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We here propose the concept of enhanced evanescent tunneling (EET). Our analysis indicates that by means of a
suitable control field, the transmission of evanescent waves across a forbidden gap can be enhanced by several
orders of magnitude—well beyond the ordinary frustrated total internal reflection case. We show how such a
phenomenon can be used to probe both the amplitude and phase of the evanescent portion of the angular spectrum,
thereby allowing target superresolution. In principle EET can be manifested in other areas of physics where wave
tunneling is involved. © 2011 Optical Society of America
OCIS codes: 240.7040, 260.2110.

The resolution limitations of conventional far-field optics
are well known and they are fundamental by nature. The
physics of free space electromagnetic propagation itself
prevents the possibility of resolving features beyond the
so-called Abbe–Rayleigh limit [1]. The information as-
sociated with subwavelength details of an illuminated
object is in fact carried by evanescent waves, which de-
cay exponentially with distance and are eventually lost.
In the past decades several new ideas have been put for-
ward in order to alleviate or entirely circumvent the
shortcomings of conventional imaging. Despite the
success of near-field optics [2], the pursuit of a far-field
subdiffraction microscope never stopped. Interesting
and effective contributions came from the most diverse
perspectives [3–9].
In this Letter we introduce the concept of enhanced

evanescent tunneling (EET) and show how it can be used
to probe both amplitude and phase of the evanescent por-
tion of the angular spectrum of a field distribution. This
process effectively exploits the peculiar features of the
evanescent waves themselves. This is accomplished
through an auxiliary beam that is appropriately matched
to the signal—thus boosting the power tunneled over a
forbidden gap. As opposed to other arrangements, this
effect can be employed to extract the evanescent infor-
mation even when direct contact with the target is impos-
sible, e.g., when it is submerged a few wavelengths below
the accessible surface.
The exponential decay of the evanescent part of the

target’s angular spectrum is ultimately responsible for
limiting the resolution of an ideal far-field imaging sys-
tem. Such shortcomings may be overcome if and only
if a scheme is devised that enables one to measure these
cut-off components. In a lossless medium, the spatial
evolution of evanescent waves along the direction of de-
cay is such that the net power flow is zero. More speci-
fically the vanishing of the real part of the Poynting
vector is due to the 90° relative phase between the elec-
tric and magnetic field components—orthogonal to the
decay direction. Nevertheless, instances exist in which
evanescent waves can support a net power flow, as for
example in the case of frustrated total internal reflection
(FTIR), which is illustrated schematically in Fig. 1(a). In
this case two dielectric half-spaces having equal rela-
tive permittivities ε1 are separated by a gap of lower

permittivity ε2 and of length d. Assuming that a TE polar-
ized plane wave is incident upon the first interface under
total internal reflection, then the electric field distribu-
tion in the intermediate layer is given by the superposi-
tion of a “direct” evanescent wave of amplitude AD ∈ R
decaying from the first interface and a “reflected” evanes-
cent wave of amplitude AR decaying away from the sec-
ond interface. Note that neither of the two evanescent
fields can separately contribute to the power transfer
across the gap. Yet, the cooperative action of the two eva-
nescent components does lead to a net power flow in the
z direction, which in terms of the Poynting vector reads
S · ẑ ¼ α=ðk0η0Þ expð−αdÞADIm½AR�, where η0 is the va-
cuum characteristic impedance, k0 ¼ ω=c, and α is the
evanescent wave decay constant.

The presence of the interference factor ADIm½AR� in
this expression lends itself to a simple interpretation
of the physics behind this power flow. Depending on
the relative phase of the coefficients AD and AR, the mag-
netic field of the reflected wave can provide a component
that is in phase with the electric field of the direct wave.
Hence, the electric field of the direct wave AD can “ride”
across the gap by using the in-phase component of the
reflected magnetic field, proportional to Im½AR�.

The concept of EET emerges here as a way of imitating
the power transfer mechanism of FTIR in a fully control-
lable fashion, without its intrinsic limitations. The main
idea behind EET is to apply an auxiliary control field
so as to induce a net power flow from an evanescent sig-
nal. Let us then consider a similar geometry in the pres-
ence of an additional control field, as shown in Fig. 1(b).
Two applied mutually coherent fields given by

