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1 Introduction and Overview

Surface scatter phenomena continue to be an important issue
in diverse areas of science and engineering in the 21st cen-
tury. In some applications, the total amount of scattered
radiation is of primary concern. In other applications, know-
ing the angular distribution of the scattered light is crucial.

Abstract. Surface scatter effects from residual optical fabrication errors
can severely degrade optical performance. The total integrated scatter
(TIS) from a given mirror surface is determined by the ratio of the spatial
frequency band-limited “relevant” root-mean-square surface roughness to
the wavelength of light. For short-wavelength (extreme-ultraviolet/x-ray)
applications, even state-of-the-art optical surfaces can scatter a significant
fraction of the total reflected light. In this paper we first discuss how to
calculate the band-limited relevant roughness from surface metrology
data, then present parametric plots of the TIS for optical surfaces with
arbitrary roughness, surface correlation widths, and incident angles.
Surfaces with both Gaussian and ABC or K-correlation power spectral
density functions have been modeled. These parametric TIS predictions
provide insight that is useful in determining realistic optical fabrication

tolerances necessary to satisfy specific optical performance requirements.
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(rms) surface roughness, and A is the wavelength of the inci-
dent radiation.

The classical definition of total integrated scatter (TIS)
follows directly from Eq. (1) as that fraction of the total
reflected radiant power that is scattered out of the specularly
reflected beam:

Recall that the reflectance of a surface is defined as the

ratio of the (total) reflected radiant power divided by the inci- TIS =
dent radiant power. However, for real surfaces (exhibiting
some residual surface roughness) the total reflected radiant
power consists of two components: one specularly reflected
(obeying the law of reflection) and the other diffusely R,

reflected (scattered).

Following the work of Bennett and Porteus,' which built
upon the earlier work of Davies,” the fraction of the total
reflected radiant power remaining in the specular beam
after reflection from a single moderately rough surface is

given by

R,
RA = exp[—(4x cos 0;6/2)?],

t

where R, is the specular reflectance, R, is the total reflec-
tance, 0; is the incident angle, ¢ is the root-mean-square
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diffuse reflectance

total reflectance
diffuse reflectance

~ specular reflectance + diffuse reflectance

= N 2
R, +Ry @
or, since R; = R, — R, we obtain
R, — R R,
TIS= ——=1- F& = 1 —exp[—(4x cos 0,6/1)?].
t 1
3

M

The above definition of TIS and its paraxial smooth surface
approximation (for normal incidence)

TIS ~ (4rc/A)? 4

have been discussed extensively in the literature.*"'> Unfor-
tunately, the widely used commercially available ASAP
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(Advanced Systems Analysis Program) optical analysis code
defines the quantity TIS to be identical with the definition of
diffuse reflectance.'® Hence, the above definition of TIS is
not always applied uniformly and consistently in the litera-
ture, in spite of the fact that there have been international
standard procedures written for the measurement of TIS
as a means of determining the roughness of a surface.'*

An international standard has also been established defin-
ing total scattering (TS) as the ratio of the diffusely scattered
radiant power to the incident radiant power.'> TS directly
expresses the scattered radiant power regardless of the reflec-
tance of the surface. Although using TS has several advan-
tages in practical integrated scatter measurements with
respect to robustness and comparability among different
metrology instruments, we use TIS in this paper for historical
reasons and because all theoretical expressions are indepen-
dent of R,. The relationship between the two quantities is
given simply by TS = TISR,.

After repeated discussions and admonitions by
Church,*'® Church and Takacs,'”'® Stover,'® Germer and
Asmail,”® Dittman,?"?> and others, most of the optical sur-
face metrology community is aware that when we associate
surface roughness with scattered light, we must specify the
spatial frequency band limits of the effective roughness that
is relevant to the particular scattering application. In other
words, we must replace the total or intrinsic rms roughness,
o, with the relevant band-limited rms roughness, o, in
Egs. (3) and (4); hence TIS is

TIS = 1 — exp[—(47x cos 0; 6,,1/2)?], o)

which for smooth surfaces can be approximated as
TIS ~ (47 cos 0; 6y /1)? (6)

In the remainder of this paper we will first discuss the
statistical surface characteristics relevant to the scattering
process and illustrate precisely how to calculate o, for
arbitrary surface power spectral density (PSD) functions,
incident angles, and wavelengths. We will then provide
parametric plots of 6%, /62, for optical surfaces as functions
of surface correlation width for both Gaussian and ABC or
K-correlation PSD functions.

