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Image analysis in the presence of surface scatter due to residual optical fabrication errors is often
perceived to be complicated, nonintuitive, and achieved only by computationally intensive nonsequential
ray tracing with commercial optical analysis codes such as ASAP, Zemax, Code V, TracePro, or FRED.
However, we show that surface scatter can be treated very similarly to conventional wavefront aberra-
tions. For multielement imaging systems degraded by both surface scatter and aberrations, the compo-
site point spread function is obtained in explicit analytic form in terms of convolutions of the geometrical
point spread function and scaled bidirectional scattering distribution functions of the individual surfaces
of the imaging system. The approximations and assumptions in this formulation are discussed, and the
result is compared to the irradiance distribution obtained using commercial software for the case of a
two-mirror telescope operating at an extreme ultraviolet wavelength. The two results are virtually
identical. © 2012 Optical Society of America
OCIS codes: 110.2960, 080.1005, 290.5880, 290.1483, 290.5835.

1. Introduction

Image degradation due to conventional aberrations
has become well understood over the past century,
and surface scatter phenomena has been investi-
gated extensively for the past half century. However,
the two image degradation mechanisms are usually
treated separately even though they are essentially
the same phenomenon, i.e., the deviation of the light
from the ideal direction as it propagates through an
imaging system.

Recently, Peterson suggested a way of analyzing
image degradation due to surface scatter in a multi-
element system [1,2], and subsequently, Harvey et al.
extended Peterson’s method to the more general
case of moderately rough surfaces [3]. However, their
analyses are still restricted to paraxial, aberration-
free optical systems. In this paper, image degrada-
tion, as characterized by the point spread function
(PSF) is obtained in explicit analytic form for

systems in which both aberrations and surface scat-
ter are dominant image degradation mechanisms.

That this explicit form is expressed as the convolu-
tion of the geometrical PSFG with a scattering PSFS
is convenient; however, the accuracy depends upon
the validity of the approximations and assumptions
made in the mathematical development. Goodman
[4] has shown that a similar linear systems approach
to image analysis as degraded by diffraction and geo-
metrical aberrations is not strictly true, and Harvey
and Krywonos [5] have quantitatively evaluated the
assumption for different amounts of defocus. They
then proceed to successfully apply the linear system
formulation of image quality to the case of an x-ray
telescope [6,7].

This paper confirms that the explicit expression
for the system PSF is not rigorously true; however,
it discusses the assumptions and approximations
made in the mathematical formulation, explains
why the explicit expression should be sufficiently ac-
curate for most optical engineering applications,
then goes on to numerically validate it for the specific
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application of a two-mirror extreme ultraviolet
(EUV) telescope.

For these short-wavelength EUV applications, the
effects of aberrations exceed the Rayleigh (diffrac-
tion) limit by a substantial factor, and diffraction
effects become relatively insignificant [8]. Also at
these short wavelengths, scattering effects are dras-
tically increased for a given residual surface rough-
ness. The size of the Airy disk is thus small compared
to both the geometrical “spot size” and “scattering
effects.” We have thus ignored diffraction effects in
the analysis presented in this paper and, as the title
suggests, discuss image degradation due only to
scatter effects in the presence of aberrations.

In Section 2, the PSF of a scatter-free system is
reviewed for the purpose of showing the validity of
our method of analysis. Then, using the same meth-
odology, the analysis is extended to imaging systems
exhibiting both aberrations and surface scatter in
Section 3. In Section 4 our results are compared to
those obtained using the computationally intensive,
nonsequential ray-tracing capabilities of a commer-
cially available optical design and analysis code.

2. Review of Imaging Equations by an Aberrated
Optical System

Generally, the impulse response function of a system
can be described by the following integral form:

Ψoutput�ηoutput� �
Z

dηinputK�ηoutput; ηinput�

·Ψinput�ηinput�; (1)

where the function K is called the kernel function,
which describes the system characteristics [9]. One
of the famous impulse response functions is the
PSF of optical imaging systems. In geometric optics,
the integral form is rarely used for analysis. How-
ever, in this paper a new formalism using the form
of Eq. (1) is developed in order to describe the geome-
trical PSF as well as the scattering PSF.

After introducing notations and definitions used in
this paper in Subsection 2.A, this fundamental form-

alism will be validated for a single-surface imaging
system in Subsection 2.B, for a two-surface imaging
system in Subsection 2.C, and finally, for an n-surface
imaging system in Subsection 2.D, before extending
this analysis to the case of image degradation due to
aberrations and scattered light in Section 3. In the
following sections, absorption and vignetting effects
are ignored and some parameters are dropped in the
kernel function for simplicity.