Fig. 1. (Color online) (a) Evanescent tunneling through a gap
by FTIR, (b) EET.
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ES ¼ ŷASeikzzeikxx and EA ¼ ŷAAeiΔφAS e−ikzðz−dÞeikxx are in-
cident at the same angle at z ¼ 0 and z ¼ d. The coeffi-
cients AS and AA ∈ R represent the amplitude of the
signal and of the auxiliary fields, respectively, with ΔφAS
being their relative phase. The field in the gap is now a
superposition of the evanescent waves produced by the
total internal reflection of both the signal and the auxili-
ary field.
It can be shown that the combination of the two eva-

nescent fields will sustain a net power flow across the
structure, given by

Pz ¼
2k2zα
k0η0

kzαðA2
S − A2

AÞ
½2kzα coshðαdÞ�2 þ ½ðk2z − α2Þ sinhðαdÞ�2

þ 2k2zα
k0η0

ðk2z þ α2Þ sinhðαdÞASAA sinðΔφASÞ
½2kzα coshðαdÞ�2 þ ½ðk2z − α2Þ sinhðαdÞ�2 :

ð1Þ
Three different components are identified in Eq. (1).

The quadratic term in AS describes the power transfer
due to the FTIR of the signal alone. The analogous quad-
ratic term in AA, bearing a negative sign, is associated
with an FTIR energy flow in the opposite direction. More
interesting is the mixed term proportional to AAAS , which
will be referred to as “Poynting interference.” This term
accounts for the cooperative power transfer effects en-
abled by the electric field of one wave and the in-phase
magnetic field component of the other and is maximum
for ΔφAS ¼ π=2. The direction of this Poynting interfer-
ence is solely determined by the relative phase ΔφAS of
the two evanescent fields involved, regardless of their
amplitude.
A careful consideration of this property indeed reveals

counterintuitive consequences, in particular in the re-
gime for which the Poynting interference dominates over
the FTIR terms. Figure 2 illustrates the power flow across
a 3-μm-long air gap separating two silicon (n ¼ 3:5) half-
spaces in a configuration similar to that of Fig. 1(b), as a
function of the auxiliary field power. Two electromag-
netic waves of wavelength 1:5 μm are incident on the
two interfaces at an angle of 20° with respect to the nor-
mal, so as to be in total internal reflection mode. To de-
monstrate this effect, let us assume that the power
density of the signal is kept at 1W=m2 while the auxiliary
field power density is varied over a broad range. The re-
lative phase between the signal and the auxiliary field is
optimally set atΔφAS ¼ π=2. For the sake of comparison,
in the absence of the auxiliary field the power density
flux in the z direction that could tunnel across the struc-
ture by FTIR would be 1:28 × 10−7 W=m2.
Intuitively one would expect that if the auxiliary field is

larger than the signal, power would flow in the negative z
direction. On the other hand, Fig. 2 shows that there is a
whole region where the auxiliary field is literally orders
of magnitude larger than the signal and yet power flows
across the gap in the positive z direction. Such an anom-
aly is a consequence of Poynting interference, shown in
red in Fig. 2. This effect indeed overcomes the auxiliary
field FTIR contribution (shown in green in Fig. 2) in the
low-intensity regime and enhances the tunneling of the
signal.

It can be directly shown that maximum EET occurs
when the amplitude of the auxiliary field is given
by AA¼AS sinhðαdÞsinðΔφASÞðk2zþα2Þ=ð2kzαÞ, provided
that ΔφAS ¼ π=2. Under these conditions the power flow
across the gap attains a maximum value of PMAX ¼
ðkz=2k0η0ÞA2

S . It is important to notice that a net increase
in the total power transfer across the gap occurs if and
only if the signal and the auxiliary field share the same
transverse wave vector. If this condition is not met, the
Poynting interference contribution averages to zero over
the illuminated area.

The question naturally arises as to whether the EET
effect could be used to boost the evanescent spectrum
of an illuminated object in order to resolve subdiffraction
features. A schematic of a possible EET imaging setup is
shown in Fig. 3. This simple arrangement consists of a
dielectric hemispherical dome of refractive index n
brought into proximity to a backilluminated sample.
Clearly, for the EET effect to take place it is important
that both the illumination field and the auxiliary wave
are mutually coherent. The subdiffraction features of the
object would in this case be associated with evanescent
waves in the region between the sample and the dielec-
tric hemisphere. In principle, if this gap were absent, i.e.,
if the sample could be placed in direct contact with the
dome, a portion of the evanescent angular spectrum
would tunnel into the dielectric region and be converted

Fig. 2. (Color online) Power flow across a 3 μm air gap be-
tween two silicon half-spaces.

