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Abstract: An improved split-step method (SSM) for digital backward 

propagation (DBP) applicable to wavelength-division multiplexed (WDM) 

transmission with polarization-division multiplexing (PDM) is presented. A 

coupled system of nonlinear partial differential equations, derived from the 

Manakov equations, is used for DBP. The above system enables the 

implementation of DBP on a channel-by-channel basis, where only the 

effect of phase-mismatched four-wave mixing (FWM) is neglected. A novel 

formulation of the SSM for PDM-WDM systems is presented where new 

terms are included in the nonlinear step to account for inter-polarization 

mixing effects. In addition, the effect of inter-channel walk-off is included. 

This substantially reduces the computational load compared to the 

conventional SSM. 
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1. Introduction 

There has been and continues to be much research on high data-rate and spectrally-efficient 

fiber communication systems. Higher bit-rates per channel involve the deployment of high-

order modulation formats, requiring increased SNR and hence higher power per channel. 

Alternatively, higher spectral efficiency also demands tightly spaced wavelength-division 

multiplexed (WDM) channels to optimize the operational bandwidth of optical amplifiers. 

Together with WDM, polarization-division multiplexing (PDM) is also deployed to double 

the spectral efficiency. The above scenario clearly leads to increased nonlinearity in the form 

of intra- and inter-channel effects as well as inter-polarization effects. Therefore, the 

mitigation or compensation of fiber impairments which involve Kerr nonlinearity and PDM 

becomes crucial to increasing transmission capacity [1]. 

Recently, digital backward propagation (DBP) has been proposed for the comprehensive 

compensation of fiber impairments. DBP is based first, on the coherent detection of the 

optical signal [2] and second, on the implementation of backward propagation in the digital 

domain. This implementation consists on solving the z-reversed propagation equations that 

describe nonlinear transmission in fibers. Provided that the channel characteristics are known, 

and provided the WDM channels share the same optical path, any deterministic effect can be 

pre/post-compensated at the transmitter/receiver. The joint compensation of dispersion and 

nonlinearity allows increasing the launch power to values beyond the traditional nonlinear 

limit. Therefore, higher OSNR is achieved and transmission reach can be extended. 

In single polarization systems, pre- and post- compensation via DBP were first proposed 

in [3–6]. Experimental demonstration of DBP in multi-channel systems was reported in [7] 

and single channel experiments were carried out in [8,9]. DBP in PDM systems using 

vectorial backward propagation has been reported in [10] for single channel and in [11,12] for 

WDM. 

Despite its proven efficacy in both improving performance and extending reach, DBP is 

still challenging in terms of DSP complexity and therefore, it is still far from being deployed 

in current systems. Recently, an advanced split-step method (SSM) was presented in [13] to 

reduce the computational load of single-polarization DBP. In [13], the compensation of 

single-polarization inter-channel effects via DBP was shown to increase the transmission 

reach from 800 to 2000 km. Moreover, the computational load can be reduced by more than a 

factor of 4 with respect to the conventional SSM. 

In this paper, an advanced SSM method is presented for PDM systems. Several aspects are 

different in the PDM case compared to the single-polarization case studied in [13]. First, a 

new coupled system of nonlinear partial differential equations is derived for the backward 

propagation of PDM signals. Such system is obtained from the Manakov equations, instead of 

the scalar nonlinear Schrodinger equation, which can be used to describe vectorial nonlinear 

propagation in fiber with randomly varying birefringence [14]. In contrast to the scalar case, 
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the coupled system of equations for PDM includes non-conservative terms in the form of 

phase-matched interaction between the modulated polarization tributaries. When such non-

conservative terms are consider in DBP, a new solution (with no counterpart in the single-

polarization case) has to be obtained for the nonlinear step of the SSM. In this paper, we 

propose a quasi-analytical solution for the computation of the non-conservative contribution. 