A. Notations and Definitions

Figure 1 illustrates an optical system consisting of a
series of coaxial optical surfaces [10]. The Gaussian
image of a point object formed by the first optical sur-
face acts as an object for the second optical surface,
and so on. Thus, the image plane of the jth optical
surface (referred to as the jth image plane) is the
same as the object plane of the �j� 1�th optical
surface [referred to as the �j� 1�th object plane],
the first object plane is the same as the object plane
of the total optical system (referred to as object
plane), and last image plane is the same as image
plane of the total optical system (referred to as image
plane). xj � �xj; yj� is the position where a ray inter-
sects the jth image plane, and x0 is the position
where a ray intersects the object plane. zj, z0j are
defined as conjugate distances of the jth optical sur-
face divided by the index of refraction of the corre-
sponding space, and the transverse magnification
of the jth optical surface is given by mj � z0j∕zj. Each
optical surface may have aberrations, and the pri-
mary wave aberration function of the jth optical sur-
face (referred to as the jth wave aberration function)
is defined at the exit pupil of the jth optical surface
(referred to as the jth exit pupil), and the last exit
pupil coincides with the exit pupil of the total optical
system (referred to as exit pupil). ξj � �ξj; ηj� is the
exit pupil coordinate of a ray in the jth exit pupil,
and m�p�

j−n denotes the pupil magnification between
the jth exit pupil and the nth exit pupil. rj is defined
by the distance from the center of the jth exit pupil to
the jth image plane divided by the index of refraction

Fig. 1. Schematic layout of an optical imaging system consisting of a series of coaxial optical surfaces.
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of the corresponding space. Wj is the jth wave aber-
ration function given by

Wj�ξjjxj−1� � W040p2
j �W131pjcj �W222c2j

�W220pjqj �W311qjcj; (2)

where pj � ξj · ξj∕a2
j , qj � xj−1 · xj−1∕b2j , and cj �

ξj · xj−1∕ajbj. aj is the maximum pupil height in the
jth exit pupil, and bj is the maximum object height
in the jth object plane. Note that bj � m1m2 � � �
mj−1b, where b is the maximum object height in
the object plane. If an optical system consists of n ele-
ments, the primary aberration function of the total
system W is obtained by

W�ξnjx0� �
Xn
j�1

Wj�ξn∕m�p�
j−njm1m2 � � �mj−1x0�: (3)

The third-order transverse ray aberration function
εj�ξjjxj−1� is introduced and is defined by

εj�ξjjxj−1� � −rj∇jWj�ξjjxj−1�; (4)

which is a ray displacement with respect to Gaussian
image position in the jth image plane, and ∇j �
�∂∕∂ξj; ∂∕∂ηj� is the gradient operator. The Lagrange
invariant has been used to obtain the third-
order transverse ray aberration function of the total
n-element optical system:

ε�ξnjx0� � −rn∇nW�ξnjx0�

� −
Xn
j�1

rn∇nWj�ξn∕m�p�
j−njm1m2 � � �mj−1x0�

� −
Xn
j�1

�mj�1 � � �mnrj∇jWj�ξjjxj−1��

�
Xn
j�1

�mj�1 � � �mnεj�ξjjxj−1��. (5)

Note that the last exit pupil coincides with the exit
pupil of the total optical system.

B. Review of Imaging Equations for a Single Surface

Figure 2 illustrates a single optical surface imaging
system. If there is no aberration, the point source
position x0 in the object plane is relocated to x1 in
the image plane by

δ�x − x1� � δ
�
x −

z01
z1

x0

�
: (6)

Strictly speaking, the emittance of a point source
cannot be defined. However, by utilizing an infinite-
simally small area centered on the point source posi-
tion, the power emitted from the point source divided
by the infinitesimally small area is considered to be
the emittance. By defining the object irradiance
distribution function for such a point source as
E0�x0� � δ�x0 − xobj�, the transferred irradiance can
be expressed by

E�x1� � Pinc

Z
d2x0

1

z021
δ
�
x1
z01

−
x0
z1

�
E0�x0�

� Pincδ�x1 −m1xobj�; (7)

where the domain of integration in this paper is
�−∞;∞� and d2x � dxdy. Pinc is the power collected
by the entrance pupil of the system.

If the optical surface has aberrations, the image
plane position of a ray passing through ξ1 is given by

δ�x − x1� � δ
�
x −

z01
z1

x0 − ε1�ξ1jx0�
�
: (8)

By assuming uniform irradiance Ep in the exit pupil,
and assuming that each ray leaving the exit pupil
carries equal power, the transferred irradiance of
the point source by the aberrated single optical
surface is given by

E�x1� � Ep

Z
d2x0

Z
d2ξ1

1

z021
δ
�
x1
z01

−
x0
z1

−
ε1�ξ1jx0�

z1

�

× E0�x0�: (9)

Fig. 2. Schematic layout of a single-surface optical imaging system.
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Using the identity

δ
�
x
a
− b� c

�
�

Z
d2x0δ

�
x0

a
− b

�
δ�x − x0 � ac�; (10)

Eq. (9) turns into

E�x1� �
Z

d2x01

�
1

z021
δ
�
x01
z01

−
xobj
z1

��

×
�
Ep

Z
d2ξ1δ�x1 − x01 − ε1�ξ1jxobj��

�
: (11)

Comparing Eqs. (8) and (11), the variable x01 can be
interpreted as the Gaussian image position in the
image plane. Equation (11) can be written as

E�x1� � PSFG�x1jxobj� ⊗ δ�x1 −m1xobj�; (12)

where ⊗ is the symbolic notation for the two-
dimensional convolution operation and PSFG is the
geometrical PSF with respect to the Gaussian image
point

PSFG�x1jxobj� ≅ Ep

Z
d2ξ1δ�x1 � r1∇1W�ξ1jxobj��:

(13)

The validity of expressing the geometrical PSF as
Eq. (13) will be discussed in Appendix A.

