
dω

�
s
dωs

¼ 4π2
λ4 Kðcos θi þ cos θsÞ2

× cos θsQ
σ2rel
σ2s

PSDðf x; f yÞdωs; ð55Þ

Figure 12 shows a direct comparison of scattered intensity
profiles predicted by the classical Rayleigh–Rice theory, the
smooth-surface approximation to the GHS theory, and the
GHS theory for a perfectly conducting, smooth surface char-
acterized by a Gaussian ACV function as described in Eq. (41).
In Fig. 12(a), we have normal incidence and a normalized ACV

Fig. 11. (Color online) Comparison of the BRDF profile predicted by the GHS and Rayleigh–Rice surface scatter theories shows that, for
λ ¼ 93:9A, the Rayleigh–Rice theory results in a peak BRDF value 122% higher than the GHS theory (lower left inset). Errors for other wavelengths
are tabulated. Upper right inset shows distinctly finite value of the GHS curve at a 90° scattering angle.

Krywonos et al. Vol. 28, No. 6 / June 2011 / J. Opt. Soc. Am. A 1131



width (ℓc=λ) large enough that a vanishingly small portion of
the surface PSD extends beyond a spatial frequency of 1=λ. In
Fig. 12(b), we have a 60° incident angle, but have increased
the ACV width such that the width of the surface PSD is
reduced to the point that, once again, only an infinitesimal
portion of its volume lies outside of the displaced circle of ra-
dius 1=λ illustrated in Fig. 3(a). Thus, for both cases, σrel ≅ σs.
Under these conditions, all three theories result in virtually
identical predictions.

However; even for smooth surfaces, as the ACV width de-
creases and the surface PSD broadens such that σrel becomes
less than σs, the Rayleigh–Rice predictions increasingly dis-
agree with the GHS predictions as illustrated in Fig. 13.
The smooth-surface approximation to the GHS theory con-
tinues to agree with the GHS theory for smooth surfaces even
when σrel < σs because of the σrel rather than σs in Eq. (50) and
the renormalization constant, K , in Eq. (52).

For moderately rough surfaces where the ACV width is
large enough such that σrel ≅ σs, the Rayleigh–Rice theory
and the GHSSmooth theory agree, as shown in Fig. 14, but
are both inaccurate due to their explicit smooth-surface ap-
proximations. Having been shown to agree with the Rayleigh–
Rice theory for smooth surfaces when σrel ≅ σs, and with
experimental measurements for very rough surfaces and large
incident angles (Fig. 6), the GHS theory is presumed to be
accurate.

Finally, we show two cases for moderately rough surfaces
and σrel < σs. In Fig. 15(a), both the Rayleigh–Rice and the
GHSSmooth curves are too high because of their explicit
smooth-surface approximation. As in Fig. 13(a), the
GHSSmooth curve is higher than the Rayleigh–Rice curve be-
cause of the renormalization that is performed. In Fig. 15(b),
the Rayleigh–Rice and the GHSSmooth again exhibit scattered
intensity curves that are considerably higher than that of the
GHS theory. The Rayleigh–Rice curve is now higher than that
of the GHSSmooth theory because σs is substantially larger
than σrel.

Figures 12–15 illustrate scattered intensity, or ARS predic-
tions, rather than BRDF curves. The extra cos θs that appears
in the obliquity function for scattered intensity in Eqs. (54) and
(55) obscures some substantial differences that become
apparent when we compare BRDF profiles predicted by the
different theories.

Figure 16 shows a direct comparison of the BRDF predic-
tions by the classical Rayleigh–Rice theory given by Eq. (47)
and the smooth-surface approximation to the GHS theory gi-
ven by Eq. (52) for both a Gaussian PSD and a K -correlation
(inverse power law) PSD. The only difference between the
two theories are the slightly different obliquity factors, the re-
normalization constant, K , and the ratio σ2rel=σ2s in Eq. (52) for
the GHS theory. The renormalization constant assures that the
integral of the GHS scattering function will always be equal to
the TIS as predicted by the quantity B in Eq. (50) when
θs ¼ −θi.

