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Abstract: The light scattering of rough metallic surfaces with roughness 
levels ranging from a few to several hundred nanometers is modeled and 
compared to experimental data. Different modeling approaches such as the 
classical Rayleigh-Rice vector perturbation theory and the new Generalized 
Harvey-Shack theory are used and critically assessed with respect to ranges 
of validity, accuracy, and practicability. Based on theoretical calculations 
and comparisons with Rigorous Coupled Wave Analysis for sinusoidal 
phase gratings, it is demonstrated that the approximate scatter models yield 
surprisingly accurate results and at the same time provide insight into light 
scattering phenomena. For stochastically rough metal surfaces, the 
predicted angles resolved scattering is compared to experimental results at 
325 nm, 532 nm, and 1064 nm. In addition, the possibilities of retrieving 
roughness information from measured scattering data for different 
roughness regimes are discussed. 
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1. Introduction 

The scattering properties of optical and non-optical surfaces are strongly related to the surface 
structure with respect to the incident wavelength. For optical imaging surfaces light scattering 
is usually an unwanted effect caused by surface imperfections and fabrication errors [1–3]. 
Although several optical applications make use of rough interfaces to tailor the light 
distribution, such as optical diffusors or structured thin film solar cells [4,5]. For many of 
these applications predicting the light scattering properties from surface roughness metrology 
data is desirable. 

Also for non-optical, technical surfaces, surface roughness can play a crucial role for the 
functional properties, such as wetting, mechanical stability, conductivity and others [6]. Light 
scattering measurement and analysis is a powerful way to determine roughness properties in a 
fast, robust, non-contact, and yet sensitive way [7]. For this purpose, models are required that 
allow for solving the inverse scattering problem in order to retrieve roughness information 
from light scattering measurement data. 

Approaches for modeling the light scattering from rough surfaces may be divided in 
analytic scattering models and rigorous treatments. 

Analytic scattering theories are based on Maxwell’s equations but make use of certain 
approximations to solve them, which results in different limitations of their ranges of validity 
[8]. Yet, analytic models have several advantages: They are usually rather easy to calculate, 
they provide direct insight into the scattering process, and they often provide an inverse 
solution of scattering problem. The most prominent analytical scattering theories are the 
classical Beckmann-Kirchhoff theory [9], the Rayleigh-Rice or Vector Perturbation theory 
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[10–13], and the classical Harvey-Shack scattering theory [14], each having their specific 
advantages and limitations [15]. In addition, a new Generalized Harvey-Shack theory has 
been developed recently that combines the advantages of existing analytical models without 
having their limitations [16]. All of the aforementioned analytical approaches make use of the 
statistical properties of stochastic surfaces instead of relying on the knowledge of the exact 
topography. This has the advantage of inherent ensemble averaging. 

Rigorous electromagnetic theories offer exact solutions to the scattering problem. 
Different approaches exist such as the Rigorous Coupled Wave Analysis (RCWA) [17] and 
the Finite Difference Time Domain (FDTD) method [18], with different advantages and 
capabilities regarding the handling different surface structures. They are most powerful in 
calculating the scattering of one dimensional periodic surfaces. Any additional degree of 
complexity usually requires a tremendously increased computational power, approximations 
at the cost of accuracy, or is not possible at all. Furthermore, statistical effects of surface 
scattering that are extensively discussed in papers about analytical models [19] are often 
neglected in rigorous treatments. Finally, none of the rigorous approaches allows for solving 
the inverse problem of obtaining roughness information from surface light scattering data 
directly. Nevertheless, rigorous treatments for the first time enabled the calculation of light 
scattering properties also for surface structures beyond the ranges of validity of existing 
analytic models. They can therefore be extremely useful in order to assess the accuracy of 
different analytic approaches. 

A stochastically rough surface structure can be seen as a superposition of a large number 
of sinusoidal phase gratings with different orientations, periods, amplitudes, and phases. 
Hence, we start our investigation with diffraction efficiency calculations for simple sinusoidal 
phase gratings as special types of rough surfaces using different theoretical models. We then 
analyze the angle resolved scattering of stochastically rough metal surfaces by comparing the 
predictions of different scattering theories with experimental results at different wavelengths. 

This paper is organized as follows. In Sec. 2 the fundamental quantities to describe surface 
roughness and light scattering are summarized. A brief summary of surface scattering theories 
is given in Sec. 3. The experimental set-ups and procedures used are presented in Sec. 4. In 
Sec. 5 modeling results of the diffraction efficiency of sinusoidal phase gratings are discussed. 
In Sec. 6 light scattering measurement and modeling results for rough metallic surfaces are 
presented and discussed. 

2. Definitions 

2.1 Surface roughness 

In the following we will give a brief summary of the statistical description of roughness. More 
detailed information can be found in [1,13,20].