In addition, the advanced SSM presented in [13] is applied to the PDM case. Here, a walk-off 

factorization is applied to reduce the computation complexity of the SSM. Such advanced-

SSM is now extended for the PDM and the factorization of the walk-off is also applied to the 

PDM non-conservative terms. From a performance point of view, the impact of the PDM 

phase-matched non-conservative terms is analyzed, for the first time to our knowledge, in the 

context of digital backward propagation. 

2. Digital backward propagation for PDM-WDM systems 

In a PDM-WDM system with coherent detection, the full reconstruction of the vector optical 

field can be achieved by using a polarization- and phase-diverse receiver. The reconstructed 

field will be used as the input for DBP in order to compensate the transmission impairments. 

Let ( , )xmE t z  and ( , )ymE t z  be the polarization tributaries of the complex received field for the 

m th-channel where  1,2, ,m N  and N  is the number of channels. The reconstructed 

total optical field is given by: x yE E E x y , where 
( , ) ( , )

ˆ exp( )x y x y mm
E E im t   and 

/ 2f      is the channel spacing. 

In general, optical communication fibers exhibit residual birefringence responsible for the 

random scattering of the state of polarization over a length scale of 10 - 100 m [14]. 

Moreover, the typical power values used in communication systems lead to rather long 

nonlinear lengths. Along the nonlinear length, the state of polarization changes fast and 

randomly, and the effect of the local state of polarization on the overall nonlinear interaction 

can be averaged over the entire Poincaré sphere. As a consequence of the above, the vector 

optical propagation can be described by the so-called Manakov system [11,14],  which is 

expressed as follows for backward propagation: 

  
2 3

2 2( , ) ( , ) ( , )32
( , ) ( , ) ( , ) ( , )2 3

8
0,

2 2 6 9

x y x y x y

x y x y y x x y

E E Ei
E i E E E

z t t




  
       

  
 (1) 

where j  represents the jth-order dispersion,   is the absorption coefficient,   is the 

nonlinear parameter and t  is the retarded time frame. The above system includes both 

coherent (FWM) and incoherent (SPM, XPM) nonlinear effects between channels and 

polarization components. As explained in [16], the coherent nature of FWM requires: i) the 

full reconstruction of the entire WDM band, ii) enough up-sampling to avoid aliasing of 

newly generated FWM products, iii) very short step sizes and iv) phase-locked local 

oscillators to preserve the relative phase between channels. 

Alternatively, inter-channel coherent terms can be omitted in backward propagation by 

introducing the field expressions 
( , ) ( , )

ˆ exp( )x y x y mm
E E im t   into Eq. (1), expanding the 

2

( , )x yE  terms and ignoring phase-mismatched terms. This leads to the following coupled 

equations, 

 

*

ˆ
ˆ ˆ 0,

2

ˆ
ˆ ˆ 0,

2

xm
m xm xm m ym

ym

m ym ym m xm

E
L iC E iK E

z

E
L iC E iK E

z





  
      

  

  
      

  

  (2) 
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where 
mL , 

( , )x y mC  and 
mK  represent the linear dispersive operator, the phase-insensitive 

XPM contribution and a polarization mixing (PolM) term, respectively, given by: 

 
2 3

1 2 32 3
,m m m mL D D D

t t t

  
  

  
  (3) 

 
( , ) ( , )

8

9
x y m xm ym x y q

q m

C P P R
 

 
    

 
   (4) 

 *8 ˆ ˆ ,
9

m yq xq

q m

K E E
 

 
   

 
   (5) 

where, 
2

( , ) ( , )
ˆ

x y m x y mP E  and ( , ) ( , ) ( , )2x y m x y m y x mR P P  . Clearly, the first two terms on the 

right hand side of Eq. (4) represent the SPM contribution whereas 
( , )x y mR  includes the XPM 

contribution. The dispersion parameters are given by: 2 2

1 2 3- / 2mD m m      , 

2 2 3/ 2 - / 2mD i m     and 3 3- / 6mD  . Equations (2) neglect any interaction where the 

relative phase between the WDM channels is relevant. Moreover, when the PolM term 
mK  is 

included, the relative phase between the polarization components of each channel is relevant. 