Fig. 3. (Color online) EET in an imaging setup.
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into propagating waves. Unfortunately, in many experi-
mental situations, depending on the structure of the sam-
ple, this might not be a viable option.
In such instances the EET could effectively allow mea-

surement of both amplitude and phase of a portion of the
evanescent spectrum in order to improve the resolution
of the optical instrument. In the configuration shown in
Fig. 3, the auxiliary evanescent field is produced by the
total internal reflection of a broad beam at the planar in-
terface of the dielectric dome. In order to probe the eva-
nescent spectrum scattered by the sample, different
spatial harmonics have to be selectively enhanced. This
can be achieved by scanning the auxiliary beam in azi-
muth and elevation, so as to phase match the appropriate
evanescent component. Upon tunneling, the enhanced
spatial harmonic will overlap with the reflected auxiliary
beam. The resulting amplitude of the total Poynting vec-
tor (normal to the dome) can be expressed as

I ¼ nA2
A

2η0
þ 2e−2αdnα2A2

S

ðk2z þ α2Þη0
þ 2e−αdnα½kz sinðΔφASÞ − α cosðΔφASÞ�

ðk2z þ α2Þη0
AAAS: ð2Þ

Three components can be identified in Eq. (2). The first
term, quadratic in AA, is the irradiance contribution due
to the auxiliary wave reflection, and is clearly the domi-
nant term. The second term in the expression [Eq. (2)] is
quadratic in the spatial harmonic amplitude AS and ac-
counts for the “unaided” tunneling of the signal scattered
by the sample. This contribution is by far the smallest and
decreases with the sample distance d as expð−2αdÞ. The
effect of EET is described by the third term in Eq. (2),
which is proportional to the product AAAS . This signal
term carries all the information concerning the subwave-
length features of the target, and can be effectively ex-
tracted from the background reflection of the auxiliary
beam using homodyning or heterodyning schemes (pro-
vided the sample illumination is modulated). Such a con-
tribution can be enhanced by merely increasing the
amplitude AA of the auxiliary field and by properly tuning
the relative phase ΔφAS between the auxiliary field
and the corresponding phase-matched spatial harmonic
of the signal. We would also like to point out that by vir-
tue of heterodyne detection, the scattering of the auxili-
ary field from the sample can be isolated from the useful
signal, and was therefore omitted in Eq. (2). It is impor-
tant to notice that the EET achieves a maximum when
ΔφAS ¼ π=2þ arctanðkz=αÞ. By scanning the phase of
the auxiliary field until such maximum condition is
reached, it is possible to determine the phase of the
enhanced spatial harmonic of the sample. The corre-
sponding amplitude follows by simple inversion of the
following relation:

IEET ¼ 4e−αdα2kzn
ηðα2 þ k2zÞ3=2

AAAS:

By scanning the incidence angle of the auxiliary field, it
is in principle possible with this method to extend the

collected angular spectrum up to maximum transverse
wave vectors of amplitude k0n. This additional informa-
tion, once boosted by the auxiliary beam, could therefore
allow one to resolve details n times smaller than in a
conventional optical instrument. From a practical per-
spective, this theoretical resolution will ultimately be lim-
ited by the available power in the auxiliary beam. In other
words, the amplitude of the auxiliary field necessary for
optimum EET increases with the angle of incidence to be
probed. Note that the strong auxiliary wave will decay at
the interrogation site and thus is expected to be harmless
to the target.

The resolution that can be achieved by EET is certainly
limited by the refractive index of the dielectric, as in the
case of a solid immersion lens [10], but with an important
difference. Simply increasing the permittivity of the sam-
ple’s environment cannot lead to an increased resolution,
unless the features to be resolved are in direct contact
with the high-refractive-index medium. An air gap of a
fraction of a wavelength would be enough to lose almost
completely the evanescent components, nullifying the ef-
fects of a solid immersion lens. The advantage of EET is
to bridge the lower-index gaps between the target and the
high-permittivity dome. This arrangement can be em-
ployed in the visible using high-index GaP domes.

Similar results are obtained for the TM case, with a
Poynting vector given by

I ¼ η0A2
A

2n
þ 2η0e−2αdn3α2A2

S

ðk2z þ α2n4Þ

þ 2η0e−αdnα½kz sinðΔφASÞ − αn2 cosðΔφASÞ�
ðk2z þ α2n4Þ AAAS;

where AS and AA refer to the amplitude of the transverse
magnetic fields involved. In this case, the Poynting inter-
ference is maximized whenΔφAS ¼ π − arctan½kz=ðαn2Þ�.

In conclusion, the concept of EET has been intro-
duced, and possible applications for subdiffraction ima-
ging have been proposed. We emphasize that this
enhancement or boosting of the evanescent signal is
made possible by exploiting the peculiar nature of the
evanescent waves themselves. What we describe here
is entirely passive and makes no use of any amplification
(via stimulated emission, etc.).
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