The 2-dimensional Power Spectral Density function PSD is defined as the squared 
modulus of the Fourier transform of the interface topography: 
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Hereby we have assumed that the surface topography z(x,y) has zero mean. L is the length of 
the scanned profile. 

The PSD expresses the power of different roughness components in terms of the (lateral) 
surface spatial frequencies fx and fy. It contains all statistical information of random-rough 
(stochastic) surfaces such as generated by grinding, polishing, etching, as well as thin film 
growth or erosion. 
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Stochastic surfaces often exhibit isotropic roughness corresponding to a PSD with a polar 
symmetry. The 2D-isotropic PSD is calculated by averaging the 2D PSD over all azimuthal 
directions: 
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Every real profile or roughness measurement technique is confined to a certain spatial 
frequency range, which is limited, for instance, by the investigated surface area and the 
instrumental resolution. The (bandwidth limited) rms roughness, usually defined as the square 
root of the standard deviation of z(x,y) from its mean value can be calculated by integrating 
the PSD: 
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The integration limits depend on the application at hand or measurement technique used. In 
the extreme case fmin = 0 and fmin = �, σ is called the total roughness.

Another description of surface roughness is provided by the surface autocovariance 
function ACV. The correlation length τc is defined as the lateral spacing at which the ACV 
drops to 1/e of its maximum value. The ACV and PSD contain both vertical and lateral 
information about surface roughness (e.g. rms roughness and correlation length). They form a 
Fourier transform pair and are thus equivalent. However, only PSDs provide a direct 
representation of bandwidth limits. Moreover, using PSDs we are able to combine roughness 
information from different roughness measurement techniques to retrieve multi scale 
roughness information. 

In practice, surface topography is sampled with a finite number of points. The integral 
expressions given above are therefore replaced by discrete forms [13], sometimes introducing 
apodization functions to suppress numerical artifacts. 

2.2 Light scattering 

The following summary is based on the assumption of isotropic surface roughness, which is 
usually justified for ground, polished, and coated surfaces. For normal incidence, the 
scattering is therefore a function of the polar angle θs only. 

Angle Resolved Scattering (ARS) is defined as the power ΔPs scattered into a small solid 
angle ΔΩs normalized to that solid angle and the incident power Pi: 
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ARS is related to the Bidirectional Scattering Distribution Function (BSDF) by: BSDF(θs) = 
ARS(θs) / cos(θs). It should also be noted that the correct radiometric expression for ARS 
would be normalized scattered intensity. However, various definitions of intensity are used in 
different communities. In order to emphasize the essential normalizations according to Eq. 
(4), we use the term ARS. 

Several definitions of quantities exist that define integrated scattering such as the Total 
Integrated Scatter (TIS), Haze, and Total Scattering (TS), the latter being defined in the 
international standard ISO 13696 [21]. Total backscattering (TSb) is defined as the power Ps
scattered from a surface into the backward hemisphere normalized to the incident power Pi..
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For normal incidence, the standard requires at least the light scattered within the angular range 
between 2° and 85° to be collected. From Eq. (4) it follows that: 
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The starting point of scattering theories that link the surface structural properties and the light 
scattering properties are always Maxwell’s equations. However certain approximations are 
used to find a solution to the rather complex problem of scattering from certain structures. 

3. Surface scattering models 

3.1 Beckmann-Kirchhoff (BK) theory 

The famous Beckmann-Kirchhoff theory [9] is a scalar treatment. Based on the Kirchhoff 
diffraction integral, Beckmann derived an expression for the “scattering efficiency” in form of 
an infinite sum. Closed form solutions only exist for very smooth surfaces (σ / λ << 1) and 
very rough surfaces (σ / λ >> 1) with Gaussian ACVs. In addition, it has been pointed out that 
the classical BK theory contains an implicit paraxial limitation [22].

3.2 Rayleigh-Rice (RR) theory 

The Rayleigh-Rice vector perturbation approach can be seen as the most rigorous analytical 
solution of Maxwell’s equations for the limiting case of vanishing surface roughness (smooth 
surface limit) [10–13]. The result is a direct and rather simple relationship between the ARS 
and the surface PSD: 

2
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Hereby, ii �� cos�  and ss �� cos�  are the cosines of the incident and the scattering 
angles, respectively. Q is the angle dependent polarization reflectance, an optical factor that 
contains information about the dielectric function as well as about the conditions of 
illumination and detection (angles of incidence and scattering, polarization, etc.). 

The link between spatial frequencies and scattering angles is given by the grating 
equation: sin sin /s if � � �� � . Hence, in the smooth surface regime, the ARS merely 
consists of the first diffraction orders of the surface spectral components. 