Therefore, the relative phase of the polarization tributaries has to be preserved at the receiver. 

This condition is typically fulfilled in polarization diverse receivers, where each local 

oscillator is split into orthogonal components to receive the PDM tributaries of each channel. 

The above system of equations is solved in the digital domain by the well-known Split-

Step Method (SSM) [14–16]. This method relies on decoupling the linear and nonlinear 

contributions in Eq. (2) over a sufficiently short distance. In order for this method to be 

accurate, the step size has to be short enough to ensure: (i) The solution of the linear part from 

z  to z h  is not perturbed by the variations of the optical fields due to nonlinear effects and 

(ii) The solution of the nonlinear part from z  to z h  is not perturbed by the variations of the 

optical fields due to linear effects. Under these conditions, the step size will be limited by the 

fastest of the above variations. 

Typically, the linear step is solved in the frequency domain using efficient algorithms for 

both the direct and inverse Fourier Transforms. 

 

  -1

( , ) ( , )
ˆ ˆ( , ) ( , ) ( , ) ,x y m x y m mE t z h F F E t z H h    

  (6) 

with the following multi-channel linear transfer function, 

 

 
2 3

2 3

( ) ( )
( , ) exp

2 6
m

m m
H h i i h

   
  

     
   

  
  (7) 

The above approximation is valid provided that the spectral change induced by 

nonlinearity is weak over the step length. Fourier domain filtering requires block-by-block 

computation which can be efficiently implemented by the overlap-and-add or the overlap-and-

save methods [18,19]. 

For the nonlinear step, the linear term mL  is neglected. By transforming the optical 

envelopes as follows, ( , ) ( , )
ˆ exp( / 2)x x m x x mE E z , Eq. (2) become, 
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*

0,

0,

z zxm
xm xm m ym

ym z z

ym ym m xm

E
iC e E iK e E

z

E
iC e E iK e E

z

 

 


   




   



  (8) 

The above system lacks a closed-form solution due to the coupling term 
mK . This is a 

FWM-like term which provides energy transfer between channels and polarization 

components. To solve the above system, a multi-step approach will be used. First, by 

neglecting the coupling term 
mK , Eq. (8) have the following solution, 

  ( , ) ( , ) 0 ( , )exp .
z h

z

x y m x y m x y m
z

E E i C e dz


     (9) 

In a second step, the terms ( , )x y mC  are neglected in Eqs. (8). By taking the average of the 

coupling terms, 

 
1

,z

m mK e dz
z

      (10) 

Equations (8) become, 

 
*

0,

0,

xm
m ym

ym

m xm

E
i E

z

E
i E

z






  




  



  (11) 

By taking derivates, the above system can be decoupled and it has the following general 

solution, 

 ( , ) ( , ) ( , ) ,m mi z i z

x y m x y x yE a e b e
 

    (12) 

where ( , )x ya  and ( , )x yb  are integration constants. By applying initial conditions, Eq. (12) can be 

rewritten as, 

 

   

   

0 0

*

0 0

cos sin ,

cos sin ,

m
xm xm m ym m

m

m
ym ym m xm m

m

E E z iE z

E E z iE z


 




 



 

 

  (13) 

Finally, by proceeding in a similar way as with the SSM, we can group Eq. (9) and Eq. (13) as 

follows, 

 
   

   *

( , ) ( , ) cos ( , ) sinc ,

( , ) ( , ) cos ( , ) sinc ,

ymxm

ym xm

ii

xm xm m ym m m

i i

ym ym m xm m m

E t z h E t z e Q iE t z e Q Q

E t z h E t z e Q iE t z e Q Q



 

  

  
  (14) 

where, 

 ( , ) ( , ) ,
z h

z

x y m x y m
z

C e dz


     (15) 

 .
z h

z

m m
z

Q K e dz


     (16) 

In the conventional split-step method, the integrals in Eqs. (15-16) are approximated by, 
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( , ) ( , )( , ) ( , ),x y m eff x y mt z h h C t z     (17) 