We will then use Eq. (5) to make parametric TIS predic-
tions that provide useful insight for determining realistic
optical fabrication tolerances necessary to satisfy specific
optical performance requirements. Finally, we will briefly
demonstrate the capabilities of the generalized Harvey-
Shack surface scatter theory in producing angle resolved
scatter (ARS) or bidirectional reflectance distribution func-
tion (BRDF) curves for optical surfaces with arbitrary sur-
face roughness (up to at least a few waves, an actual limit
has not been established), correlation widths, and incident
angles.

2 Surface Characteristics

The behavior of light scattered from randomly rough sur-
faces is dictated by the statistical surface characteristics.
Consider the surface profile illustrated in Fig. 1. The surface
has a zero mean with the surface height, A, illustrated as a
function of position along a one-dimensional trace of finite
length. Two relevant statistical surface characteristics are
the surface height distribution function and the surface
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Fig. 1 Schematic diagram of a surface profile and its relevant
statistical parameters.

autocovariance (ACV) function.” Fortunately, for many
cases of interest, the surface heights are normally distributed
(i.e., the surface height distribution function is Gaussian).
The rms surface roughness, o, is the standard deviation
of that normal distribution.

Although it would be convenient (mathematically) if the
surface ACV function were also Gaussian, in most instances
that is not the case. Instead, the ACV function is material and
process dependent. The ACV length, Z, is usually defined as
the half-width of the ACV function at the 1/e height.

The surface PSD function and the surface ACV function
are Fourier transforms of each other. Note in Fig. 1 that the
value of the surface ACV function at the origin is equal to the
surface variance, ¢2. From the central ordinate theorem of
Fourier transform theory, we therefore know that the volume
under the 2 — D surface PSD is also equal to the surface
variance.

The surface PSD can be thought of as a plot of surface
variance as a function of the spatial frequency of the surface
irregularities. We can thus talk about several different spa-
tial frequency regimes that have distinctly different effects
upon image quality, as illustrated in Fig. 2.

After decades of concerning themselves with only low
spatial frequency “figure” errors and high spatial frequency
“finish” errors or “microroughness,” optical manufacturers
are finally realizing the significance of “midspatial fre-
quency” optical surface irregularities in the degradation of
image quality.”*>

The low spatial frequency figure-error regime gives rise
to conventional wavefront aberrations. The high spatial
frequency finish-error/microroughness regime produces
wideangle scattering effects that redistribute radiant energy
from the image core into a broad scattered halo without
substantially affecting the width of the image core. And the
midspatial frequency regime that spans the gap between the
traditional figure and finish errors produces small angle
scatter that broadens or smears out the image core.’**

Historically, optical fabrication tolerances have been
specified by placing a tolerance upon only the figure and
finish errors. It has only recently become common practice
to also specify and measure the midspatial frequency surface
irregularities.

The astronomer’s classical definition of resolution has
been the full width at half-max (FWHM) of the point spread
function. For bright point sources, this image quality criter-
ion is quite insensitive to wide-angle scatter resulting from
high spatial frequency microroughness, since the width of
the image core is not significantly broadened. However,
for faint point sources, the wide-angle scattered halo causes
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Fig. 2 Different spatial frequency regimes and their resulting effects upon image quality.

severe signal-to-noise problems and a substantial loss of
image contrast. The small-angle scatter produced by the
midspatial frequency surface irregularities does broaden the
image core and therefore causes a significant decrease in
resolution (larger FWHM). The same considerations hold
for deep ultraviolet and especially for extreme ultraviolet
(EUV) lithography applications.?** It is thus imperative
that optical fabrication tolerances be specified over the entire
range of relevant spatial frequencies.