The rather simple and direct relationship between the ARS and the surface PSD provided 
by the Rayleigh-Rice result is of crucial importance for the characterization of surface 
roughness using light scattering techniques [7,13,23]. However, the smooth surface 
requirement can be a severe restriction depending on the surface or wavelength at hand. It is 
usually formulated as: 1/ ���� , although a more accurate criterion is [13]: (4πσrel cos θi / λ)2

<< 1. Unfortunately, there is no distinct number to decide whether the criterion is fulfilled or 
not. In [13] it is stated that �� /  should be smaller than 0.01. In [15] it was concluded that 

/� �  should be smaller than 0.05. In particular at short wavelengths the smooth surface 
requirement is likely to be violated. Yet this does not necessarily mean that the RR theory 
fails completely as will be demonstrated in this paper. 

3.3 Generalized Harvey-Shack (GHS) theory 

Recently, a new theory has been developed by Krywonos and Harvey that is a generalization 
of the Fourier optics treatment of light scattering known as the Harvey-Shack theory. Based 
on the Helmholtz equation it is basically a scalar theory. The scattering behavior of a rough 

#142704 - $15.00 USD Received 14 Feb 2011; revised 7 Apr 2011; accepted 1 May 2011; published 5 May 2011
(C) 2011 OSA 9 May 2011 / Vol. 19, No. 10 /  OPTICS EXPRESS  9824



surface with Gaussian height distribution function (but arbitrary PSD) is described using a 
surface transfer function [24–26]:

� �2
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where �/ˆ xx �  and �/ˆ yy �  are the normalized coordinates, ˆ /rel rel� � ��  is the 
normalized rms roughness relevant for diffuse scattering. For normal incidence this relevant 
roughness corresponds to the square root of the integral of the PSD from f = 0 to 1/λ [Eq. (3)].

The ARS is merely the Fourier transform of the GHS surface transfer function multiplied 
with the total reflectance of the surface and the cosine of the scattering angle according to 
Lambert’s law. The total reflectance might be replaced by the optical factor Q from the 
Rayleigh-Rice result to take into account polarization properties. Harvey refers to this 
procedure as “borrowing” the Rayleigh-Rice optical factor. For small incident and scatter 
angles it can be shown that Q is equal to the total reflectance [13]. This intuitive quasi-
vectorization therefore provides results that are at least as accurate as the purely scalar 
approach in general. The final GHS result therefore becomes: 

! " .),;ˆ,ˆ()( sisss yxHQARS ���� F�   (8) 

For smooth surfaces the exponential function in the surface transfer function [Eq. (7)] can be 
approximated and Eq. (9) transforms into the Rayleigh-Rice result except for a slightly 
different obliquity factor [27].

The GHS modeling procedure for a given surface is as follows [25]: (i) measurement of 
the surface PSD over the entire range of relevant spatial frequencies, usually through 
combining different techniques, (ii) fit of a combination of ABC-model PSDs [1] to the 
experimental data, (iii) analytical calculation of the ACV, (iv) determination of the surface 
transfer functions for the given incident angle and any scatter angle, and (v) calculation of the 
ARS according to Eq. (8) using a Fourier transformation in log-space. 

Although more computationally intensive, the new GHS theory seems to combine the 
advantages of the Rayleigh-Rice and the Beckmann-Kirchhoff theories with the limitations of 
neither. The only theoretical limitations are that it is still a scalar approach in nature (even 
though the final result has been quasi-vectorized) and it does not account for higher order 
effects such as multiple scattering. Not surprisingly, solving the inverse scattering problem, 
hence retrieving roughness information from light scatter data, is not possible in general using 
the GHS theory. In this paper we are going to investigate and critically evaluate the validity 
and capabilities of the new approach. 

3.4 Rigorous treatments 

Rigorous treatments are with some justification usually seen as providing exact solutions to 
the scattering problem without any approximations. However, in practical applications 
involving three-dimensional stochastic surfaces, the large number of parameters requires a 
tremendous amount of computational power and time that finally demand approximations in 
the input data. For example, a typical surface profile measured using atomic force microscopy 
has 512x512 data points. The investigated surface area has to be small enough to resolve all 
structural features that are (supposedly) relevant for the scattering properties. On the other 
hand, a considerable number of relevant features have to be included in order to achieve a 
sufficiently large averaging of the scattering characteristics of the individual features. It is 
therefore obvious that even rigorous treatments are finally confronted with approximations be 
it on the calculation side or on the data input side. 

Several rigorous treatments have been developed during the last few decades, where 
certain approaches are more suited for specific problems than others. Typical criteria that lead 
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to the decision for one or another approach are deterministic or stochastic surfaces, single 
surfaces or multilayer structures, size of relevant surface features with respect to the 
wavelength of light, as well as considerations with respect to complexity, accuracy, 
efficiency, and speed. 

