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Airtight container for the transfer of atmosphere-sensitive materials into
vacuum-operated characterization instruments

Romain M. Gaume'-® and Lydia-Marie Joubert?
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(Received 20 July 2011; accepted 26 November 2011; published online 14 December 2011)

This paper describes the design and operation of a simple airtight container devised to facilitate the
transfer of atmosphere-sensitive samples from a glovebox to the vacuum chamber of an analytical
instrument such as a scanning electron microscope. The use of this device for characterizing the
microstructure of highly hygroscopic strontium iodide ceramics by scanning electron microscopy is
illustrated as an application example. © 2011 American Institute of Physics. [doi:10.1063/1.3669784]

. INTRODUCTION

Material characterization techniques such as electron mi-
croscopies, microprobes, x-ray photoelectron spectrometry
or secondary ion mass spectrometry are few of the numer-
ous techniques that have become integral to material sci-
ence and biological studies.! As a result, various meth-
ods have been developed for preparing and handling the
most diverse materials.> The characterization of atmosphere-
sensitive materials, such as hygroscopic and pyrophoric ma-
terials, requires, however, special precautions to prevent air
exposure during sample transfer from a preparation facil-
ity to such characterization instruments. The result of at-
mospheric exposure can indeed lead to rapid and signifi-
cant damage of sample surfaces, degrading the very features
of interest. The few methods that have been described in
the literature to circumvent this issue make use of elaborate
mechanically operated air-lock systems.** The present ar-
ticle describes a simple device, which has been developed
to transfer atmosphere-sensitive samples from a preparation
facility, such as a glovebox, to a scanning electron micro-
scope. This transfer is performed under dry inert gas at am-
bient temperature and pressure, and is illustrated here on an
example.

Il. CONCEPT AND DESIGN

The airtight container consists of a metallic canister cov-
ered with a disposable elastic rubber membrane. The mem-
brane is held in place under very slight unidirectional tension
using an O-ring, a metallic annular clamp, and two metal-
lic braces (Figures 1 and 2). Before the elastic membrane
is mounted, the atmosphere-sensitive sample is glued inside
the container on a sample holder with an electrically conduc-
tive paste or a piece of carbon tape. All these various parts
are easily assembled in a glovebox filled with an adequate in-
ert atmosphere at ambient pressure. Once hermetically sealed,
the container is taken out of the glovebox and transferred to
the vacuum chamber of a characterization instrument. During
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the evacuation of the vacuum chamber, the membrane inflates
due to the negative pressure difference that develops across
it until it touches a sharp metallic tip, mounted on the inner
side of the membrane clamp. This causes the elastic mem-
brane to pop wide-open, exposing the sample to vacuum and
to the instrument. The proximity of this sharp tip with the
rest surface of the membrane guarantees that little elastic en-
ergy is stored in the film before it ruptures and that it does
not fragment into loose debris, which might potentially dam-
age the vacuum components of the instrument. The volume
of the container must be kept reasonably small to limit the
pressure burst in the vacuum chamber after the rupture of the
membrane. It is also preferable to heat up the container and
the membrane to about 100 °C before its use so as to elimi-
nate adsorbed water. Figure 1 shows the airtight container in
cross section at ambient pressure and under increasing levels
of vacuum until the membrane ruptures. A centering pin, un-
derneath the container maintains the device in position on the
sample stage of the instrument (Figure 2).

lll. MEMBRANE CHARACTERISTICS
A. Elastic and rupture properties

The membrane material should be chosen for its highly
elastic properties and its ability to inflate and reach the rupture
needle under a differential pressure of one atmosphere. The
elastomer should also have relatively high tensile strength to
tear easily.>® At a given temperature and depending on the
nature of the elastomer and the distribution of stress, rup-
ture can either propagate as a single crack, or branch out
of multiple and concomitant nucleation sites to produce torn
fragments. The latter situation should naturally be avoided
at all cost as loose membrane debris could potentially dam-
age the instrument or obstruct surface features during fur-
ther analysis. The present device has been specifically de-
signed to meet the conditions for single crack propagation
and where a single nucleation site is promoted by puncture,
the elastomer is not too brittle, the strain-rate during the
crack opening is small and the tension of the membrane is
anisotropic.’

© 2011 American Institute of Physics
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FIG. 1. (Color online) Cross-section of the airtight container, showing the membrane (1), the annular clamp (2), the O-ring (3), the body of the container (4), and
the needle (5). For better visibility, the two side braces, which maintain the upper ring in compression over the membrane, are not shown on these schematics.
The next views show the airtight container at various inflation stages during the evacuation of the vacuum chamber.