 ( , ) ( , ),m eff mQ t z h h K t z    (18) 

where [exp( ) 1]effh h    is the effective step size. In general, within the split-step 

formalism, the above approximations are valid provided the functions 
( , )x y mC  and 

mK  are not 

significantly modified due to dispersion along the step size. Dispersion plays a dual role in 

modifying the waveforms. On the one hand, it creates intra-channel pulse broadening at a 

length scale given by  
1

2

2DL B


 . This pulse broadening is intrinsic to each channel and 

depends on its baud-rate, B . On the other hand, dispersion creates walk-off effect between 

channels. The delay between two channels m  and q  occurs in a length scale given by the 

walk-off length,  
1

2wo mqL B 


   [15,17] where 
mq  is the frequency difference. This 

dual action of dispersion directly translates into the step size requirements. 

Typically, the number of channels is large and min( ) wo DL L  which makes walk-off the 

limiting effect for the step size [17]. One way to relax the step size requirements for the 

compensation of inter-channel effects is to separate the effects of pulse broadening and walk-

off. To that end, let us rewrite Eqs. (4) and (5) by including the time delay caused by the 

dispersive walk-off, 

 ( , ) ( , )

8
( , ) ( , ) ( , ) ( , ) ,

9
x y m xm ym x y q mq

q m

C t z P t z P t z R t d z z
 

 
     

 
   (19) 

 *8
( , ) ( , ) ( , ) ,

9
m yq mq xq mq

q m

K t z E t d z z E t d z z
 

 
    

 
   (20) 

where 2 ( )mq m qd      is the walk-off parameter between channels m  and q . By Fourier 

transforming the above expressions, we can write, 

 ( , ) ( , )

8
( , ) ( , ) ( , ) ( , )e ,

9

mqid z

x y m xm ym x y q

q m

C z P z P z R z


    


 

 
    

 
   (21) 

 *8
( , ) ( , ) ( , )e .

9

mqid z

m yq xq

q m

K z E z E z


   


 

 
   

 
   (22) 

Where we use the notation,  ( ) F ( )x x t  . By taking the above expressions into account, 

Eqs. (15) and (16) can be approximated as, 

  -1

( , ) ( , )

" ¹

8
( , ) - ( , ) ( , ) ( , ) ( , ) ,

9
x y m xm ym eff x y q mq

q m

j t z h P t z P t z h F R z W h  
  

     
   

   (23) 
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9
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 

  
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   
   (24) 

where, 

 
1

( , ) .
mqh id z

mq

mq

e
W h

id

 


 


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
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  (25) 
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From a physical perspective, the filters 
mqW  can be viewed as a generalized nonlinear 

effective length where not only power attenuation but walk-off effects are taken into account 

to modify the strength of the nonlinear interaction. The walk-off factorization removes the 

necessity to follow the dispersive delay within the step. Therefore, the step size becomes now 

limited by the minimum of the nonlinear or pulse broadening lengths. In WDM systems, the 

nonlinear length [17] is typically shorter than the pulse broadening length. The reason is the 

contribution of adjacent channels to the total nonlinear phase shift. 

Computationally, the above formulation requires additional direct and inverse Fourier 

transforms, which gives rise an increased complexity per step. However, by factorizing the 

walk-off effect, the step size can be substantially increased in typical WDM scenarios. 

In general, the symmetric version of the split-step method must be used in order to 

improve the algorithm efficiency [14,15]. Here, the nonlinear phase shift is calculated by 

using the value of the optical field in the mid-segment. In this case a correction factor has to 

be added to the filter, mqW  [13]. By performing a change of variable in Eqs. (15-16), we can 

rewrite as, 

 

( )
( ) /2

/2

1
( , )

1

mq

mq

id h
id h

mq

mq

h
h

eff

e
W h e

id

e
h e

 
 





 




 











  (26) 

Figure 1 depicts a schematic for the implementation of the split-step method, where for 

simplicity, the XPM module is configured by using the equivalent formulation 

 ( , ) ( , ) ( , )8 / 9x y m x y m x y qq
C P R


     instead of Eq. (4). 

