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We study the propagation of light in Bloch waveguide arrays exhibiting periodic coupling interactions. Intriguing
wave packet revival patterns as well as beating Bloch oscillations are demonstrated. A new resonant delocalization
phase transition is also predicted. © 2011 Optical Society of America
OCIS codes: 130.2790, 230.7370.

Optical waveguide arrays have been a subject of intense
study in the past few years. Such structures are known to
provide a versatile means to control the behavior of light
in both the linear and nonlinear regimes. For example, in
the linear domain, beams propagating in uniform optical
arrays experience discrete diffraction [1,2]—a process
with altogether different characteristics from its free
space counterpart. At high enough powers, however,
optical discrete solitons can also form [1,2]. The propa-
gation dynamics and stability properties of these non-
linear states have been thoroughly studied [2] in
several settings. One fascinating aspect of optical lattices
is their ability to mimic idealized solid-state systems
[3–7]. For example, the action of a constant bias field
in a periodic quantum potential forces an electron to exe-
cute oscillations around its mean position, better known
as Bloch oscillations. In optical array configurations, this
can be readily accomplished by linearly ramping the on-
site effective refractive index or optical potential. Optical
Bloch oscillations were first suggested in the late 1990s
and were subsequently observed in AlGaAs and polymer
waveguide lattices [3,4]. Nonaxially uniform configura-
tions have also been used to excite optical Bloch oscilla-
tions [8,9]. Another intriguing phenomenon associated
with Bloch lattices is dynamic localization—first pre-
dicted within the context of solid state physics [10]. This
effect arises from the interaction between a periodic po-
tential and a time harmonic bias force. In this regime,
when the bias strength and modulation frequency are re-
lated through the zeros of Bessel functions, the coupling
between sites is suppressed, and hence dynamic localiza-
tion occurs. Quite recently, curved periodic structures
were investigated and used to unequivocally demonstrate
dynamic localization in optics along with many other in-
teresting phenomena [11,12].
In this Letter we study the propagation dynamics of

optical beams in 1D waveguide Bloch lattices when both
the coupling constants and the strength of the ramping
potential vary as a function of propagation distance.
One possible realization of such an array configuration
is depicted in Fig. 1, where the linear transverse index
profile can be achieved through a temperature gradient
as in the case of [4]. Another possibility in implementing

such structures is to change the width of each waveguide
in an ascending fashion [3].

The periodic modulation of the width of each element
makes the coupling among successive elements also vary
periodically along the propagation direction. We show
that the analytical solution of this problem predicts a
number of interesting phenomena. Under constant bias
conditions, localization (with or without revivals) can oc-
cur. Under a certain condition however, the dynamics
change entirely and the input experiences diffraction
or delocalization. Depending on the design parameters,
Bloch oscillations exhibiting two main different frequen-
cies (beating oscillations) can exist.

We begin our analysis by considering the evolution
equation that describes light transport in a periodically
modulated Bloch array, similar to that shown in Fig. 1.
In the tight binding approximation, this equation reads

i
dφn

dz
þ κðzÞ½φnþ1 þ φn−1� þ f ðzÞnφn ¼ 0: ð1Þ

In Eq. (1), φn represents the optical field modal amplitude
at the waveguide site n, and κðzÞ is the coupling constant
between any two adjacent channels, and in general it can
vary along the propagation direction z. On the other
hand, f ðzÞ is the ramping strength of this Bloch array,
which can also be a function of z. By introducing a
new coordinate via the transformation ηðzÞ ¼ R

z
0 κðz0Þdz0,

we find that ∂

∂z ¼ ∂η
∂z

∂

∂η ¼ κðzÞ ∂

∂η, and hence Eq. (1) takes
the form

Fig. 1. (Color online) Possible realization of a periodically
modulated Bloch lattice.
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i
dφn

dη þ ðφnþ1 þ φn−1Þ þ ngðzÞφn ¼ 0; ð2Þ

where gðzÞ ¼ f ðzÞ=κðzÞ. Note that Eq. (2) still contains η
and z. However, because η varies with z, it follows that
one can invert this dependence and express z as a func-
tion of η. If we write z ¼ hðηÞ, we find that gðzÞ ¼
gðhðηÞÞ ¼ sðηÞ, and Eq. (2) finally becomes