B. Oxygen and water vapor permeation

In order to protect samples for sufficiently long times in-
side the sealed container, the membrane material must have
low gas permeation for oxygen and water vapor. The transport
of these gases through polymer films is typically explained in
terms of two concurrent mechanisms: (1) a bulk diffusive flow
via a solubility-diffusion mechanism and (2) a flow through
membrane defects (inhomogeneities, porosities, and micro-
cracks).® The solubility-diffusion mechanism consists of
sequential steps where the permeants are absorbed onto the
surface, dissolved into the material, transported by diffusion
under the influence of the resulting concentration gradient
and, finally, desorbed on the other side of the membrane.
When one side of the membrane is first exposed to oxygen
and water vapor, both flow rates and gas concentrations in the
membrane vary with time. A certain permeation time is, how-
ever, needed for the first molecules of gas to reach the other
side of the membrane. When bulk diffusive flow is predomi-
nant, this so-called “lag-time” t; can be approximated by’

to= 8%/(6D), (1)

where § is the membrane thickness and D is the gas diffu-
sivity in the membrane material. The lag-time determines the
maximum duration for transferring the sample safely in its
container before any surface reaction starts with the perme-
ants. In elastomers, oxygen and moisture diffusivities range
typically between D = 107 and 107> cm?/s (Ref. 10), which
correspond to lag-times on the order of a few minutes for a

0.5 mm-thick membrane. Such lag-time values are long
enough if the device is stored in a nitrogen-filled desiccator
from the moment it is assembled in the glovebox to when it
is finally exposed to air during its loading into the instrument
vacuum chamber. It is important to note that, when assem-
bling the device, the membrane must not be overly stretched,
as this would not only increase the film stiffness and preclude
proper inflation, but also greatly decrease the lag-time as a
combined effect of thickness reduction and increased gas flow
through membrane defects.

For times longer than the lag-time, both membrane diffu-
sion and the kinetics of the chemical reaction between the gas
and the reactive sample determine the flux of gas permeating
inside the container. Assuming that a steady state is reached
quickly, the flux J, of gas through the membrane can be de-
rived from Fick’s first law,

J = D(c, — ©)/8, 2

where ¢y and c are the permeant concentration on the up-
stream and the downstream side of the membrane, respec-
tively. The concentrations may be replaced by the gas par-
tial pressures, pp and p on either side of the membrane, and
Eq. (2) becomes

J=K(po —p)/3, 3

with K the gas permeability coefficient. At low concentra-
tions, gases solubility in polymers typically follows Henry’s
law and diffusion coefficients are pressure independent near

FIG. 2. (Color online) (a) General view of a sample loaded container installed in the chamber of a scanning electron microscope (Hitachi S-3400N VP-SEM).
The puncturing needle is clearly visible above the yellow rubber membrane. (b) Container taken out of the microscope after analysis. Samples are glued on a
piece of carbon tape in the center of the container. During the evacuation of the microscope chamber, the membrane ruptures and retracts towards the rim of the
container, exposing the samples fully to the electron beam. After analysis, and quickly after opening the SEM specimen chamber, the samples are immersed in

a drop of mineral oil for protection.
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TABLE I. Typical water vapor and oxygen permeation in various elastomer
materials.’

H,O vapor permeation O permeability coefficient

rate (g mm/m?/day) (std. cc mm/m?/day/atm)
Butyl rubber 0.7 90
Halogenated polyolefin 1.2 270
Nitrile rubber e 400
Natural rubber 1.8 1600
Styrene butadiene 2 1200
Polyurethane 2.5 2000
Silicone 3 3500

standard conditions. In those conditions, the permeability co-
efficient writes simply

K = DS, “

where S is the gas solubility coefficient in the membrane.
For homogeneous membranes and permeants, such as oxy-
gen, that do not strongly interact with the polymer, the per-
meability is a fundamental property of the membrane, in-
dependent of the polymer thickness.!! In the case of water
vapor, however, the solubility strongly deviates from Henry’s
law and both diffusivity and permeability are concentration
dependent and increase with water partial pressure.'? It has
been observed that the rubber elastomers capable of large wa-
ter uptakes have, in fact, relatively low diffusion coefficients
and longer lag-times.'> Membranes which sorb little water
behave according to Fick’s law and the permeation rate is in-
versely proportional to film thickness. At high relative humid-
ity, however, the permeability constant K varies with increas-
ing thickness.'*