 

Fig. 1. (A): Block diagram for the implementation of one step using the advanced SSM..The 
XPM and Xpol modules are shown below. (B) Sketch of the XPM module including the 

filtering for walk-off factorization. For conventional SSFM, the FFT, IFFT and filters mqW  are 

removed. (C) Block of the Xpol module including the filtering for walk-off factorization. For 

conventional SSFM, the FFT, IFFT and filters mqW  are removed. 
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3. Simulation results and discussion 

A 200 Gb/s per channel (dual polarization) 16-QAM PDM-WDM system has been simulated 

using the VPI TransmissionMaker. The transmission system consists of ten spans of NZ-DSF 

fiber with a length of 100 km per span, a dispersion parameter of 4.4 ps/km/nmD  and a 

dispersion slope of 20.045 ps/km/nmsD  . The loss is 0.2 dB/km  and the nonlinear 

coefficient is, 1.46 /W/km  . Fiber loss is compensated per span using Erbium-doped fiber 

amplifiers with a noise figure of 5 dB. A 24 channel WDM system with channel spacing of 50 

GHz has been simulated. 16 QAM has been selected as the modulation format because it 

requires higher OSNRs and, hence, it can take more advantage of nonlinearity compensation 

techniques. The fiber is modeled as a concatenation of sections with different birefringence 

axes. The rate of variation of the random birefringence is modeled by using a Gaussian 

distribution with a variance inversely proportional to the fiber correlation length, which is 

assumed to be 50 m. Within each section, propagation is modeled by solving the exact 

nonlinear propagation equations (see Eqs. (6).1.11-12 in [14]). In our simulation, no time 

delay is induced between polarization components. Thus, the differential group delay between 

polarization modes (DGD) is equal to zero. 

The entire WDM band is automatically up-sampled by VPI to properly account for third 

order nonlinear effects. The step-size used by VPI is chosen to keep the nonlinear phase-shift 

below 0.05 degrees. Raised-cosine filters are used for demultiplexing. 

After forward propagation, a polarization-diverse coherent receiver is modeled as shown 

in Fig. 2. 

 

Fig. 2. Simulated TX-RX configuration with polarization diverse coherent detection. 

Local oscillators, as well as transmitted lasers, are assumed to have zero linewidth. LOs 

frequencies are chosen to match the transmitter lasers. After detection, each polarization 

tributary is sampled at 2 samples/symbol and backward-propagated using Eqs. (2). After DBP, 

polarization demultiplexing is performed by applying the inverse Jones matrix of the system. 

Then a phase estimation algorithm is performed to compensate for residual constellation 

rotation due to residual uncompensated nonlinearity. In this work, NZ-DSF is used because of 

its lower dispersion, which increases the strength of inter-channel nonlinearity with respect to 

SSFM. In this scenario, DBP becomes more necessary than in, for instance, systems 

deploying SSFM, where high local dispersion mitigates inter-channel effects more efficiently. 
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Five different cases will be investigated depending on the nonlinear effects included in 

DBP: 

• DBP1: SPM compensation where the terms 
( , )x y mR  and 

mK are neglected. This case 

assumes that no information from adjacent channels is considered for DBP. 

• DBP2: Incoherent inter-channel compensation where the term 
mK is neglected. This 

case includes incoherent terms only; thus, the relative phase between channels and 

polarization components does not need to be preserved for DBP. All the transmitted 

channels are included for DBP. 

• DBP3: Coherent inter-channel compensation. This case includes both incoherent inter-

channel components 
( , )x y mR  and the coherent polarization term 

mK . Therefore, the 

relative phase between the polarization components of each individual channel has to 

be preserved. All the transmitted channels are included for DBP. 