A uniformly rough surface is one whose roughness is
homogeneous and isotropic, i.e., the surface height distribu-
tion function and the ACV function do not change with loca-
tion or orientation of the (finite) measured surface profile.
For such a surface, the PSD is a2 — D rotationally symmetric
function.

It is important to recognize that the relevant (or effective)
surface roughness is not an intrinsic surface characteristic,
but a band-limited quantity that depends upon the wave-
length and incident angle.'®'® For normal incidence, those
spatial frequencies greater than 1/1 produce evanescent
(imaginary) waves that do not result in radiant power
being scattered from the specular beam—i.e., spatial fre-
quencies greater than 1/1 are completely irrelevant with
regard to scattered light.® For an arbitrary incident angle,
0;, the 2 — D boundary of the appropriate bandlimited por-
tion of the surface PSD is illustrated in Fig. 3(a), i.e., a circle
of radius 1/4 whose center is shifted to a spatial frequency™’
given by

in 6
fo:snl—ov 90:_91" (7)
A
The corresponding relevant roughness, o, is given by the
square root of the volume under the relevant portion of the

surface PSD illustrated in Fig. 3(b). It is thus calculated by

the following integral:**
PSD(f..f,)df df.

1/24f,
Urel A 0 /
1/A+f,
®)

It is the relevant roughness, o, that determines the fraction
of the total reflected light contained in the specular beam and

VR,
1/ 2=(f~fo)
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in the associated scattering function. For normal incidence
(and isotropic roughness), the relevant roughness expressed
by Eq. (8) simplifies to

6ra(2) = \/ 2 /f " psp()sor. ©)

For some applications, there is a nonzero low spatial fre-
quency band limit, 1 /L, where L represents an inherent mea-
surement bandwidth limit.'"!**3% For example, if surface
roughness is being inferred from TIS measurements, the
upper and lower angle limits of the TIS instrument determine
(through the grating equation) the minimum and maximum
spatial frequency band limits of the resulting predicted
surface roughness. Thus TIS measurements are meaningful
only when the limiting angles are known and reported. The

® |

-

Fig. 3 (a) lllustration of the 2 — D boundary of the appropriate band-
limited portlon of the surface PSD for an arbitrary incident angle, 6;.
(b) lllustration of the relevant portion of the surface PSD, whose
integral yields the square of the relevant rms surface roughness.
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additional contribution to roughness due to spatial frequen-
cies between zero and 1/L can often be ignored.
For a surface with a Gaussian ACV function

ACV(I‘) = Gtzotal exp[_(o-tzotal/fz)]’ (10)

the surface PSD is also a Gaussian function:
PSD(f) = m,”zatzolal exp[—(nff)z}. (11)

It can also be readily shown that the cumulative radial inte-
gral of a 2 — D rotationally symmetric Gaussian function is
proportional to one minus that Gaussian, and the proportion-
ality constant is the total volume of the Gaussian function.
Thus, integrating Eq. (11) we obtain

/ > / " PSD(f)fdfdg = o2, [l —exp(—(z£f)?)].  (12)
#=0 J=0

But if the upper limit is set to 1/4, the integral on the left-
hand side of Eq. (12) is just the bandlimited surface variance,
02, for normal incidence. We thus have

o,
7 =1 —exp[—(x£/2)?]. (13)

total

(g

Figure 4 shows a family of parametric curves illustrating the
ratio of 62, to o2, for different incident angles as a function
of normalized correlation width. These curves were obtained
by numerically integrating the relevant portion of the surface
PSD as indicated in Eq. (8). The analytic solution for normal
incidence is also included as a check on our numerical
model.

However, optical surfaces fabricated by conventional
grinding and polishing techniques on ordinary amorphous
glassy materials and thin film coatings seldom exhibit Gaus-
sian surface ACV functions. Church®**” has reported upon
the fractal nature of many surface finishes, thus suggesting
that the surface PSD can be modeled as exhibiting an inverse
power law behavior at high spatial frequencies that can
conveniently be fit by the following ABC, or K correlation,
function of the form

A

L+ (B 1

PSD(f)I—D =

Here A is the height of the low spatial frequency plateau of
the 1 — D surface PSD and 1/B is the location of the knee in
the log—log plot of the 1 — D PSD (B can be considered the
correlation width of the surface irregularities).