i
dφn

dη þ ðφnþ1 þ φn−1Þ þ nsðηÞφn ¼ 0: ð3Þ

By comparing Eqs. (1) and (3), we find that geometries
with modulated coupling can be mathematically mapped
on other structures with varying propagation constants.
It must be noted however that physical realizations of
both systems is completely different. The modulus of
the field amplitude jφnj in Eq. (3) can then be obtained
from the Dunlap and Kenkre solution [10,13]:

jφnj2 ¼ J2
n

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ðηÞ þ u2ðηÞ

q �
: ð4Þ

In Eq. (4) uðηÞ ¼ R η
0 cos½ϑðη0Þ�dη0, vðηÞ ¼

R η
0 sin½ϑðη0Þ�dη0

and ϑðηÞ ¼ R η
0 sðη0Þdη0. Note that ϑðηÞ ¼ ϑðηðzÞÞ ¼ ϑðzÞ ¼R

z
0 gðz0Þð∂η0=∂z0Þdz0. By using the relationships gðz0Þ ¼
f ðz0Þ=κðz0Þ and ð∂η0=∂z0Þ ¼ κðz0Þ, we arrive at the result
of ϑðzÞ ¼ R

z
0 f ðz0Þdz0. Following similar arguments, u

and v in Eq. (4) can now be expressed as

uðzÞ ¼
Z

z

0
cos½ϑðz0Þ�κðz0Þdz0; ð5aÞ

vðzÞ ¼
Z

z

0
sin½ϑðz0Þ�κðz0Þdz0: ð5bÞ

This solution applies in general, irrespective of the nature
of the modulating functions. We now focus our attention
on the special case under consideration where the Bloch
slope f ðzÞ ¼ f 0 is constant, and κðzÞ ¼ κ0 þ ε sinðΓzÞ
where κ0 is the average coupling constant between
waveguides, ε is the coupling modulation amplitude, and
Γ is the modulation frequency along the propagation di-
rection. Under these conditions,

uðzÞ ¼
Z

z

0
cosðf 0z0Þ½κ0 þ ε sinðΓz0Þ�dz0

¼ κ0
f 0

sinðf 0zÞ þ ε
Z

z

0
cosðf 0z0Þ sinðΓz0Þdz0; ð6aÞ

vðzÞ ¼
Z

z

0
sinðf 0z0Þ½κ0 þ ε sinðΓz0Þ�dz0

¼ κ0
f 0

½1 − cosðf 0zÞ� þ ε
Z

z

0
sinðf 0z0Þ sinðΓz0Þdz0:

ð6bÞ

Depending on the relative values of f 0 and Γ, Eq. (6) pre-
dicts different scenarios for the system’s dynamics. The
first terms in both Eqs. (6a) and (6b) are periodic and
hence bounded. The second terms in these equations,
however, can lead to different behavior depending on
the two oscillatory functions under the integral. More
specifically, if f 0 ≠ Γ, the kernel will be bounded, and
hence u and v themselves are bounded and the general
solution exhibits localization. We note that in this case,
the dynamic localization is different from that considered
in earlier studies. Figures 2(a) and 2(b) depict such a si-
tuation for two different cases, e.g., when Γ=f 0 ¼ 0:5 and
Γ=f 0 ¼ 1:1, respectively.

In these simulations, the optical beam was assumed to
excite only the center channel. It is evident that the im-
pulse response is indeed localized and periodic. On the
other hand, when Γ=f 0 ¼ 1, the situation is completely
altered because the integral kernel in Eq. (6b) has a non-
zero dc component and v grows monotonically, i.e., it
ceases to be bounded. Consequently, the input beam un-
dergoes diffraction as a result of this resonant delocali-
zation (RD) process, as shown in Fig. 2(c).

Another interesting property of this system is the oc-
currence of localization without periodicity. As explained
in Fig. 2(a) and 2(b), the input beam is not only localized
but also experiences revivals. The revival period and the
diffraction pattern between any two consecutive revivals
depend on the ratio Γ=f 0. However, when this ratio is an
irrational number, we find that the solution is still
bounded but the periodicity disappears completely.
Figure 3 illustrates this effect when Γ=f 0 ¼ 1=

ffiffiffi
2

p
. The

top view of the beam evolution in the array is shown
in Fig. 3(a), where one can observe localization effects,
while Fig. 3(b) singles out the field amplitude in the mid-
dle channel, clearly indicating the aperiodicity of the field