Note that the obliquity factors are approximately equal for
small incident and scattering angles. In fact, they are exactly
equal when θs ¼ �θi. The striking difference in the BRDF pro-
files illustrated in Fig. 16 is that the Rayleigh–Rice theory
drives the BRDF to zero at �90°, regardless of the nature
of the surface PSD, whereas the GHS theory does not.

B. Inverse Scattering Problem
Equations (47) and (52) can be rewritten to allow the calcula-
tion of surface characteristics from BRDF measurements (the
inverse scattering problem):

PSDðf x; f yÞ ¼
λ4
4π2

σ2s
σ2rel

BRDF
Kðcos θi þ cos θsÞ2Q

; ð56Þ

PSDðf x; f yÞ ¼
λ4

16π2
BRDF

cos θi cos θsQ
: ð57Þ

The Rayleigh–Rice surface scatter theory is widely ac-
cepted for smooth surfaces and has been extensively used
for decades for large scattered and incident angles. However,
when used to predict surface PSDs from BRDF measure-
ments, the Rayleigh–Rice theory yields a ubiquitous and an-
noying “hook” at the high-spatial-frequency end of the
predicted PSDs [62,63]. These hooks in the predicted PSD
are generally ignored because it is assumed that they are
not real since their location on the predicted PSD shifts with
incident angle.

The questionable behavior of BRDFs diving to zero at
θs ¼ �90°, regardless of the nature of the surface PSD, sug-
gests that the puzzling and ubiquitous hook might be a

Fig. 12. (Color online) The GHS surface scatter theory and its
smooth-surface approximation are numerically validated by the
well-known Rayleigh–Rice surface scatter theory for smooth surfaces
and σrel ≅ σs.
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computational artifact of an incorrect obliquity factor in the
Rayleigh–Rice theory. In an attempt to resolve this dilemma,
Stover [62] made extensive BRDF measurements on several
smooth surfaces. He carefully measured and recorded
scattered intensity data at closely spaced angular intervals
over the entire range of scattered angles, all the way out to
89:6°. Figure 17 shows the meticulous scattered intensity
measurements from a clean, smooth, gold-coated surface
from which the BRDF was calculated by merely dividing by
the cosine of the scattered angle.

The measured radiant intensity (watts/steradian) was di-
vided by the incident radiant power resulting in the indicated
units of inverse steradians. Note that the directly measured
radiant intensity data turns toward zero as the scattered angle
approaches 90° (as it must). However, the BRDF curve does
not show signs of diving toward zero for large scatter angles,
as predicted by the Rayleigh–Rice theory.

Figure 18 shows the surface PSD as predicted by both
the Rayleigh–Rice surface scatter theory and the smooth-
surface approximation of the GHS surface scatter theory
(K ≅ σs=σrel ≅ 1). Reference [62] should be studied to ap-
preciate the care that was taken to assure that measure-
ment errors or instrumental effects were not the cause of

the huge hook in the surface PSD predicted by the Rayleigh–
Rice theory. Note that there is virtually no evidence of a hook
in the PSD predicted from the smooth-surface approximation
of the GHS surface scatter theory from the BRDF data illu-
strated in Fig. 7.

Although we originally thought that we had discovered this
new obliquity factor that seems to eliminate the undesirable
computational artifacts in the surface PSDs predicted from
BRDF measurements, it is interesting to note that, in his
1989 SPIE Proceedings paper [68], Church performed a Fres-
nel–Kirchhoff derivation of surface scatter and obtained an
obliquity factor identical to that in Eq. (56). However, he con-
sidered this scalar treatment to be an approximation to the
more rigorous Rayleigh–Rice vector perturbation theory
and, to our knowledge, never performed a comparison of
the effects of the two obliquity factors upon the calculation
of the surface PSD from BRDF data.

Other researchers have also recently (and independently)
verified that the GHS obliquity factor eliminates the hook
at the high-spatial-frequency end of surface PSDs predicted
from ARS measurements [69]. However, some researchers
have other explanations for this behavior, resulting in ongoing
discussions.