It has also been demonstrated that thin film coatings exhi-
bit ABC (or combinations of ABC) PSD’s describing the
substrate and the intrinsic roughness of the coating.’**

Assuming isotropic roughness, this 1 — D measured sur-
face PSD can be converted into the following 2 — D surface
PSD that relates more directly to the surface scatter behavior
and hence to the resulting image degradation:

AB
[+ (B2
1 I((c+1)/2)

2yr T(C/2)

There is also a convenient analytic expression for the total
volume under the 2 — D surface PSD:

PSD(f), p =K
(15)

) 2nKAB

Olotal — (C- 1B’ (16)

and even an analytic expression for the 2 — D Fourier trans-
form of the above 2 — D surface PSD. This surface ACV
function is given by

A 27C/2 2gp\(C-1)/2 2rr
v AT (Y (o)

BI(Cc/2)\ B B
17)

Although surface scatter effects can also be important at
visible and infrared wavelengths, we will consider an ultra-
violet example with a wavelength of 100 nm at normal inci-
dence to a surface with a PSD given by Eq. (15). Figure 5
illustrates the ratio of 6%, to o2, as a function of the sur-
face correlation width B for several different values of the
parameter C when the parameter A = 6.10 nm> mm. As

1.0 ———
—e— Analytic T T
0.9 —0;=0° 77 T
-=06,=10° 7
ars
0.8 ——-8,=20° / Jrd
,
——0;=30° b+
0.7 9. = a0° 7
i~ 7
——0; =50 I’I
0.6 ——0 =50 /
2 o
Ores ——8,=70 ,/
o2 0.5 —— 0, =80 i et t———————1
fot ’/
0.4
0.3
0.2
0.1
0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Correlation width/wavelength

Fig. 4 Parametric curves illustrating the variation of relevant roughness with incident angle and surface correlation width (Gaussian ACV function).
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Fig. 5 Parametric curves illustrating the variation of relevant roughness with the parameters B and C.

for the case of the Gaussian PSD, the relevant roughness
decreases with decreasing surface correlation width. And,
of course, the relevant roughness increases with increasing
C as a larger portion of the total roughness is contained
within the circular bandlimited boundary for an inverse
power law with a steeper slope. Note that a small percent
change in the parameter C caused a greater change in the
ratio of 6%, to 62, than did five decades of variation in
the parameter B.

To provide even more insight into the nature of band-
limited roughness for practical optical surfaces, Fig. 6
illustrates the ratio of 6%, to 62, as a function of the param-
eter C for fixed values of A and B (A = 6.10 nm? mm and
B = 120 mm), but for different incident angles and wave-
lengths. Recall that the total surface variance, (thotal, is infinite
for C < 1.0 (an inverse power law slope with a magnitude
less than 2). The band-limited surface variance, 62, thus
initially increases rapidly from C = 0, then asymptotically
approaches o2, for C > 1.35 for an EUV wavelength of

C-value of ~1.75. It is thus apparent from Fig. 6 that the
ratio of 62, to o2, is quite insensitive to both incident angle
and wavelength for surfaces with an ABC function PSD.

3 Total Integrated Scatter

Note that the surface correlation width does not appear expli-
citly in Eq. (5) or Eq. (6) for TIS. Yet Elson’ was aware in
1983 that the derivation of Eq. (4) involved an assumption
that the correlation width was long compared with the wave-
length (Z > A). He also recognized that any surface spatial
wavelengths shorter than the wavelength of the incident
radiation would not contribute to the normal incidence TIS.
Equation (4) is thus not valid in general, even for smooth
surfaces. He then calculated that for £ < 4, the value of TIS
varies inversely as the fourth power of the wavelength for a
smooth surface with a Gaussian ACV function illuminated at
normal incidence,’ so that TIS is

total 64 71'462f2
30 nm. Increasing the wavelength by a factor of 333 to TIS = <_> <—4> <. (18)
10 ym only moves this asymptotic behavior out to a 3 A
1.0 e —
= e
09} / B bl =2
v - -
- e
08 P
¢ A=30 nm A=10 pm
0.7 | 4 ’, 0
¢ --—e (9= - -e- 9=(°
) pd +— 0=0° -4 0=80°
06 L
ok de
o2 05 | N4
tot I‘
(2
04 1y
G d
4
03|,
)
02 |
0.1
0.0
1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80

C (Slope of inverse power law - 1)

Fig. 6 Variation of relevant roughness to parameter C. Note insensitivity to incident angle.