Fig. 2. (Color online) Numerical results for a single input excitation for the lattice parameters κ0 ¼ 1; f 0 ¼ 1; and ϵ ¼ 0:2 when
(a) the modulation frequency Γ ¼ 0:5f 0, (b) Γ ¼ 1:1f 0, and (c) the resonance condition Γ ¼ f 0 is satisfied. In (a) and (b), the
white dashed line marks the cross section at which a complete revival occurs, while yellow lines indicate that the pattern is always
localized in some waveguide range. Note that in (c), the input beam is no longer confined; instead, it experiences oscillatory
diffraction.
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amplitude. It is important to note that light localization
can also arise in some other geometries, such as with
the uniform optical lattice with an alternate sign of the
coupling coefficients [14,15], where the process involves
the coherent destruction of tunneling.
Next we consider how the system behaves under Gaus-

sian beam excitation. Figure 4 shows the Gaussian beam
evolution corresponding to two different scenarios,
namely Γ=f 0 ¼ 0:9 and Γ=f 0 ¼ 1:1, respectively. Evi-
dently, the beam undergoes Bloch oscillations. However,
in contrast to regular Bloch oscillations, in the present
case we observe two main different oscillation frequen-
cies. An important remark here is the existence of a
phase difference between the slow and fast periods.
As shown in Fig. 4, this phase difference depends on
the ratio Γ=f 0 and manifests itself in the initial direction
in which the input beam bends.
We would like to emphasize that the behavior de-

scribed above is by no means a result of the specific
forms of the functions κðzÞ and f ðzÞ. To further elucidate
this point, consider the case when κðzÞ ¼ κ0 þ ε cosðΓzþ
θÞ and f ðzÞ ¼ f 0 cosðωzÞ. In this latter arrangement,
the propagation constant is now modulated along the
propagation direction instead of being constant, as in
the previous case. Under these conditions, the solution
assumes the same form as before with the difference that

ϑðzÞ ¼
Z

z

0
f 0 cosðωz0Þdz0 ¼ ðf 0=ωÞ sinðωzÞ;

and hence Eq. (5) reads

uðzÞ ¼
Z

z

0
cos½ðf 0=ωÞ sinðωz0Þ�ðκ0 þ ε cosðΓz0 þ θÞÞdz0;

vðzÞ ¼
Z

z

0
sin½ðf 0=ωÞ sinðωz0 Þ�ðκ0 þ ε cosðΓz0 þ θÞÞdz0:

Resonant delocalization will take place if, in the
above equations, the kernel of either uðzÞ or vðzÞ con-
tains a dc component. By using the relations cos½ðf 0=ωÞ
sinðωzÞ� ¼ J0ðf 0=ωÞ þ 2

P
m¼1J2mðf 0=ωÞ cosð2mωzÞ and

sin½ðf 0=ωÞsinðωzÞ� ¼ 2
P

m¼0J2mþ1ðf 0=ωÞsin½ð2mþ1Þωz�,
we find that delocalization occurs whenever
J0ðf 0=ωÞ ≠ 0. This last condition was also obtained
within the context of dynamic localization [10]. When

J0ðf 0=ωÞ ¼ 0, RD can still be observed if Γ ¼ ð2mþ 1Þω
and θ ≠ lπ or when Γ ¼ 2mω and θ ≠ π=2þ lπ, where m
and l are integers. We would like to point out that these
last two scenarios are absent in the dynamic localization
case and are only inherent to systems in which coupling
constants among waveguides are modulated.

In conclusion, we studied the propagation of optical
beams in dynamic 1D Bloch waveguide lattices having
periodic coupling coefficients. In this regime, several in-
teresting phenomena are expected. Under specific con-
ditions, the evolution dynamics can undergo an RD. A
new type of beating Bloch oscillation was also predicted.
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Fig. 3. (Color online) Localization without revivals when
κ0 ¼ 1; f 0 ¼ 1; ϵ ¼ 0:2, and Γ ¼ f 0=

ffiffiffi
2

p
: (a) top view and (b)

evolution of field amplitude in the excitation channel.

Fig. 4. (Color online) (a), (b) Beating Bloch oscillations (for a
Gaussian input beam) corresponding to Γ ¼ 0:9 f 0and
Γ ¼ 1:1 f 0, respectively. White dashed lines mark a complete
period, while yellow lines indicate the localization domains.
Optical array design parameters in this case are κ0 ¼ 1;
f 0 ¼ 1; and ϵ ¼ 0:5.
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