C. Review of Imaging Equations for Two Surfaces

Figure 3 shows a two-surface optical imaging system.
Consider the trajectory of a ray passing P0, P1, P2,
and P4 and assume that the position of the ray in
the exit pupil of the second optical surface is ξ2. In
the view of the first optical surface, the ray comes
from P0 and is refracted at P1 and intersects its im-
age plane at P3. For the second surface, the ray
“comes” from the virtual point P3, is refracted at
P2, and intersects its image plane at P4. Thus, in
the view of the second surface, the position of the
point P4, which is represented by x2�ξ2�, can be ex-
pressed by

δ�x − x2� �
Z

d2x1δ
�
x1 −

z01
z1

x0 − ε1�ξ1jx0�
�

× δ
�
x −

z02
z2

x1 − ε2�ξ2jx1�
�
; (14)

where ξ1 � ξ2∕m
�p�
1−2. However, in third-order aberra-

tion theory, the Gaussian reference sphere of the
second optical surface centers on P5, which is the
Gaussian image point of P0 by the first optical
surface. And the total ray aberration is obtained by
combining m2ε1�ξ1jx0� and ε2�ξ2jm1x0�. Thus, x2�ξ2�
can be expressed by

δ�x−x2�≅
Z
d2x1δ

�
x1−

z01
z1
x0

�

×δ
�
x−

z02
z2
x1−

z02
z2
ε1�ξ1jx0�−ε2

�
ξ2

����z
0
1

z1
x0

��
: (15)

Comparing Eqs. (14) and (15) gives

ε2�ξ2jm1x0 � ε1�ξ1jx0�� ≅ ε2�ξ2jm1x0�: (16)

Since the ray aberration ε1 on the left-hand side of
Eq. (16) produces only a higher than third-order
term, it is neglected in the third-order aberration
theory. Thus, Eq. (14) can be replaced by Eq. (15)
under the third-order aberration theory, and this
approximation plays an important role in the re-
mainder of this paper.

The irradiance distribution in the second image
plane is given by

E�x2� � Ep

ZZZ
d2x0d2x1d2ξ

�Y2
j�1

1

z02j
δ
�
xj
z0j
−
xj−1
zj

−
εj
z0j

��

× E0�x0�; (17)

where the pupil coordinate and object position de-
pendency of εj�ξjjxj−1� is dropped for simplicity.
Equation (17) can be written by

E�x2� �
ZZZ

d2x1d2x01d
2x02

�Y2
j�1

1

z02j
δ
�
xj
z0j
−
xj−1
zj

��

× �G�x1; x2; x01; x02jxobj��; (18)

1P

Fig. 3. Schematic layout of a two-surface optical imaging system.

538 APPLIED OPTICS / Vol. 51, No. 5 / 10 February 2012



where

G�x1;x2;x01;x02jxobj��Ep

Z
d2ξδ�x1−x01−ε1�δ�x2−x02−ε2�

≅δ�x1−x01�PSFG�x2−x02jxobj� (19)

and Eq. (16) is used at the last step. The geometrical
PSF is now given by

PSFG�x2jxobj� ≅ Ep

Z
d2ξ2δ�x2 � r2∇2W�ξ2jxobj��:

(20)

Substituting Eq. (19) into Eq. (18), the irradiance
distribution function becomes

E�x2� ≅ PSFG�x2jxobj� ⊗ δ�x2 −m2m1xobj�; (21)

which is a simple convolution of the geometrical
PSF with a delta function centered on Gaussian
image position.

D. Review of Imaging Equations for n Surfaces

Let us now consider an optical imaging systemwith n
surfaces. The irradiance distribution function is

E�xn� � Ep

Z
� � �

Z
d2x0 � � �d2xn−1d2

× ξ
�Yn
j�1

1

z02j
δ
�
xj
z0j
−
xj−1
zj

−
εj
z0j

��
E0�x0�: (22)

Equation (22) can be written as

E�xn� �
Z

…

Z
d2x0…d2xn−1d2x01…d2x0n

×
�Yn
j�1

1

z02j
δ
�x0j
z0j
−
xj−1
zj

��

× �G�x1; � � � ; xn; x01; � � � ; x0njx0��E0�x0�; (23)

where

G�x1;…;xn;x01;…;x0njx0��Ep

Z
d2ξ

�Yn
j�1

δ�xj −x0j −εj�
�
:

(24)

Ignoring higher orders as shown in Eq. (16), the func-
tion G is simplified to

G�x1; � � � ; xn; x01; � � � ; x0njx0� ≅
�Yn−1
j�1

δ�xj − x0j�
�
PSFG

× �xn − x0njx0�; (25)

where the geometrical PSF is given by

PSFG�xnjxobj� � Ep

Z
d2ξnδ�xn � rn∇nW�ξnjxobj��:

(26)

Substituting Eq. (25) into Eq. (23), the image irradi-
ance distribution function becomes

E�xn� � PSFG�xnjxobj� ⊗ δ�xn −mxobj�: (27)

Again, note that the exit pupil of the last surface
coincides with the exit pupil of the total optical
system.