Finally, full compensation using Manakov system, Eq. (1), and dispersion compensation 

(DC) only are also performed for comparison purposes. This sets the upper and lower bounds 

of performance respectively. For the solution of the Manakov system, all the channels and 

polarizations are combined and up-sampled to form a joint band (see [16] for details). The 

high sampling requirements together with extremely short step sizes makes the Manakov 

solution impractical for an eventual DSP implementation [17]. As an estimate, in [16] it is 

shown that FWM compensation requires roughly 25 times more operations than XPM 

compensation. In this paper, PMD effects are not considered. The impact of PMD on DBP is 

important when the number of channels included in the XPM compensation is large. For such 

cases, the channels at the opposite edges cannot retain their relative orientations because of 

polarization-mode dispersion. For DBP to work properly these changes in the forward 

propagation have to be monitored and included in backward propagation. This will require 

dynamic monitoring of the polarization transfer matrix of the transmission fiber. With respect 

to the coherent polarization effects (i.e. DBP3), they are not independent of the phases of the 

interacting fields. Although the phase that is common to both polarizations (chromatic 

dispersion) at the same wavelength or common to the channels (birefringence) cancels out, the 

phase change coming from PMD must be accounted for the coherent polarization effects. 

Figure 3 shows the baseline results after backward propagation when different effects are 

compensated. These results are obtained for a step size sufficiently short, from which the Q-

factor behaves asymptotically. Values in Fig. 3 are the Q-factors averaged over all WDM 

channels. Each channel carries 1024 16-QAM symbols per polarization tributary. The Q-

factor is obtained from the constellation by averaging the standard deviations of the 16 

constellation clusters. The 16-QAM Q-factor calculation has been tested with direct error 

counting of transmission over an AWGN channel in comparison with a Gaussian model [20] 

which predicts the following relation between the Q-factor and the symbol error rate: 

 /202 erfc 10 / 3QSER   , (e.g., a Q-factor of 7.6 dB for a SER of 
310
). 
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Fig. 3. DBP performance results for a PDM 16-QAM WDM system consisting of 24 channels 

at 200 Gb/s. DBP1 is SPM compensation. DBP2 is incoherent inter-channel compensation. 

DBP3 is coherent inter-channel compensation. 

Several comments can be made from Fig. 3. First, SPM (DBP1) compensation provides a 

small improvement in terms of Q-factor. This is because inter-channel effects are sufficiently 

strong to modify the optical waveforms through forward transmission. Such modifications 

perturb the initial conditions for DBP making SPM compensation inefficient. With respect to 

DBP2, a moderate improvement of 2.1 dB is obtained with respect to dispersion compensation 

only. Again, the effect of the coupling term 
mK  in forward transmission has an impact on the 

initial conditions. Hence, the sole compensation of incoherent processes provides an 

intermediate performance. On the contrary, the compensation of both coherent and incoherent 

inter-channel effects (DPB3) provides a remarkable improvement of more than 4.2 dB which 

is close to maximum achievable performance provided by the solution of the Manakov 

system. The small discrepancy between DBP3 and Manakov comes from the marginal effect 

of FWM on the initial conditions. In this paper, a WDM system of 16QAM channels with 50 

GHz spacing has been selected for simulation. From a conceptual viewpoint, DBP is a 

universal method in the sense that it can be applied to any modulation format provided that 

coherent detection is performed. However, DBP acquires more importance for high-order 

modulation formats since they require higher OSNR and they become, hence, more exposed 

to nonlinearity. With regard to channel spacing, a channel spacing that is twice the baud-rate 

has been chosen. Larger channel spacing would increase the walk-off between channels. This 

results in a more efficient averaging of the XPM effects and the performance will be increased 

due to weaker ASE-seeded nonlinearities [13]. Smaller channel spacing increases FWM 

efficiency and the difference between Manakov and DBP3 is expected to increase. Since Fig. 

3 shows the Q-factor averaged over the WDM channels, it is interesting to analyze the 

behavior of the Q-factor for each WDM channel. Figure 4 shows such result where each DBP 

case is plotted at the respective optimum power. A rather homogeneous behavior is obtained 

for each DBP case at the optimum power. Results obtained at higher powers revealed that 

central channels perform worse due to a higher exposure to nonlinear interactions. 
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Fig. 4. Q-factor per channel for the different DBP cases. Each case is shown at the respective 

optimum power. 