For calculations of the diffraction efficiency of periodic grating structures, the Rigorous 
Coupled Wave Analysis (RCWA) developed by Moharam et. al [17] seems to be particularly 
powerful. The RCWA calculations in this paper were performed using an algorithm 
developed at CREOL as well as with the software MIST developed by Thomas Germer at 
NIST, Gaithersburg, USA. Both implementations were found to be in excellent agreement 
with each other. 

The Finite Difference Time Domain (FDTD) method can be used to predict the scattering 
of stochastically rough surfaces based on measured surface topography data. Scatter 
predictions using the FDTD method have been presented recently [4] and are also under 
investigation for the surfaces discussed in the present paper. Yet, we believe that questions 
regarding how to appropriately take into account the influence of the topography at different 
lateral scales, which is of particular importance for statistically roughened surfaces, and the 
absolute normalization of the results require a detailed discussion that is beyond the scope of 
this paper. Instead, we focus on comparing the results of analytic theories and rigorous 
treatments for simple sinusoidal diffraction gratings. For this purpose the well established 
RCWA method can be used that provides rapid results and insight into the limits of validity of 
the different models. 

4. Experimental 

4.1 Sample generation 

The preliminary investigations of sinusoidal phase gratings are purely based on computer 
calculations. Yet, in one case parameters similar to those of a real grating analyzed in [27]
were used. 

For the investigations of stochastically rough surfaces, raw disks with a diameter of 25 
mm and a thickness of 5 mm were cut from a steel cylinder (stainless steel X5CrNi18-10) 
using a turning machine. As a result, all raw disks exhibited typical anisotropic ring 
structures. Different grinding and polishing procedures were then applied to remove the 
turning marks and to generate surface structures with a large variety of roughness levels 
ranging from optically smooth to rough. 

4.2 Roughness measurements 

Stochastic surfaces usually exhibit surface features over a wide range of spatial frequencies. 
For a thorough roughness analysis different instruments and resolutions have to be used to 
cover the entire range of spatial frequencies relevant for the light scattering process. 

The smallest relevant spatial frequency range can be estimated using the fact that in the 
smooth surface regime, the RR theory predicts the ARS to merely consist of the first 
diffraction orders of the surface spectral components. Consequently, for normal incidence 
spatial frequencies between f = 1/D and f = 1/λ are directly relevant for the light scattering, 
where D denotes the diameter of the illuminated portion of the scattering surface. For typical 
applications, the low spatial frequency limit is in the order of 1/1000 µm�1. The shortest 
wavelength employed for scatter measurements in this paper is 325 nm which corresponds to 
a high spatial frequency limit of 3 µm�1. In order to sufficiently cover this large spatial 
frequency range, different roughness measurement techniques and measurement parameters 
were used. 

White light interferometry (WLI) was performed using a Zygo NewView 600s with 2.5x 
and 50x objectives corresponding to fields of view of 2.8x2.1 mm2 and 141x105 µm2. While 
WLI is of great use to measure roughness components in the low- and mid-spatial frequency 
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range, the information at high spatial frequencies is always limited by the transfer function of 
the objective used. 

Therefore, Atomic force microscopy (AFM) was performed to measure high spatial 
frequency roughness. An AFM VEECO D3100 operated in Tapping Mode with single 
crystalline Si probes (10 nm nominal tip radius) was used. Scan areas of 1x1 µm2 and 10x10 
µm2, each scan containing 512x512 data points, were analyzed. 

The output of each single AFM or WLI measurement is a 3D topography map containing 
roughness components in a certain spatial frequency range. From the single topographies, 
PSDs were calculated according to Eq. (6). All PSDs for a given surface were then combined 
to a single Master-PSD using the procedure described in detail in [20]. The combination of 
single measurements to a Master-PSD enables averaging of the roughness information in a 
certain spatial frequency range as well as substantially enhancing the total spatial frequency 
range. It is in particular for these both reasons that scatter calculations based on Master-PSDs 
are much more robust and representative for the given surface than calculations based on 
single scanned profiles, rigorous or not. 

Knowledge of the real and imaginary parts of the index of refraction of the steel surfaces, 
n and k, are required to calculate the optical factor, Q, in Eqs. (6) and (8). For this purpose, 
specular reflectance measurements were performed on the smoothest surface (sample A). The 
spectral reflectance was measured using a commercial spectrometer Perkin Elmer Lambda 
900. In addition, the reflectance as a function of the angle of incidence for both s- and p-
polarized light at the wavelengths of interest were measured using the light scattering 
instrumentation described in the next section. Starting from the optical properties of iron, the 
optical constants were then adjusted to fit the measured reflectance data. The measured 
normal incidence reflectance R and optical constants at the wavelengths of interest are: (i) at 
325 nm: R = 48%, n = 1.8, k = 2.5, (ii) at 532 nm: R = 59%, n = 2.04, k = 3.3, (iii) at 1064 nm: 
R = 67%, n = 2.06, k = 3.9. Considering both the non-zero surface roughness and the 
uncertainty of the measurements, the relative uncertainty of the reflectance values is estimated 
to be below 3% at all wavelengths. 