3. Image Degradation Due to Surface Scatter Effects

For a given wavelength of light, the bidirectional
scattering distribution function (BSDF) of a surface
is defined as the scattering radiance divided by the
incident irradiance [11]:

BSDF�αs;α0� �
dLs�αs;α0�

dEi
; (28)

where Pinc is the total radiant power illuminating
a given surface area, αs is given by the direction
cosines of a scattered ray multiplied by the index
of refraction of the space, and α0 is given by the di-
rection cosines of the specular ray multiplied by the
index of refraction. Note that, if αi is defined by the
direction cosines of a incident ray multiplied by the
index of refraction of the space, Snell’s law becomes
simply αi � α0. Assuming that the optical element
has isotropic and homogeneous roughness over
the whole surface and the BSDF is shift invariant re-
lative to the incident angle for small incident and
scattering angles, the BSDF can be written as

BSDF�αs − α0� ≅ Q · �A · δ�αs − α0� � S�αs − α0��;
(29)

where Q is the reflectance (transmittance) of the sur-
face, A is that fraction of the total reflected (trans-
mitted) radiant power contained in the specular
beam, and S is the incoherent scattering function
[12]. The delta function corresponds to the specular
light. Note that the BSDF contains both the specular
and the scattered light; however, some authors
ignore the specular beam when displaying BSDF
plots. Because of reflection, transmission, or absorp-
tion losses, Q is generally less than unity; however,
for the remainder of this paper, it is assumed
that Q � 1.

A single scattered ray can be understood as a ray
deviated from the specular direction, carrying the
energy dictated by the BSDF. From the point of view
of wavefront analysis, the angle of deviation from a
certain reference direction can be expressed in terms
of a wavefront error, which can be expressed as

W 0�x0; ξ;α� � W�x0; ξ� �Ws�α; ξ�; (30)
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where Ws is the wavefront error of a scattered ray
relative to the specular ray. Under the assumption
of shift invariance of the BSDF, the wavefront error
of a scattered ray is a linear function of the surface
coordinates. Specifically, its mathematical form is
the same as a wavefront tilt error

W 0�x0; ξ;α� � W�x0; ξ� − α · ξ; (31)

where n is index of refraction of image space. Using
Eq. (31), the formalism developed in Section 2 will be
used in a straightforward manner to analyze image
degradation due to scattered light in the absence of
aberrations.

A. Image Degradation Due to Surface Scatter in the
Absence of Aberrations

Figure 4 shows a ray aberration due to scattering in
the jth optical surface. Consider the aberration-free
case, which is given by εj � 0. Because of the position
of the exit pupil, the “angle” α0

j and the scattering “an-
gle” αj may be different, and their geometrical rela-
tionship is given by αj � α0

jrj∕z
0
j. Using Eqs. (4), (8),

and (31), the ray intercept position, xj, in the jth
image plane for a scattered ray with a scattering
angle αj is given by

δ�x − xj� � δ
�
x −

z0j
zj
xj−1 − rjα0

j

�
: (32)

The (fractional) infinitesimal power dP carried by a
scattered ray bundle having αj is given by

dP � BSDFj�αj�dαj �
r2j
z02j

BSDFj

�
rj
z0j
α0
j

�
dα0

j: (33)

The point source image irradiance distribution func-
tion for an aberration-free n-surface optical system
with moderately rough surfaces can be expressed as

E�xn� � Pinc

Z
� � �

Z
d2x0 � � �d2xn−1d2α0

1 � � �d2α0
j

Yn
j�1

r2j
z02j

× BSDFj

�
rj
z0j
α0
j

�
1

z02j
δ
�
xj
z0j
−
xj−1
zj

−
rj
z0j
α0
j

�
E0�x0�

� Pinc

Z
� � �

Z
d2x0 � � �d2xn−1

×
�Yn
j�1

Tj�xjjxj−1�
�
E0�x0�; (34)

where the intermediate kernel function Tj is defined
by

Tj�xjjxj−1��
Z
d2α0

j

r2j
z02j

BSDFj

�
rj
z0j
α0
j

�
1

z02j
δ
�
xj
z0j
−
xj−1
zj

−
rj
z0j
α0
j

�

� 1

z02j
BSDFj

�
xj
z0j
−
xj−1
zj

�
: (35)

Note that, within the small angle regime, the vari-
able of the BSDF is

xj
z0j
−
xj−1
zj

≅ αs − α0: (36)

After some algebra, Eq. (34) reduces to the simpler
form of

E�xn� � Pinc
1

d2
n
BSDFn

�
xn
dn

�
⊗ � � � ⊗ 1

d2
1

BSDF1

�
xn
d1

�

⊗ δ�xn −mxobj�≡ PincPSFS�xn�
⊗ δ�xn −mxobj�; (37)

where PSFS stands for the PSF due to surface scatter
as magnified by the imaging system. The magnified
conjugate distance is given by dj � z0hj∕h, where hj is
marginal ray height at the jth optical surface, h is the
exit pupil height of the total optical system, and z0 is
image-side conjugate distance of the total optical
system.