Optical Engineering 013402-5 January 2012/Vol. 51(1)

Downloaded from SPIE Digital Library on 09 Feb 2012 to 66.165.46.178. Terms of Use: http://spiedl.org/terms



Harvey et al.: Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles

TIS/TIS,

5> il (

l I

————— From Eq. (18) (¢<<))
i From Eq. (19) !
ee e e Fison’s calculations

0.3 0.4

0.5 0.6 0.7 0.8 0.9 1.0

Correlation width/wavelength

Fig. 7 TIS/TIS, versus /4 for a smooth surface with normally incident light. The solid line is in excellent agreement with Elson’s original analysis.

Elson continued his analysis of the variation of TIS with
correlation width by plotting the ratio of the actual TIS for
arbitrary correlation widths to TIS.,, which is given by
Eq. (4) when Z > A. He calculated the actual TIS by per-
forming numerical integrations of the ARS predicted by
the Rayleigh-Rice surface scatter theory. The result of these
calculations is illustrated by the discrete data points in Fig. 7.
Elson’s quantity TIS/TIS, (plotted as the solid line in
Fig. 7) can also be calculated by merely dividing Eq. (5)
by Eq. (3):

TIS  1—exp[—(4x cos 6,6,,1/2)%] (19)
TIS 1= CXP[—(‘W Cos eiatolal/i)z} .

Both the numerator and the denominator of this ratio are
equal for large correlation widths, yielding a value of unity
for the ratio. There are thus two asymptotic regions in Fig. 7
with analytic solutions, illustrated by the dashed line given
by Eq. (18) for £ <« A, and unity as £ approaches 4. Equa-
tion (18) for small correlation widths has been quite useful in
predicting surface scatter from optical thin films exhibiting
columnar growth. >

Elson performed the above analysis, which provides
valuable insight into surface scatter behavior, without ever
mentioning or acknowledging the concept of band-limited
roughness. He also determined that Eq. (4) is not limited to
surfaces with a Gaussian surface height distribution function
or a Gaussian ACV function.”"

The excellent agreement between Elson’s calculations
and the predictions from Eq. (19) dramatically illustrates
that Egs. (3) and (4) are ambiguous and incorrect for surfa-
ces with correlation widths less than the wavelength of the
operational wavelength due to their failure to identify the
relevant spatial frequency bandwidth limits, as does Eq. (5).
Furthermore, by merely performing the 2 — D integral of the
surface PSD over the shifted circular boundary discussed in
section 2, we can readily calculate o, and therefore TIS,
for arbitrary surface ACV functions without the necessity of
implementing a given surface scatter theory to predict the
ARS or the BRDF.
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Since Eq. (19) is valid for surfaces with arbitrary rough-
ness, correlation widths, and incident angles, a more thor-
ough parametric analysis, providing even more insight into
surface scatter phenomena, can now be readily performed.
Figure 8 illustrates a set of parametric curves of TIS/TIS_
versus correlation width for different surface roughnesses
(0.02 < 6/2 < 0.50) for a surface with a Gaussian ACV func-
tion. Again, the smooth surface curve agrees very well with
Elson’s original data.

Figure 9 illustrates a similar set of parametric curves of
TIS/TIS,, versus incident angle for a fixed correlation
width of £/1 = 1.0. This is again for surfaces exhibiting
a Gaussian ACV function. Note that TIS/TIS_, is equal
to unity, as expected for small incident angles. At an incident
angle of about 30 deg, the curves diverge until about 65 deg.
They then asymptotically converge to a common value of
0.455 at grazing incidence.