From a polymer standpoint, gas solubility mostly de-
pends on the mutual polarity between the gas and mem-
brane molecules and similar polarities lead to higher gas
solubility."” Gas diffusivity, on the other hand, decreases
with the size and mass of gas molecules and proceeds be-
tween the thermally activated voids that form and disap-
pear within the polymer network. The mobility, the pack-
ing, and the cross-linkage of the polymer chains largely
determine this phenomenon.®'> As a consequence, elas-
tomers, which are characterized by mobile chains, tend to
have higher gas diffusion coefficients than other polymers and
hence, shorter lag-times. To reduce the overall permeability
of the membrane, butyl rubber, halogenated polyolefin rub-
bers with typical water vapor and oxygen permeability values
below 1 gmmm~2day~! and 100 cm?® (STP) mmm~2 day~!
atm™!, respectively, shall be preferred over natural rubber or
silicone membranes (Table I). Other alternatives may consist
of laminated or barrier coated elastomer films.

IV. APPLICATION EXAMPLE

Various materials such as TI*:Nal, Ce’t:LaBrs,
Ce’*:Luls, and Eu®*:Srl, are currently in use or being
developed as scintillation detectors for high-energy physics
experiments, medical imaging, non-destructive testing,
nuclear surveillance or geological exploration.'®!® Unfortu-
nately, these materials are sensitive to moisture and oxygen,

Rev. Sci. Instrum. 82, 123705 (2011)

FIG. 3. (a) Electron micrograph of a polished Srl, ceramic transferred with-
out airtight container and exposed to ambient air for about 6 s during transfer
from a dry N filled-desiccator to the VP-SEM chamber. (b) Surface of a
polished ceramic sample transferred using an airtight container. The grain-
boundaries that define the ceramic microstructure are clearly visible. Local-
ized precipitated residues forming grey patches on the surface of the sample
are due to un-optimized etching conditions.

exposure to which can negatively affect their performance.
Because the production and packaging of scintillators can
generally be performed in an inert atmosphere, the hygro-
scopic or deliquescent nature of these materials is not a major
impediment to their manufacture and use. The characteriza-
tion of these materials using surface sensitive techniques such
as electron microscopy or electron microprobe, however,
demands special handling to preserve the samples surface
after preparation. In the following example, we illustrate the
use of an airtight container for visualizing the microstructure
of Srl, ceramics in a variable pressure scanning electron
microscope (VP-SEM). A VP-SEM is a well-suited imaging
instrument for this particular application as the chamber
pressure can be controlled and gradually decreased,'® while
observing the inflation and the rupture of the membrane
(using an infrared chamber scope with the Hitachi VP-SEM,
or a “TV signal” on other manufacturers). In addition, no
further processing technique (e.g., sputter-coating for non-
conductive samples) is required since the gas in the chamber
allows image formation as well as charge stabilization for
such electrically non-conductive samples. The samples under
investigations were hot-pressed ceramics of Eu:Srl, (see
Ref. 20 for more details about their preparation), polished
and etched at room temperature in a glovebox for 1 min in a
50:1 mixture of dry hexane and chloroform. These ceramic
samples were carried in an airtight container equipped with
a 500 pum-thick natural rubber membrane and transferred
to the chamber of a VP-SEM within 2 min. Test samples,
prepared under the same conditions, were simply carried in
a dry N, filled-desiccator and briefly exposed to air during
their transfer to the VP-SEM chamber. After mounting the
sealed container onto the microscope stage, the specimen
chamber was partially evacuated, without raising the stage,
i.e., maintaining a working distance of about 40 mm between
the sample and the objective lens pole piece. In this way, the
detectors and lenses were in no danger of being damaged
by the inflating membrane. During evacuation, the inflating
membrane was closely watched until punctured by the
needle, when the membrane ruptured and retracted towards
the rim of the container. At this point the stage was raised to a
working distance of 5 mm and pressure lowered to 10 Pa for
optimal resolution. An accelerating voltage from 15 to 25 kV
was applied for imaging of the exposed sample surface, using
backscattered electron (BSE) detection. Figure 3 clearly
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shows that the airtight device effectively prevents hydration
that otherwise completely alters the surface of the sample.
Although experimental conditions can still be improved
by using a better airtight membrane and optimized etching
conditions for strontium iodide ceramics, grain boundaries as
well as polishing grooves, are clearly visible on the protected
sample (Figure 3(b)). Microstructure information revealed
on such images can then further be used to elucidate the
sintering mechanisms at work during the fabrication of this
air-sensitive ceramic material. The present investigation
additionally highlights a novel application of the variable
pressure modality of scanning electron microscopy.
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