If it is assumed that only the jth surface is rough
and all the other surfaces are perfectly smooth,
Eq. (37) reduces to

PSFS�x� � Pinc
1

d2
j

BSDFj

�
x
dj

�
; (38)

which is identical to Peterson’s result [1,2].

B. Image Degradation Due to Surface Scatter in the
Presence of Aberrations

The ray intercept position xj in the jth image plane
for a scattered ray with a scattering angle αj at the
exit pupil position ξj at the jth exit pupil is

δ�x − xj� � δ
�
x −

z0j
zj
xj−1 − rjα0

j − εj

�
: (39)

With the assumption that the exit pupil is uniformly
illuminated, the image irradiance distribution func-
tion for a point source by an n-surface optical system
is given by

Fig. 4. Ray aberration due to scattering in a single surface.
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E�xn� �
Z

� � �
Z

d2x0…d2xn−1K�x0; � � � ; xn�E0�x0�;

(40)

where the kernel function K is

K � Ep

Z
� � �

Z
d2α0

1 � � �d2α0
nd2ξ

×
�Yn
j�1

r2j
z02j

BSDFj

�
rj
z0j
α0
j

�
1

z02j
δ
�
xj
z0j
−
xj−1
zj

−
rjα0

j

z0j
−
εj
z0j

��
:

(41)

If the value of rjα0
j is smaller than or similar to the

value of εj, the approximation in Eq. (16) can be ex-
tended to the case in the presence of both scattering
and aberration by

εj�1�ξj�1jmjxj−1 � rjα0
j � εj� ≅ εj�1�ξj�1jmjxj−1�; (42)

which is discussed in detail in Subsection 3.C. Then
the kernel function becomes simply

K �
Z

� � �
Z

d2x01 � � �d2x0n

�Yn
j�1

Tj�xjjxj−1�
�

× �G�x1; � � � ; xn; x01; � � � ; x0njx0��; (43)

where the function Tj is defined in Eq. (35) and the
function G is defined in Eq. (24). Substituting
Eq. (43) into Eq. (40), the irradiance distribution
function reduces to the simple form

E�xn� � PSFG�xnjxobj� ⊗ PSFS�xn� ⊗ δ�xn −mxobj�
≡ PSF�xn� ⊗ δ�xn −mxobj�; (44)

where the geometrical PSF is given by Eq. (26) and
the scattering PSF is given by Eq. (37). Equation (44)
is a magnified version of the simple convolution of
the geometrical PSF with the scattering PSF, which
is the main conclusion of the paper. The scattering
“effect” and geometrical aberration “effect” can be se-
parately calculated; then their combined effect can
be calculated (approximately) by their convolution.

C. Approximations and Assumptions

To obtain Eq. (44), mainly an assumption and an ap-
proximation were used. The assumption is that the
BSDF is shift invariant with respect to incident an-
gle for both small incident and small scattering an-
gles. This is not true in general [12]. However, for
smooth surfaces, the BSDF has been shown to be di-
rectly proportional to the surface power spectral den-
sity (PSD) function for small scattering and incident
angles [12–16]. The above assumption is thus totally
valid for smooth surfaces when cos θi ≅ cos θs ≅ 1.
For moderately rough surfaces and arbitrary inci-
dent and scattering angles, which is our main inter-
est, the assumption is not strictly true. To the best of

our knowledge, there is no analytic form describing
the BSDF for moderately rough surfaces with arbi-
trary incident and scattered angles. However, the
generalized Harvey–Shack (GHS) surface scatter
theory provides a numerical model that allows us
to calculate BSDFs from surface metrology data (sur-
face PSDs) for moderately rough surfaces with arbi-
trary incident and scattered angles [12,17]. Thus,
perhaps the departure from shift-invariant behavior
could be calculated numerically to determine the
range of parameters over which the predicted image
degradation is accurate to within some allowable
error. Experimental validation is perhaps another
possible alternative.

The approximation specified in Eq. (42) enables us
to obtain the transverse ray aberration for a scat-
tered ray having scattered angle αj at the jth optical
surface and αj at the �j� 1�th optical surface by

ε�T�j�1 ≅ mj�1�εj � z0jαj� � �εj�1 � z0j�1αj�1�; (45)

where ε�T�j�1 is the total ray aberration in the presence
of scattering and aberrations. εj is the ray aberration
in the absence of scattering whose Gaussian refer-
ence sphere is centered on the Gaussian image point
of the jth optical surface. If αj � 0 and αj�1 � 0, then
Eq. (45) becomes a third-order (scattering-free)
transverse ray aberration. If z0jαj ≫ εj (referred to
as case 1), the approximation may not be considered
to be valid because of higher-order contributions,
which is ignored by Eq. (42). On the other hand, if
z0jαj < εj or the order of the amount of z0jαj is similar
to the order of εj (referred to as case 2), it is natural to
conclude that the approximation would be consid-
ered to be valid. Thus, some ray intersection posi-
tions at the �j� 1�th image plane predicted by
Eq. (45) corresponding to case 1 would not be correct,
but some others corresponding to case 2 could be con-
sidered to be acceptable approximations. From ex-
perimental observations, well-polished optical
surfaces have exponentially decaying BSDFs rela-
tive to the specular ray direction [12,15,16,18,19].
Thus, rays deviated far from the specular ray (case
1) carry an extremely small amount of radiant power
compared to the power carried by a scattered ray
near the specular direction (case 2). And a ray whose
trajectory is predicted with a relatively large amount
of error carries very small amount of energy, and a
ray whose trajectory is predicted with a relatively
small amount of error carries very large amount of
energy. Thus, we consider the approximation ex-
pressed by Eq. (42) to be sufficiently valid for
performing engineering calculations for state-of-
the-art mirror surfaces.

