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Accelerating finite energy Airy beams
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We investigate the acceleration dynamics of quasi-diffraction-free Airy beams in both one- and two-
dimensional configurations. We show that this class of finite energy waves can retain their intensity features
over several diffraction lengths. The possibility of other physical realizations involving spatiotemporal Airy
wave packets is also considered. © 2007 Optical Society of America
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Diffraction-free beams are by definition localized op-
tical wave packets that remain invariant during
propagation. Perhaps the best known example of
such a diffraction-free wave is the Bessel beam first
predicted theoretically and experimentally demon-
strated by Durnin et al. in 1987.1,2 Other such non-
diffracting wave configurations include, for example,
higher-order Bessel beams, Mathieu beams and their
higher-order counterparts, as well as waves based on
parabolic cylinder functions.3,4 In systems that ex-
hibit bidiffraction (normal diffraction in one direction
and anomalous in the other) such as photonic crys-
tals and lattices, nondiffracting X-waves and Bessel-
like beams are also possible.5–7 Strictly speaking,
these solutions convey infinite power, and for this
very reason they are “impervious” to diffraction. If,
on the other hand, these diffraction-free beams pass
through a finite aperture (are truncated), diffraction
eventually takes place.8 Yet, in such cases, the rate of
diffraction can be considerably slowed down depend-
ing on the degree of truncation, i.e, how large is the
limiting amplitude aperture with respect to the fea-
tures of the beam. In the case of finite Bessel beams,
such effects were first theoretically analyzed by Gori
et al.9

An important aspect associated with such
diffraction/dispersion-free wave packets is their di-
mensionality. In fact all the above-mentioned solu-
tions exist only in �2+1�D and �3+1�D configura-
tions. The problem becomes more involved in the
lowest dimension [e.g., in �1+1�D], which is known to
describe the diffraction of planar optical beams or
pulse propagation in dispersive optical fibers. Yet,
even in this case, dispersion-free Airy wave packets
are possible, as first predicted by Berry and Balazs
within the context of quantum mechanics.10 This in-
teresting class of Airy structures is unique in the
sense that these beams lack parity symmetry and
tend to accelerate during propagation. The accelera-
tion process associated with these beams was later
interpreted by Greenberger on the basis of the
equivalence principle.11 We emphasize that even in
this latter case the Airy wave packet is again associ-
ated with an infinite energy. In addition, by its very
nature, the Airy beam is “weakly confined,” since its
oscillating tail decays very slowly, i.e., Ai�−x�
��−1/2x−1/4sin��2/3�x3/2+ �� /4�� as x→ +�.12 There-

fore, for all practical purposes, it will be rather diffi-
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cult to synthesize such beams unless of course they
are amplitude truncated. Finite energy (exponen-
tially decaying) diffractionless Airy planar beams in
nonlinear unbiased photorefractive crystals have
been predicted as a result of thermal diffusion.13 Yet,
so far, to our knowledge the propagation behavior of
finite power Airy wave packets has never been inves-
tigated under linear conditions.

In this paper we investigate the acceleration dy-
namics of quasi-diffraction-free finite energy Airy
beams. We show that even in this case these Airy
waves can retain their intensity features over several
diffraction lengths and can still accelerate in the
transverse direction. The propagation evolution of
both one- and two-dimensional Airy beam configura-
tions is investigated in detail. The possibility of other
physical realizations involving spatiotemporal Airy
wave packets is also examined.

We begin our analysis by considering the �1+1�D
paraxial equation of diffraction that governs the
propagation dynamics of the electric field envelope �
associated with planar optical beams:
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In Eq. (1) s=x /x0 represents a dimensionless trans-
verse coordinate, x0 is an arbitrary transverse scale,
�=z /kx0

2 is a normalized propagation distance (with
respect to the Rayleigh range), and k=2�n /�0 is the
wavenumber of the optical wave. Incidentally, this
same equation is also known to govern pulse propa-
gation in dispersive media.6

Here we study the dynamics of finite power Airy
beams by considering their exponentially decaying
version,