4.3 Light scattering measurements 

Angle resolved light scattering measurements were performed at 325 nm, 532 nm, and 1064 
nm. Using different wavelengths allows us to analyze a given sample at different roughness to 
wavelength ratios by using the same PSD. Since measuring a single ARS at a given 
wavelength is less cumbersome than determining a Master PSD by combining PSDs of 
numerous single topography measurements, this tremendously increases the accuracy and 
efficiency of our comparison. The wavelengths were chosen such that a surface that has to be 
considered to be rough at the shortest wavelength might still be optically smooth at the 
longest wavelength. 

For the ARS measurements at 325 nm and 1064 nm, the instrument ALBATROSS (3D 
Arrangement for Laser Based Transmittance, Reflectance and Optical Scatter Measurement) 
developed at Fraunhofer IOF and presented in detail in [28] was used. A HeCd laser and a 
Nd:YAG laser were used for measurements at 325 nm and 1064 nm, respectively. A metallic 
mirror based spatial filter and several baffles are used for beam preparation and suppression 
of system stray light in order to minimize the instrument signature (scattering signal without 
sample present). The sample is located on a positioning system to adjust the irradiated 
position and the angle of incidence. The illumination spot diameter was adjusted to 3 mm. 
The detector, which is based on a side-on photomultiplier tube, can be rotated within the 
entire sphere around the sample. Yet, for the present investigation of merely isotropic 
surfaces, only in-plane measurements were performed. A detector aperture diameter of 2 mm 
was used corresponding to a detector solid angle ΔΩs of 3x10�5 sr. The instrument exhibits a 
dynamic range of up to 15 orders of magnitude and a noise equivalent ARS level of down to 
10�7 sr�1. 
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In addition, for measurements at 532 nm a new table-top instrument was used that is 
described in detail in [29]. It exhibits similar features as the one described above in a much 
more compact design. 

It should be noted that the choice of the diameters of both the illumination spot on the 
sample and the detector aperture for the light scattering measurements allows for sufficient 
ensemble averaging and suppression of surface speckle. In order to achieve a comparable 
amount of statistical stability of surface topography data, a large number of single 
measurements have to be combined. This is challenging but possible by combining the data to 
Master PSDs that can be used as input for the analytic models. For rigorous models, however, 
this means performing the entire calculations for numerous topographies at various sample 
positions with different resolutions and combining the final scattering curves. This requires a 
tremendous amount of computational power and time and the justification of this approach 
has to be put under careful investigation. 

5. Diffraction efficiency of sinusoidal phase gratings 

Before investigating real, stochastically rough metallic surfaces in detail, it might be useful to 
discuss the diffraction properties of simple sinusoidal phase gratings. Since a stochastically 
rough surface can be seen as a superposition of a sinusoidal phase gratings, this simple case 
can provide more insight into the scattering phenomenon and scatter models. We hereby 
follow a procedure that was presented recently by Stover to experimentally verify the RR 
theory [27].

The PSD of a sinusoidal grating with amplitude a is merely a delta function at a spatial 
frequency corresponding to the inverse period of the grating. It is straightforward to show that 
the Rayleigh-Rice result [Eq. (6)] leads to the following expression for the diffraction 
efficiency of the first order [13,27]:
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The basis of the Harvey-Shack theory is the non-paraxial diffraction theory (NP) presented in 
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Jm is the Bessel function of the first kind, order m. The summation limits in the denominator 
of Eq. (4) are the minimum and maximum propagating order of diffraction. The sum therefore 
corresponds to a renormalization of the propagating orders when higher orders go evanescent. 
This renormalization to take into account the effect of evanescent orders is also a fundamental 
feature of the non-paraxial diffraction theory. 

Following Stover’s approach, for a given grating with period p and amplitude a, the angle 
of incidence was adjusted such that the first orders appear at (scatter) angles between 0 
degrees and 90 degrees. The diffraction efficiencies were then calculated using the Rayleigh-
Rice theory (RR) according to Eq. (9), the non-paraxial diffraction theory (NP) according to 
Eq. (10), as well as the Rigorous Coupled Wave Analysis (RCWA). The results for different 
grating parameters at a wavelength of 532 nm are shown in Fig. 1. 

For the rather shallow grating with an amplitude of only 5 nm (Fig. 1(a)) the RR result is 
virtually identical with the RCWA result. This demonstrates that the RR theory can be 
considered to be exact for wavelength ratios a/λ = 0.01 and below. Also the NP prediction is 
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in good agreement with the RCWA result, although there is a slight disagreement at near 
grazing angles. This effect is a topic of ongoing discussion [27].