4. Application of a Two-Mirror EUV Telescope

Equation (44) developed in the previous section (re-
ferred to hereafter as the convolution method) is
tested by comparing its prediction to the prediction
by commercial software. Specifically, the convolution
method is applied to the two-mirror telescope, which
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was considered in previous research [3]. Figure 5 il-
lustrates the Cassegrain-type two-mirror telescope
operating at EUV wavelengths. It has an effective fo-
cal length of 1750 mm, aperture diameter of 190 mm,
and an obscuration ratio of 0.48. A mosaic detector
array with 21 μm pixels is placed in the image plane.
This telescope is intended to provide full solar disc
images, over a field of view of �0.5°. The telescope
design is optimized to achieve similar geometrical
spot sizes throughout the field of view. Its defocus
and Seidel aberration coefficients (expressed in units
of the wavelength) at a wavelength of 9.4 nm are
shown in Table 1. In the previous work [3], aberra-
tions were ignored, and only on-axis image quality
was considered.

For the following analysis, it is assumed that the
two mirror surfaces have the same isotropic and
homogeneous statistical properties characterized
by the surface metrology data from a state-of-the-
art EUV telescope mirror. Four separate instruments
were used to measure the optical fabrication errors of
the mirror, and it is shown in Fig. 6. These measure-
ments are consistent with the fact that most optical
surfaces fabricated by conventional abrasive grind-
ing and polishing techniques on ordinary amorphous
glassy materials exhibit an inverse power-law sur-
face PSD. The measured metrology data has thus
been fit with a K-correlation function [3,12].

The BSDFof themirror surfaces has been obtained
from the fitted surface PSD function by using the
GHS surface scatter theory, which has been shown
to be valid for moderately rough surfaces and arbi-
trary incident and scattered angles [12]. The pre-
dicted BSDF profiles for three small incident
angles are shown in Fig. 7. In Fig. 7(a), three pre-
dicted BSDF profiles are shown in direction cosine
space, and the same profiles are shifted by the
amount of specular direction in direction cosine
space in Fig. 7(b). For small incident and scattering
angles in this case, the predicted BSDF can thus be
considered to be shift invariant.

At the wavelength of 9.4 nm, the total integrated
scattering (TIS) for a single surface is equal to 0.56.
Hence, for the two-mirror telescope, less than 19% of
the radiant energy in the PSF resides in the specular
beam; i.e., over 81% of the radiant energy is scattered
[3]. At this wavelength, surface scatter is thus a very
dominant image degradation mechanism.

The BSDF curves in Fig. 7(a) show exponentially
decaying BSDFs, and its behavior is very close to
shift invariant as shown in Fig. 7(b). These BSDF
curves satisfy our two assumptions discussed in
Subsection 3.C. To calculate the PSF using Eq. (44),
the geometrical PSF and the scattering PSF are
needed, and they can be separately obtained. The
geometrical PSF is given by Eq. (26), but it is hard
to calculate directly. Rather, the ray-tracing techni-
que [8] or other methods [20] could be considered
for practical reasons. And in this paper, a discrete
sampling approach described in Appendix A is used
to calculate the geometrical PSF. The scattering PSF
can be obtained from Eq. (37). Here the optical sys-
tem consists of two mirror surfaces, and the object is
located at an infinite distance from the optical sys-
tem, and the stop is located at the first surface;
the magnified conjugate distances are given by
d1 � f , d2 � f h2∕h1, where f is the focal length of
the entire system. Thus, the scattering PSF for the
two-mirror telescope is given by

PSFS�x� �
1

f 2�h2∕h1�2
BSDF2

�
x

f h2∕h1

�

⊗
1

f 2
BSDF1

�
x
f

�
: (46)

Because the BSDF may not be given by an analytic
form, the two-dimensional convolution is calculated
numerically {see [3] for details; note that symbol
BSDF in [3] denotes the function S in Eq. (29) in this
paper}.

The two-dimensional convolution of the geometri-
cal PSFand scatteringPSF is carried out numerically,

Fig. 5. Schematic layout of a Cassegrain-type two-mirror
telescope. The marginal ray heights at the primary and secondary
mirrors are designated by h1 and h2, respectively.