This behavior becomes intuitive when one realizes that
even moderately rough surfaces become specular at grazing
incidence. Both the numerator and the denominator thus
become zero, and Eq. (19) becomes indeterminant for
0; =90 deg. Applying L’Hospital’s Rule yields TIS/TIS
equal to

TIS 1 —exp[—(4z cos 0;6,,/2)%] . o’

rel

TISoo B 1 - exp[—(4ﬂ cos Hio-tolal/i)z] Glzotal (20)
as 6; — 90°

for all roughness values. Clearly, this asymptotic value of
TIS/TIS,, will vary for different correlation widths. For
example, for a correlation width of 2.0 4, we obtain the set
of parametric curves illustrated in Fig. 10. For this case, the
values of TIS/TIS,, are drastically different at normal inci-
dence for different roughnesses, having substantially lower
values for the smoother surfaces. And, indeed, the asympto-
tic value for grazing incidence has been reduced to a value
of 0.236.

Figure 11 illustrates cumulative surface roughness as a
function of spatial frequency for a state-of-the-art EUV
telescope mirror characterized by an ABC function PSD.*!
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Fig. 8 Parametric curves of TIS/TIS_, versus #/A for surfaces with a Gaussian ACV and different roughnesses for normally incident light.
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Fig. 9 Parametric curves of TIS/TIS_, versus incident angle for surfaces of different roughnesses with a Gaussian ACV and #/1 = 1.0.

The relevant roughness (determined by a wavelength of
303.8 A) is indicated, as is the total intrinsic roughness. The
values of the ABC parameters are indicated in the figure, and
several different metrology regions are shown over which
band-limited optical fabrication tolerances are specified. The
maximum relevant spatial frequency, relevant surface rough-
ness, and resulting TIS as calculated from Eq. (5) are tabu-
lated for each of six specific EUV wavelengths of interest.
Note that at the longest wavelength of interest, only 7% of
the reflected radiant power is scattered, whereas for the short-
est wavelength of interest, over 56% of the reflected radiant
power is scattered.

4 Predicting BRDF’s for Arbitrary Roughness,
Correlation Widths, and Incident Angles

The TIS of an optical surface can be a very useful metric for
evaluating different optical materials and optical fabrication
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processes, particularly for short-wavelength imaging sys-
tems. However, when making image quality predictions
from optical metrology data, or when deriving practical opti-
cal fabrication tolerances necessary to satisfy specific image
quality requirements, it is frequently not sufficient to merely
know the TIS. It is often necessary to also know the angular
distribution of the scattered radiation, i.e., the ARS or the
BRDF for different incident angles and wavelengths.
Rayleigh-Rice,**® Beckmann—Kirchhoff,* or Harvey—
Shack*** surface scatter theory is commonly used to predict
surface scatter effects.

For short-wavelength imaging systems, where even state-
of-the-art surfaces are moderately rough, this is a compli-
cated problem that requires more than knowledge of the rele-
vant bandlimited roughness of the optical surfaces making
up the imaging system. The smooth-surface limitation of
the classical Rayleigh—Rice surface scatter theory and the

January 2012/Vol. 51(1)
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Fig. 10 Parametric curves of TIS/TIS versus incident angle for surfaces of different roughnesses with a Gaussian ACV and ¢/4 = 2.0.
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Fig. 11 Plot of cumulative surface roughness versus spatial frequency illustrates the difference between the relative roughness and the total
roughness of an EUV telescope mirror characterized by an ABC function surface PSD. The TIS is tabulated for each of six EUV wavelengths

of interest.

paraxial limitation of the Beckmann—Kirchhoff and the ori-
ginal Harvey—Shack theories have inhibited the widespread
analysis of image degradation due to surface scatter phenom-
ena. However, recent advances in surface scatter theory have
resulted in a unified theory***® that appears to combine the
advantages of the Rayleigh—Rice theory and the Beckmann—
Kirchhoff theories without the disadvantages of either. This
generalized Harvey—Shack surface scatter theory has been
demonstrated to be in good agreement with rigorous calcula-
tions and experimental results, even for moderately rough
surfaces with arbitrary incident and scattered angles.*®