The computational efficiency of the above backward propagation schemes is now 

analyzed. Figure 5 shows the Q-factors as functions of the step size for the conventional and 

advanced SSM implementations (recall that advanced SSM stands for the walk-off 

factorization). 

 

Fig. 5. Q-factors as functions of step size for the inter-channel compensation cases DBP2 and 
DBP3. 

The results correspond to the respective optimum powers obtained from Fig. 3 whereas 

vertical markers indicate the operational (optimum) step size. This value is obtained by cubic 

interpolation of the simulation results and by choosing the step size value corresponding to a 

Q-value penalty of 0.1 dB with respect to the plateau value. The operational step size is 

chosen as a compromise between performance and computational load. The advantage of the 

walk-off factorization is clear in terms of step size. When comparing the advanced- and 

conventional-SSM, the step size is increased by a factor of 16 for the DBP3 and a factor of 26 

for DBP2. 

Since the dispersive walk-off imposes no restrictions on the step size for the advanced-

SSM, the latter becomes limited by the nonlinear phase-shift per step, which in turn, depends 

on the power. This explains the difference between DBP2 and DBP3 in terms of step size 

when the advanced SSM is applied. The optimum operation for DBP3 happens at a power 
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value 3 dB higher than the one for DBP2. In addition, DBP3 includes additional nonlinear 

terms which also contribute to reduce the nonlinear length. The impact of the channel spacing 

as well as of the number of channels on the step size can be extrapolated from the results 

obtained in [13] for the scalar case. With respect of fiber dispersion, a different behavior can 

be extrapolated for the conventional and advanced algorithms. For the conventional, the step-

size is proportional to the walk-off length and hence, it is reduced as the dispersion parameter 

of the fiber increases. Alternatively, the advanced SSFM follows the nonlinear length and it is 

insensitive to dispersion parameter. 

Together with the step size, it is important to compare the computation requirements for 

each method. For simplicity only the number of complex multiplications will be considered, 

neglecting the number of additions. Furthermore, considerations regarding the numeric 

representation (fixed point/floating point) will be ignored. By recalling the schematic diagram 

in Fig. 1, the following number of operations is involved in backward propagation for a block-

length of M samples: 

• Intensity operator: M  

• Filtering: 
22( )log ( ) ( )   M P M P M P  

• Exponential operator ( 4th order Taylor expansion): 6M  

• Cosine operator ( 2th order Taylor expansion): 4M  

• Sine Cardinal ( 3th
order Taylor expansion): 7M  

The number of multiplications for the exponential, cosine and sine operators is obtained 

by saving the square of the argument in memory [13]. These operators are sometimes 

implemented using look-up tables. However, look-up tables require large memory presenting 

a trade-off between memory and speed. 

In general, the filter implementation in the frequency domain is done by the overlap-and-

add method. This is done using data blocks of M samples with an additional overhead of 

P samples. Such overhead has to be larger than the filter length in taps [18]. Moreover 

FFT/IFFT algorithms operate more efficiently if M P  is a power of 2. Two filter operations 

are implemented depending on the case, that is, walk-off filtering with ( , )mqW h  and 

dispersion filtering with ( , )mH h . Their respective group delays are given by, 

 
2

2

2 ( 1) ,

2 .

W

H

N f h

B h

  

  

   

 
  (27) 

By assuming a sampling rate S , the following overhead values are required for each filter 

operation, 

 
2

2

2 ( 1) ,

2 .