Table 1. Defocus and Seidel Aberration Coefficients of the Two-
Mirror Telescope (λ � 9.4 nm)

W020 W040 W131 W222 W220 W311

−30.35λ 0.42λ −7.60λ 48.34λ 38.58λ −5.48λ

10 6

10 4

10 2

10 0

10 -2

10 -4

10 -6

10-2 10-1 100 101 102 103 104 105

Fig. 6. (Color online) Composite surface PSD function deter-
mined from four different metrology instruments. A K-correlation
function has been fit to the experimental data to characterize the
surface.
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and the resultant irradiance distribution (or PSF) is
compared to the nonsequential ray-tracing results of
one billion rays provided by the commercial software
Zemax with a Monte Carlo technique [21–24]. In
Fig. 8(a), a logarithmically scaled irradiance distribu-
tion in the image plane with size 4 × 4 detector pixels
is predicted by the convolution method for a field an-
gle of 0.5°. As a reference, the irradiance distribution
predicted by Zemax is presented in Fig. 8(b). These
irradiance distributions (or PSFs) are virtually in-
distinguishable by visual observations. In Figs. 8(c)

and 8(d), the corresponding contourmaps of the PSFs
are shown. Again the two computational techniques
produce virtually identical results, although the con-
tour lines are somewhat smeared due to the Monte
Carlo technique used in the nonsequential tracing
of discrete rays. Note that the diameter of the Airy
disk for full aperture at 9.4 nm wavelength is about
0.21 μm and the full width of a pixel is 21 μm.

In Figs. 9(a) and 9(b), the contour maps of logarith-
mically scaled irradiance distributions in an image
plane with a size of 16 × 16 detector pixels for the

i

i

s

i

i

(a)   (b) 

Fig. 7. (Color online) Predicted BSDF profiles for three small angles of incidence (θi) and small angle of scattering for 9.4 nm wavelength
of light in (a) direction cosine space and (b) shifted direction cosine space.

Fig. 8. (Color online) PSF by scattering and aberrations for 0.5° field angle by (a) the convolution method and (b) Zemax; (c) contour map
of (a); (d) contour map of (b). Numbers in the axis denote axial distance from the Gaussian image point in millimeters.
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same 0.5° field angle are predicted by the convolution
method and by Zemax, respectively. This allows us to
observe the irradiance contour lines of the predicted
PSF at larger distances from the chief ray. The two
computational techniques continue to provide almost
indistinguishable results.

For estimating system performance, the fractional
encircled energy is often used. However, in the case of
an aberrated image, the PSF is no longer rotationally
symmetric, and since square detector pixels are used,
the energy contained in a square (referred to as en-
squared energy) is chosen for evaluating system per-
formance. The en-squared energy plots centered on
the chief ray position for 0° field angle and 0.5° field
angle are shown in Fig. 10, and the en-squared en-
ergy for the aberration-free case is also plotted
(dotted line) as a reference. Since the dynamic range
of the plot is over four decades and the number of
sampling points is restricted, five en-squared energy
plots for different sizes of the image plane are super-
imposed. Figure 10 shows excellent agreement
between the convolution result (solid line) and Ze-
max result (asterisks). Furthermore, the en-squared

energies for the two aberrated cases approach the
en-squared energy of the aberration-free case for
positions far from the Gaussian image position.

Roughly speaking, aberrations are caused by
macroscopic features (surface height deviations)
from the ideal reference surface, and scattering is
caused by microscopic features from the mean sur-
face. Macroscopic (low spatial frequency) roughness
contributes small angle ray deviations from the
specular direction, and microscopic (high spatial fre-
quency) roughness contributes large angle scattering
from the specular direction. Thus, the existence of
aberrations does not change the high-frequency scat-
tering behavior as shown above in Fig. 8.

5. Summary and Conclusions

It is commonly believed that image degradation by
surface scattering can be predicted only by nonse-
quential ray-tracing techniques, especially when
aberrations are present in the optical system. We
have developed a mathematical formulism showing
that scattered light, under certain conditions, can be
understood as an aberration and its effects on the sys-
temPSF can be easily evaluated by convolution of the
scattering PSFS with the geometrical PSFG. By com-
bining this knowledge with a generalization of Peter-
son’s analytic approach to calculating the irradiance
distribution in the focal plane of a multielement ima-
ging system,wehave demonstrated fast, accurate cal-
culations of image quality for systems suffering from
both surface scatter effects and conventional aberra-
tions. Andwe have numerically validated that simple
analytical approach to making image quality predic-
tions with the computation-intensive calculations
provided by the well-known Zemax code for an
EUV telescope where image degradation due to
surface scatter is substantial.

Appendix A

This Appendix is devoted to showing that the geome-
trical PSF given by Eq. (13), Eq. (21), or Eq. (26) is
consistent with previous researchers’ definition of
the geometrical PSF [10,20] or ray intersection
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Fig. 9. (Color online) Illustration of the contour map of the composite PSF due to both scattering and aberrations for a 0.5° field angle
as calculated by (a) the convolution method, (b) Zemax. Numbers in the axis denote axial distance from the Gaussian image point in
millimeters.