The results for a = 20 nm (Fig. 1(b)) indicate that for larger amplitudes, the RR theory 
starts to predict efficiencies too high at small angles. Yet the corresponding error is below 5% 
for a/λ * 0.04. This quantitative smooth-surface limit is in good agreement with former 
statements for stochastically rough surfaces [13,15] if the amplitude is seen as a measure for 
the rms roughness. The NP result remains accurate except for the deviation at large angles. 
The results for the same amplitude but larger period of p = 10 µm (Fig. 1(c)) reveal that this 
effect almost vanishes for larger periods corresponding to diffraction angles closer to the 
specular direction. 

The cases for the substantially increased amplitude of 50 nm, 100 nm, and 300 nm (Fig. 
1(d)–1(f)) illustrate that even far beyond the range where the RR theory is supposed to be 
valid, the NP theory yields results that are in excellent agreement with the RCWA result over 
almost the entire angular range. For the sake of completeness, the prediction of the classical 
Beckmann-Kirchhoff theory (BK) is also shown in Fig. 1(f), the results being substantially 
overestimated for diffraction angles greater than 30 degrees. 
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Fig. 1. First order scattering efficiency of sinusoidal phase gratings with different periods p and 
amplitudes a at a wavelength of 532 nm. Diffraction angles between 0 degrees and 90 degrees 
were achieved by adjusting the angle of incidence. 

It is interesting to note that even in those cases that tremendously violate the smooth-
surface criterion, the RR results are accurate at very large angles. It might therefore be 
possible to modify the NP result at large angles using the RR result. However, the good 
agreement of the NP and the RCWA results for all cases, and therefore the accuracy of the 
GHS theory, can be considered to be more than sufficient for the investigations in this paper. 

#142704 - $15.00 USD Received 14 Feb 2011; revised 7 Apr 2011; accepted 1 May 2011; published 5 May 2011
(C) 2011 OSA 9 May 2011 / Vol. 19, No. 10 /  OPTICS EXPRESS  9830



Different parametrizations could have been used as well. However, the present approach 
allows to easily verify the presented results using a single-wavelength scatterometer. 

6. Scattering of stochastically rough surfaces 

The Power Spectral Density functions of the steel surfaces were measured using AFM and 
WLI as described in Sec. 4A. The Master-PSDs of all samples determined by combining the 
single PSDs are shown in Fig. 2. 
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Fig. 2. Master-PSDs of steel surfaces. The arrows indicate the upper bandwidth limits of the 
relevant spatial frequency range for three illumination wavelengths and assuming normal 
incidence. 

The PSDs reveal that a large variety of roughness spectra has been generated and 
combinations of ABC-model PSDs have to be used to fit the data. The peaks at 0.01 µm�1 in 
the PSD of samples C suggests that residual turning marks of the raw samples that have not 
been removed by the grinding process are present for this sample. Therefore, although care 
has been taken to generate isotropic roughness structures, the effects of anisotropic roughness 
might have to be taken into account when comparing light scattering measurements and 
predictions based on PSD data. 

Band limited rms roughness values were calculated from the PSDs by numerical 
integration over the corresponding spatial frequency ranges. The total roughness corresponds 
to the square root of the total volume under the PSDs over the entire spatial frequency range. 
The relevant roughness for each wavelength was calculated using Eq. (3) with fmin = 1e-3 and 
fmax = 1/λ for wavelengths of 325 nm, 532 nm and 1064 nm. The resulting upper bandwidth 
limits are indicated by arrows in Fig. 2. 

The results for samples A, B, and C are summarized in Table 1. Although not listed 
explicitly it should be noted that the relevant roughness values are always close to but in no 
case identical with the total roughness, the maximum deviation being 8% for sample A at 
1064 nm. 
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Table 1. Total rms Roughness and Ratio of Relevant Roughness to Wavelength for 
Samples A, B, and C 

sample σtotal (nm) 325 nm: σrel / λ 532 nm: σrel / λ 1064 nm: σrel / λ

A 6.0 0.018 0.011 0.005

B 135.7 0.41 0.25 0.12

C 322.2 0.98 0.50 0.30

With view to the results of Sec. 5 the roughness to wavelength ratios illustrate that sample A 
can be considered to be optically smooth at all three wavelengths, Sample C is very rough, 
and Sample B is an intermediate, moderately rough surface. Comparing the roughness to 
wavelength ratios of the stochastically rough surfaces and the sinusoidal phase gratings 
discussed in Sec. 5, it is interesting to note that at 1064 nm, samples A, B, and C are 
equivalent to cases b, d, and f, respectively, in Fig. 1. 