W

H

P N f h S

P B h S

 

 

    

  
  (28) 

By taking into account the blocks depicted in Fig. 1 the following expressions are given 

for the total number of multiplications per sample in the conventional SSM, 

  2 steps 24( )log ( ) 2( ) 18 / 2 ,DBP c H H HOP n M P M P M P M M         (29) 

  3 steps 24( )log ( ) 2( ) 36 / 2 .DBP c H H HOP n M P M P M P M M         (30) 

For the advanced SSM, each step involves two filter operations. For simplicity, we assume 

that the same overhead is used for both of them. The number of multiplications is now given 

by, 
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  2 steps 28( )log ( ) (2 6)( ) 16 / 2 ,DBP a W W WOP n M P M P N M P M M         (31) 

  3 steps 210( )log ( ) (3 5)( ) 33 / 2 .DBP a W W WOP n M P M P N M P M M         (32) 

In general, the overlap-and-add method is optimized by choosing the block size that 

minimizes the number of multiplications. This optimum block size depends on the overhead 

size. In the SSM, the step size can be relatively small which causes small group delays. This 

eventually yields overheads of only several samples for practical sampling rates. In such 

scenario, the theoretical optimum block-size that minimizes the number of multiplications is 

very short. Moreover, it can be demonstrated that the block size has to be large enough to 

preserve numerical accuracy. Otherwise, the concatenation of steps leads to dramatic error 

propagation. By taking the above considerations into account, the following rules are applied 

to choose the block size, 

1) The total block-size for filtering ( M P ) is a power of two. 

2) The minimum block size for M P is chosen to be 62 . 

3) For overhead values greater than 62 , the total block-size ( M P ) is chosen to 

minimize the number of multiplications. 

By sampling at a frequency of 50S   GHz, Table 1 summarizes the number of operations 

including SPM compensation. Note that the number of operations for SPM is also given by 

Eq. (29) when additions are neglected. 

Table 1. Summary of results for a 200 Gb/s PDM WDM system consisting in 24 channels 

with a 50 GHz channel spacing. Transmission is 10 100  km. Letter ‘-a’ stands for 

advanced SSFM and ‘-c’ stands for conventional SSFM. 

  DC SPM DBP2-a DBP2-c DBP3-a DBP3-c  
Q-improvement  – 0.52 2.1 4.1  

h  [km]  1000 100 50 1.96 20 1.35  
n  [steps/span]  – 1 2 51 5 74  

P  [samples]  44 4 106 1 42 1  

M  [samples]  212 60 918 63 470 63  
P M   82  

62  102  62  
92  62   

OP  [ 100]   0.2 2.3 16.5 113.2 53.8 231  

Table 1 shows the number of multiplications required for each method and each system. 

For comparison purposes, the number of operations for dispersion compensation is also 

shown. A factor of 4.3 in computation savings is obtained for DBP3 when the advanced SSF 

is used. Alternatively, a factor of 6.8 is obtained for DBP2. As explained before, this 

difference is due to the impact of the optimum power on the step size. Despite the increased 

complexity of the advanced SSM, the large step sizes allowed by the walk-off factorization 

substantially reduce the overall computational load. 

3. Conclusion 

An improved scheme for digital backward propagation (DBP) applied to PDM-WDM systems 

has been introduced. This new scheme is based on two new aspects. First, the backward 

propagation problem has been reformulated by deriving a coupled system of nonlinear partial 

differential equations. Such system, allows the implementation of DBP in a channel-by-

channel basis by including the most relevant inter-channel and inter-polarization nonlinear 

terms. This formulation also allows the selective compensation of different nonlinear effects, 
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which has an impact on the maximum achievable Q-factor and the corresponding 

computational load. 

Second, an improved split-step method has been used for the DSP implementation of 

DBP. The split-step formalism is extended to cope with new polarization-mixing terms. 

Likewise, the effect of dispersive walk-off is factorized by including the relative delay of the 

WDM channels in the computation of the nonlinear step. A 200 Gb/s PDM WDM system, 

consisting in 24 channels with 50 GHz channel spacing, has been simulated to assess the 

efficiency of the new DBP scheme. Results show that the new system of coupled nonlinear 

equations removes almost all the contribution of deterministic impairments. Moreover, the 

walk-off factorization allowed increasing the SSM step size in a substantial amount. A 

rigorous computation of the required number of operations showed that the improved SSM 

reduces the computational load by a factor of 4.3. This number is increased to almost 7 when 

polarization terms are not included in the backward propagation equations. 
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