As an example of the capabilities of the generalized
Harvey-Shack surface scatter theory, Fig. 12 illustrates the
previous TIS curves from Fig. 8 with a variety of inserts
depicting the ARS curves corresponding to specific surface
roughness and correlation width values. The ARS curves are
all plotted on the same scale so one can readily see that the
peak scattered intensity is (i) small in insert 1 due to the low
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TIS for this smooth surface, (ii) large in insert 3 due to the
large TIS and correlation width, and (iii) small in insert 6 due
to the small correlation width that causes o-fel to be
a small fraction of 62, thus reducing the TIS in spite of
the fact that the surface is quite rough. Additional insight
can be gained by studying the values of TIS, the ratio of 6%,
to 62, and TIS/TIS, for each of the six points repre-
sented by the ARS inserts. Table 1 provides these tabulated
data.

The ARS data represented by the inserts in Fig. 12 can be
input into several commercially available image analysis
codes for predicting image quality as degraded by not only
diffraction effects and geometrical aberrations, but surface
scatter effects resulting from residual optical fabrication
errors.* Finally, it should again be mentioned that many
deep ultraviolet and EUV components involve multilayer
coatings that require multilayer scattering theories, or scatter
measurements at the operational wavelength.??*?
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Fig. 12 Inserts added to Fig. 8 depict ARS curves calculated with the generalized Harvey-Shack surface scatter theory, which has been
demonstrated to be valid for moderately rough surfaces with arbitrary correlation widths and incident angles.

Table 1 Tabulated data for each point represented by ARS
inserts.

c/d 72 TIS 02,/62, TIS/TIS,,
1 0.02 0.80 0.0611 0.9980 0.9981
2 0.05 0.66 0.3225 0.9861 0.9886
3 0.10 0.50 0.7642 0.9150 0.9627
4 0.15 0.30 0.8765 0.5886 0.9023
5 0.20 0.12 0.5668 0.1325 0.5679
6 0.50 0.03 0.2945 0.0088 0.2945

5 Summary and Conclusions

We first reviewed the historical (50-year-old) expression for
TIS as a function of rms surface roughness, and its widely
used smooth surface approximation. This was followed by a
thorough discussion of the spatial frequency bandlimited
roughness of an optical surface that is relevant to surface
scatter phenomena. A simple procedure for calculating that
relevant roughness for arbitrary surface PSDs, wavelengths,
and incident angles was presented.

The classical equation for calculating TIS was then
updated to be explicitly expressed in terms of this relevant
band-limited roughness. Only then does it properly account
for the effects upon the TIS caused by variations in surface
correlation width, wavelength, and incident angle. The
resulting Eq. (5) incorporates the concept of the relevant ban-
dlimited roughness into the definition of TIS and renders the
classical ambiguous expressions for TIS, Egs. (3) and (4),
obsolete and inaccurate for many applications involving
short surface correlation widths and large incident angles.
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Extensive parametric predictions were then presented
of the TIS for optical surfaces of arbitrary roughness,
correlation widths, and incident angles. This parametric ana-
lysis provides valuable insight and understanding to optical
fabrication and metrology engineers that is not readily avail-
able from the previously existing literature.

Finally, the capabilities of a new unified surface scatter
theory combining the advantages of both the classical
Rayleigh-Rice and Beckmann-Kirchhoff theories was dem-
onstrated by calculating ARS curves for surfaces with arbi-
trary roughness, correlation widths, and incident angles.

We have not proven, either by experimental verification
or by rigorous numerical electromagnetic theory, that Eq. (5)
is accurate for roughnesses and incident angles that result in
arbitrarily high TIS values; however, there have been numer-
ical validations by the optical design community® that the
complementary expression for the fraction of the energy
remaining in the image core (when degraded by a combina-
tion of various aberrations, or figure errors, rather than
microroughness) is accurate for values of Strehl >0.1. This
would correspond to TIS <0.9. It is the authors’ hope that the
publication of this paper will not only benefit metrology
engineers and image analysts, but also stimulate the more
theoretically inclined readers to help determine the limit
of the validity of Eq. (5).
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