The results of angle resolved light scattering measurements at 325 nm are shown in Fig. 3.
It is very illustrative and intuitive that with increasing roughness, the intensity of the 
specularly reflected beam is decreased and at the same time the diffuse scattering is increased. 
This redistribution of power is consistent with the conservation of energy. 
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Fig. 3. Results of ARS measurements at 325 nm of steel surfaces with different surface 
structures represented as different roughness values. The heights of the specular peaks are 
indicated by horizontal bars. 

The results of ARS measurements and predictions using the RR and the GHS theories for 
samples A, B, and C at three different wavelengths are shown in Fig. 4. 

For the smoothest sample under investigation, sample A, the RR and the GHS results are 
virtually identical and in excellent agreement with the experiment data (Fig. 4(a)). Similar to 
the case shown in Fig. 1(b), the results demonstrate the accuracy of both the RR and the GHS 
for this optically smooth surface. In this regime, PSD and ARS are directly proportional and 
either of the functions can be determined by measuring the other. This is consistent with the 
fact that only the first diffracted orders of roughness components making up the stochastic 
surface contain significant power. The PSD can be easily calculated by analyzing the 
measured light scattering distribution using Eq. (6). This approach has been demonstrated to 
be very powerful for the characterization of optical surfaces [7,13,15,23].
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Considering the shortest wavelength used and the roughness of the sample the results 
suggest that the smooth surface criterion can be formulated as: σrel cos θi / λ * 0.02. This is in 
reasonable agreement with the results of Sec. 5 and former statements [13,15]. Since TSb/R *
(4πσrel cos θi / λ)2 [3,13], where R denotes the specular reflectance, an alternative criterion for 
the total scattering instead of the roughness allowed would be TSb/R * 0.07. Based on the 
results of Sec. 5 we believe that the smooth surface approximation might still be valid in 
particular at large angles even if these conditions are violated to some extent. If a surface does 
not meet the smooth surface requirement at a short wavelength or small incident angles, a 
larger wavelength or incident angle may be used in order to determine the surface PSD from 
scatter measurements. However, measurements at short wavelengths might still be required to 
obtain information about high spatial frequency roughness components. 

(c)(b)

0.1 1 10
10-5

10-2

101

104

107

 325 nm
 532 nm 
 1064 nm

 GHS
 RR
 Meas. 

A
R

S
 (s

r-1
)

�s (deg)

0.1 1 10
10-5

10-2

101

104

107

 325 nm
 532 nm 
 1064 nm

 GHS
 RR
 Meas.

A
R

S
 (s

r-1
)

�s (deg)

0.1 1 10
10-5

10-2

101

104

107

 325 nm
 532 nm 
 1064 nm

 GHS
 RR
 Meas.

A
R

S
 (s

r-1
)

�s (deg)

(a)

Fig. 4. ARS of surfaces with different roughness levels. Measurement results at 325 nm, 532 
nm, and 1064 nm and modelling using the Rayleigh-Rice theory (RR) and the Generalized 
Harvey-Shack theory (GHS). (a) sample A, (b) sample B, and (c) sample C at 325 nm, 532 nm, 
and 1064 nm. 

The results for sample B are shown in Fig. 4(b). With a roughness to wavelength ratio 
between 0.12 and 0.41 depending on the wavelength this sample represents a moderately 
rough surface corresponding to the grating results shown in Fig. 1(d). As already mentioned, 
the RR theory is not supposed to be valid in this case. The results clearly show that the ARS is 
tremendously overestimated in particular at smaller angles, whereas a remarkably good 
agreement can still be observed at large angles. The GHS results correctly describe the 
behavior of the scattering curve being damped at smaller angles compared to the linear 
relationship of the PSD and the ARS predicted by the RR theory. This is similar to the 
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observation for sinusoidal gratings that for increasing amplitude the first order diffraction 
efficiency is reduced in favor of higher orders. And the highest roughness amplitudes in the 
PSDs usually occur at smaller spatial frequencies corresponding to small scatter angles. 
Because of the mixing of higher diffracted orders of different roughness components at the 
same scatter angles solving the inverse scattering problem directly is not possible. Yet it 
might be possible to tackle this problem using the GHS theory and reverse engineering based 
on varying the input PSDs. It is interesting to note that in this regime the reflectance 
properties of the surface determine the ARS level in contrast to the dominating 1/λ4

wavelength relationship predicted by the RR theory. 
Even though there is reasonable agreement between the experimental and GHS results, 

considerable discrepancies can be observed in particular at 325 nm. We believe this is more 
likely caused by the sample properties and uncertainties in the experimental data rather than 
by inaccuracies of the theoretical models. In general, the following facts have to be 
considered when comparing measured light scattering data and modeling results based on 
measured surface PSDs: (i) Both AFM and WLI measurement results are influenced by 
measurement uncertainties that are seldom given explicitly but can be assumed to be 
approximately 10-30%. In addition, for the scatter modeling, ABC model functions were 
fitted to the experimental data. This might both reduce fluctuation effects as well as lead to 
additional errors. (ii) The scattering measurements exhibit a relative uncertainty that has been 
determined to be about 10%. Surface speckle effects are suppressed by choosing a sufficiently 
large detector solid angle. (iii) If the roughness is not perfectly homogeneous, the PSDs 
determined from a roughness measurement at one position and the PSD relevant for the 
scattering measured at another position are not equal. (iv) If the roughness is not perfectly 
isotropic, the measured in-plane ARS corresponds to a one dimensional slice of the 3D 
surface PSD whereas the Master PSDs have been calculated by averaging over all directions. 