Fig. 13. (Color online) Even for smooth surfaces, the well-known
Rayleigh–Rice theory increasingly disagrees with the GHS theory
as the ACV width decreases and σrel becomes smaller than σs. The
GHSSmooth theory continues to agree with the GHS theory as long
as the surface is smooth.

Fig. 14. (Color online) For moderately rough surfaces where the
ACV width is large enough such that σrel ≅ σs, the Rayleigh–Rice the-
ory and the GHSSmooth theory agree but are both inaccurate due to
their explicit smooth-surface approximations. The GHS theory is pre-
sumed to be accurate.
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Fig. 15. (Color online) For moderately rough surfaces where
σrel < σs, the Rayleigh–Rice and the GHSSmooth theory both produce
predictions for the scattered intensity that are too high, with the worst
offender depending upon the specific value of the renormalization
constant and the ratio σrel=σs.

Fig. 16. (Color online) Comparison of BRDF predictions from the
Rayleigh–Rice theory and the smooth-surface approximation to the
GHS surface scatter theories for smooth surfaces with (a) a Gaussian
PSD and (b) a K -correlation (inverse power law) PSD. Note the dif-
ference in the two predictions for θs ≈ 90degrees.

Fig. 17. (Color online) Meticulously measured, high-angular-resolution, relative intensity measurements, and the corresponding BRDF profile,
extending to a scatter angle of 89:6°.
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6. PREDICTING BRDFS FOR ARBITRARY
WAVELENGTHS AND INCIDENT ANGLES
Although the difference in the obliquity factors of the two
smooth-surface scattering theories is interesting, it does not
significantly affect the TIS for moderately rough surfaces.
Of more practical importance is the fact that the GHS surface
scatter theory finally makes it possible to predict BRDFs for
arbitrary wavelengths and incident angles for a moderately
rough surface from measured BRDF data at a single wave-
length and incident angle.

It is generally accepted that the inverse scattering problem
of predicting the surface PSD from BRDF measurements is
only possible for smooth surfaces [25]. However, the actual
requirement is that the rms phase variation of the reflected
wavefront is small [3]:

4πσrel cos θi=λ ≪ 1: ð58Þ

Clearly, for a moderately rough surface (σrel ∼ λ), a large in-
cident angle (θi ∼ 80°) can be chosen such that the above con-
dition is still satisfied.

Figure 19 illustrates BRDF data measured at different
wavelengths and incident angles from a moderately rough,
clean silicon surface [62]. The irregularities in the left side
of the BRDF profiles are caused by the detector mechanism
blocking the incident beam, and that same mechanism produ-
cing glints as it enters and emerges from the incident beam.
Using the measured BRDF data for λ ¼ 633nm and θi ¼ 80°,
the smooth-surface criterion of Eq. (58) is marginally satisfied
with a value of 0.306. We can thus use Eq. (56) to perform the
inverse scattering calculation with the smooth-surface ap-
proximation to the GHS surface scatter theory to obtain an
estimate of the surface PSD (assume that K ≅ σs=σrel ≅ 1).

Figure 20 shows the resulting surface PSD that has been fit
with the sum of five ABC functions. Note the arrows on the
abscissa that indicate the maximum relevant spatial frequency

Fig. 18. (Color online) Illustration of the very prominent “hook” in
the surface PSD predicted by the Rayleigh–Rice theory, and the virtual
absence of any such hook predicted by the smooth-surface approxi-
mation to the GHS surface scatter theory.

Fig. 19. (Color online) BRDF scans were taken from the back side of a clean silicon wafer for incident angles of 5°, 45°. 70°, and 80°. A shorter
wavelength of 488nm was used at θi ¼ 5° to increase the apparent “roughness” as expressed by Eq. (58).

Fig. 20. (Color online) Surface PSD calculated from Eq. (57) illu-
strated along with a fitting function to be used as input for the
GHS surface scatter theory to calculate BRDFs at different wave-
lengths and incident angles.
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for the wavelengths of 633 and 488nm (at normal incidence).
We have also evaluated the roughness criterion of Eq. (58) and
the resulting TIS for the four cases of interest and tabulated
the values on Fig. 20, along with the calculated surface
PSD curve.