Fig. 10. En-squared energy for 0° and 0.5° field angle for the con-
volution method (solid line), Zemax (asterisks), and aberration-
free case (dotted line) centered on the Gaussian image point.
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density [25], or power density in image plane [8]. To
avoid any “order”-related issue, let us assume that
the relation between the transverse ray aberration
ε�ξ� and the wave aberration W�ξ� is given by

ε�ξ� � T�W�ξ��; (A1)

where the operator T is defined by −rj∇j or an opera-
tor that gives exact ray aberration from the wave
aberration. Figure 11(a) shows the pupil plane,
and Fig. 11(b) shows the corresponding image plane.
The shadowed infinitesimal region whose area is dSp
in Fig. 11(a) is mapped into the shadowed infinitesi-
mal square whose area is dSi centered on xc in
Fig. 11(b) by the operator T. Welford [25] states that
the irradiance value at a given point in the image
plane is proportional to the ratio of dSp to dSi,
and Mahajan [10] shows that the explicit relation is

E�xc� � Ep
dSp

dSi
; (A2)

where the ratio is obtained using the Jacobian deter-
minant. Note that Ep is not constant in Mahajan’s
expression, but here we restrict our attention to
the case of constant Ep. Meanwhile, Smith [8] uses
the ray-tracing technique to describe the geometrical
PSF. According to him, the geometrical PSF is ob-
tained by uniformly discretizing of the pupil plane,
obtaining the ray intersection position in the image
plane by tracing each ray passing the discrete point,
and counting the number of rays fallen on the given
small area in the image plane.

In order to show the equivalence of the two ap-
proaches, consider a small region whose area ΔSp
in the pupil plane is mapped into small square whose
area isΔSi (centered on xc) in the image plane by the
operator T. Smith’s statement can be expressed
mathematically in the following steps. First, repre-
sent the position of the discrete sampling point in
the pupil plane as ξm, where m represents the mth
sampling point out of the total N sampling points
in the pupil. Second, trace each ray and obtain the
ray intersection position in the image plane, which
is represented by T�W�ξm��. Third, introduce a func-
tion E that is a combination of delta functions

centered on the ray intersection positions in the
image plane:

E�x� � Ep
Sp

N

XN
m�1

δ�x − T�W�ξm���; (A3)

where Sp is the total area of the pupil and EpSp∕N is
the power that a ray is carrying. Last, take the aver-
age of the function E�x� over the small square ΔSi in
the image plane, which is expressed by

E�xc� �
1

ΔSi

Z
ΔSi

d2xE�x�

� Ep
Sp

N
1

ΔSi

Z
ΔSi

d2x
XN
m�1

δ�x − T�W�ξm���

� Ep
Sp

N
1

ΔSi

Z
d2x

XM
m�1

δ�x� � Ep
Sp

N
1

ΔSi
M

� Ep
1

ΔSi

�
Sp

M
N

�
; (A4)

where M is the number of sampling points inside the
ΔSp in the pupil plane. Equation (A4) could be a
mathematical illustration of Smith’s method. If we
take the limit ofN → ∞, the ratio ofM∕N approaches
dSp∕Sp, and if we take the limit of ΔSi → 0, the ratio
of the two small areas becomes ΔSp∕ΔSi � dSp∕dSi.
Thus, the value of E in those limits is given by

Lim
ΔSi→0

�Lim
N→∞

E� � Lim
ΔSi→0

�
Ep

ΔSp

ΔSi

�
� Ep

dSp

dSi
; (A5)

which is an identical expression to Eq. (A2) when
that number of sampling points in the pupil plane
is large. Note that the physical dimension of E�x�
in Eq. (A3) is the radiant power times the physical
dimension of the delta function.

In order to extend the mathematical illustration
for discrete ξm to that for continuous a variable ξ, de-
fine a rectangular parallelepiped function τ�x� by

τ�x� � Lim
ΔSi→0

1
ΔSi

; −Δx
2 < x < Δx

2 ;−Δx
2 < y < Δx

2 ;

� 0; elsewhere;
�A6�

whereΔSi � �Δx�2 and the physical dimension of the
rectangular parallelepiped function is the inverse of
area. Using the rectangular parallelepiped function,
let us redefine the function E�x�:

E�x� � Ep

Z
d2ξτ�x − T�W�ξ���: (A7)

Note that ξ is a continuous variable in the pupil
plane. For the case of x � xc, if the position given
by the mapping operator T�W�ξ�� is inside of the sha-
dowed square in Fig. 11(b), the integrand in Eq. (A7)

pdS

x

y

dxdy

dx
idS

cx

(a) (b) 

Fig. 11. Two infinitesimal areas in (a) pupil plane and (b) image
plane. The infinitesimal area in (a) is mapped into infinitesimal
square in (b).
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becomes a constant value of 1∕ΔSi. If T�W�ξ�� is out-
side of the square, the integrand becomes zero. Thus,
the Eq. (A7) is reduced to

E�xc� � Lim
ΔSi→0

Ep

Z
ΔSp

d2ξ
1

ΔSi
� Lim

ΔSi→0
Ep

ΔSp

ΔSi

� Ep
dSp

dSi
; (A8)

which is identical to Eq. (A4). The physical dimen-
sion of E�x� in Eq. (A6) is irradiance, and, by defini-
tion, it can be called the geometrical PSF. Note that
Eqs. (13), (21), and (26) have the same form as
Eq. (A6) except delta function is used instead of τ�x�.

Equation (A7) is not a good form for practical cal-
culations, thus the geometrical PSF in Section 4 is
calculated by following Smith’s statement.
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