Because the RR theory is not valid anymore over the entire angular range, it is not 
possible to obtain the PSD directly from ARS measurements at the given wavelengths for 
sample B. However, in this intermediate roughness regime, referred to as the specular regime 
in [15], there is still a pronounced specular peak that may be used to calculate the rms 
roughness. In addition, the inverse scattering problem may be solved by recursively applying 
the GHS theory. 

Sample C is the roughest of the samples investigated. The ARS modeling and 
measurement results are shown in Fig. 4(c). Again, the GHS prediction is in reasonable 
agreement with the experimental results. The obvious deviations in the absolute value are 
again believed to be caused by the inhomogeneity of the sample, whereas the deviations at 
scatter angles >10° might be caused by an anisotropy of the surface roughness. The ARS 
curves of sample C illustrate that already for a roughness to wavelength ratio greater than 0.2 
there will be no specular beam anymore. However, even in this diffuse regime the rms 
roughness may still be retrieved from analyzing the Total Scattering directly. Though, the 
limitations of this approach have to be investigated carefully. Recent investigations suggested 
modifications of the established models that shall not be discussed further in the present 
paper. 

Even though the uncertainties involved in using real experimental data for both the scatter 
measurements and the input for the scatter modeling the results discussed above demonstrate 
that the GHS theory can be used to predict the scattering properties for different regimes of 
surface roughness. The good agreement of the RR theory in particular at very large angles 
even if the smooth surface criterion is clearly violated suggests that an obliquity correction 
factor might be applied to the GHS theory to further increase the accuracy at all scatter angles. 

7. Summary and conclusions 

Different approaches were used to predict the angle resolved scattering of metal surfaces in 
roughness regimes from optically smooth to moderately and very rough. 
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It has been confirmed that the Rayleigh-Rice (RR) vector perturbation theory yields highly 
accurate results as long as the smooth surface criterion (4πσrel cos θi / λ)2 << 1 is met. As a 
quantitative criterion, the surface can be considered optically smooth if: σrel cos θi / λ * 0.02 
or, equivalently, if TSb/R * 0.07. In this regime, only the first diffracted orders of roughness 
components contain significant power. PSD and ARS are directly proportional and either of 
the functions can be determined by measuring the other. 

In the smooth surface regime the predictions of the Generalized Harvey-Shack (GHS) 
scattering theory are almost identical to the RR results except for a slightly different obliquity 
factor. Investigations of sinusoidal phase gratings demonstrated that the RR result is in perfect 
agreement with rigorous modeling using Rigorous Coupled Wave analysis. This suggests that 
an obliquity correction factor might be applied to the GHS result. 

For moderately rough surfaces the RR theory starts to overestimate the ARS in particular 
at small scattering angles. This corresponds to the beginning of specular power being 
redistributed not only to first but also to higher diffracted orders. Nevertheless, the GHS 
theory accurately takes into account these higher order effects. 

Even for very rough surfaces the GHS theory yields results that are in reasonable 
agreement with experimental data. Because of the mixing of higher diffracted orders of 
different roughness components, solving the inverse scattering problem directly is not 
possible. However, PSD information might be retrieved using the GHS theory and reverse 
engineering based on varying the input PSDs. Since the RR theory still provides remarkable 
accurate results at very large scattering angles even if the smooth surface criterion is clearly 
violated, it might be used to provide initial results for the reverse engineering procedure. 

In summary, it has been demonstrated that the GHS theory allows us to predict the angle 
resolved scattering of arbitrary stochastically rough surfaces without restrictions on the 
surface roughness and the surface autocorrelation function. 

However, the accuracy of the prediction also depends on the quality of the surface 
metrology data used as input. This comprises not just the uncertainty of the measurements but 
also the homogeneity, isotropy, and defectivity of the surface. In some cases, it might 
therefore be desirable to perform direct light scattering measurements instead of or in addition 
to scatter modeling. Furthermore, the investigations presented in this paper were confined to 
single surfaces. The scattering of optical and non-optical coatings usually involves a 
substantially increased degree of complexity such that direct measurements at the wavelength 
of application are often the easiest and most reliable way to characterize their light scattering
properties even though simplified modeling approaches for multilayer coatings exist [28].
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