We can now use this predicted surface PSD as input to the
GHS surface scatter theory to calculate the BRDF at other
wavelengths and incident angles that clearly do not satisfy
the smooth-surface approximation. Figure 21 shows excellent
agreement between the theoretical predictions with the GHS
theory and the corresponding experimental BRDF measure-
ments for a wavelength of 633nm and incident angles of
70° and 45°, and for a wavelength of 488nm and an incident
angle of 5°.

Also indicated in Fig. 21 are similar predictions of the BRDF
made by applying the Rayleigh–Rice surface scatter theory.
In these cases, the PSD used was also calculated with the
Rayleigh–Rice theory. The smooth-surface approximation in-
herent to the Rayleigh–Rice theory results in substantial over-
estimating of the BRDF at small to moderate angles (by more
than 2 orders of magnitude for the smallest incident angle of
5°). Although the Rayleigh–Rice predictions are quite good at
very large scattering angles, the integral of the resulting BRDF
over the full hemisphere results in unrealistically large values
for the TIS, exceeding the physical limit of TIS ¼ 1:0 for inci-
dent angles of 5° and 45°.

7. SUMMARY AND CONCLUSIONS
Rayleigh–Rice [1,2] or classical Beckmann–Kirchhoff [3] the-
ories are commonly used to predict surface scatter behavior.
The Rayleigh–Rice vector perturbation theory agrees well
with experimental wide-angle scatter measurements from
smooth (4πσrel cos θi=λ ≪ 1) surfaces for large incident and
scattering angles. The classical Beckmann–Kirchhoff scatter-
ing theory is valid for rougher surfaces, but contains a paraxial

(small-angle) assumption that limits its ability to accurately
handle wide-angle scattering and large angles of incidence.
The closed-form equations provided by Beckmann are also
limited to scattering surfaces with Gaussian ACV functions
[3]. A recently developed nonparaxial scalar diffraction theory
[19–21] has led to the development of a generalized linear sys-
tems formulation of surface scatter theory that appears to suf-
fer from neither of the fundamental limitations of the classical
Rayleigh–Rice and Beckmann–Kirchhoff theories.

The derivation of a two-parameter family of surface trans-
fer functions that characterizes general surface scatter phe-
nomena results in a rather computationally intensive process
for obtaining two-dimensional scattered light behavior.
However, for isotropic roughness, the computational time
is greatly reduced. Extensive parametric performance predic-
tions indicate excellent agreement with experimental data for
rough surfaces, even for large incident and scattered angles.
This GHS surface scatter theory also exhibits excellent agree-
ment with the well-established Rayleigh–Rice vector perturba-
tion surface scatter theory (for TE, or s polarization) for
smooth surfaces and large correlation widths (comparisons
performed for surfaces with Gaussian ACV functions).

Until very recently, BRDF predictions for rough surfaces
with inverse power law PSDs have been problematic due
to the large dynamic range of relevant spatial frequencies.
This problem has been solved by the implementation of a nu-
merical FFTLog algorithm that uses logarithmically spaced
samples.

Furthermore, a smooth-surface approximation of the GHS
surface scatter theory has provided a somewhat modified ob-
liquity factor from that of the classical Rayleigh–Rice theory.
This modified obliquity factor appears to eliminate the trou-
blesome and annoying hook in surface PSDs predicted from
BRDF measurements that has plagued stray light analysts for
decades.

Fig. 21. (Color online) BRDFs predicted with both the GHS and the Rayleigh–Rice surface scatter theories are compared to experimental
measurements for three cases that do not satisfy the smooth-surface criterion.
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Finally, we have shown the GHS surface scatter theory to
be a useful tool for addressing the inverse scattering problem.
It can be used to predict surface PSDs for moderately rough
surfaces if the BRDF data was measured at sufficiently large
angles to satisfy the smooth-surface criterion stated by
Eq. (58). This surface PSD can then be used to make BRDF
predictions with the GHS surface scatter theory at arbitrary
wavelengths and incident angles.
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