��s,� = 0� = Ai�s�exp�as�, �2�

at the input of the system ��=0�. In Eq. (2) the decay
factor a�0 is a positive quantity to ensure contain-
ment of the infinite Airy tail and can thus enable the
physical realization of such beams. We note that the
positive branch of the Airy function decays very rap-
idly, and thus the convergence of the function in Eq.
(2) is guaranteed. Figure 1(a) depicts the field profile
of such a beam at z=0; Fig. 1(b), its corresponding in-
tensity. Of interest is the Fourier spectrum of this

beam, which in the normalized k-space is given by
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�0�k� = exp�− ak2�exp� i

3
�k3 − 3a2k − ia3�� . �3�

From Eq. (3) it becomes directly evident that the
wave-packet power spectrum is Gaussian. From
Parseval’s theorem, the total power of this finite en-
ergy Airy wave packet can be directly obtained and is
given by

�
−�

�

ds	��s,� = 0�	2 =
 1

8�a
exp�2a3

3 � . �4�

By directly solving Eq. (1) under the initial condi-
tions of Eq. (2), we find that this Airy-like beam will
evolve according to

���,s� = Ai�s − ��/2�2 + ia��exp�as − �a�2/2� − i��3/12�

+ i�a2�/2� + i�s�/2��. �5�

Note that in the limit a=0 our solution reduces to the
nondispersive wave packet found in Ref. 10. Figure
2(a) shows the propagation of such a planar Airy
beam up to a distance of 1.25 m when x0=100 �m
and the decay parameter is a=0.1. The corresponding
cross-sections of the intensity profiles at various dis-
tances are shown in Fig. 2(b). For these parameters,
the intensity FWHM of the first lobe of this beam is
171 �m. We note that for a Gaussian beam of this
same width its Rayleigh range would have been
13.25 cm at a wavelength of �0=0.5 �m. For this ex-
ample the intensity features of this beam remain es-
sentially invariant up to 75 cm, as clearly seen in Fig.
2. Evidently this wave endures because of the quasi-
diffraction-free character of the Airy wave packet. We
emphasize that for this same distance the front lobe
of the beam would have expanded by at least 6 times.
As Fig. 2(b) indicates, the beam starts to deteriorate
first from the tail as a result of truncation. The last
feature to disappear (around 100 cm) is the front
lobe. After a certain distance (in this case 120 cm) the
beam intensity becomes Gaussian-like, as expected
from its Gaussian power spectrum in the Fraunhofer
limit.

Even more importantly, in spite of its truncation
(necessary for its realization), the Airy wave packet
still exhibits its most exotic feature, i.e., its trend to
freely accelerate. This characteristic is rather pecu-
liar given the fact that it may occur in free space, e.g.,
in the absence of any index gradients from prisms,

2

Fig. 1. (Color online) (a) Normalized field profile and (b)
normalized intensity profile of a finite energy Airy beam
when a=0.1.
etc. This behavior is reflected in the term s− �� /2�
that appears in the argument of the Airy function in
Eq. (5). These acceleration dynamics can be clearly
seen in Fig. 2(a), where the beam’s parabolic trajec-
tory becomes evident. For the example discussed
here, the beam will shift by 880 �m at z=75.4 cm.

These results can be readily generalized in two di-
mensions, i.e., when the initial field envelope is given
by ��x ,y ,z=0�=Ai�x /x0�Ai�y /y0�exp��x /w1�+ �y /w2��.
The intensity profile of such a 2D beam at z=0 and
z=50 cm is shown in Figs. 3(a) and 3(b), respectively,
when x0=y0=100 �m and w1=w2=1 mm. In this case,
the 2D Airy beam remains almost invariant up to a
distance of z=50 cm, and it accelerates in the same
manner along the 45° axis in the x–y system.

In addition, Airy beams in combination with other
nondiffracting field configurations can also be used to
describe multidimensional �3+1D� finite energy wave
packets in the presence of diffraction and dispersion.

Fig. 2. (Color online) (a) Propagation dynamics of a finite
energy Airy beam as a function of distance. (b) Cross-
sections of the normalized beam intensity at (i) z=0 cm, (ii)
31.4 cm, (iii) 62.8 cm, (iv) 94.3 cm, and (v) 125.7 cm.

Fig. 3. (Color online) Two-dimensional finite energy Airy
beam (a) at the input z=0 cm and (b) after propagating z

=50 cm.
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In such a case, the beam envelope in the spatiotem-
poral domain obeys6
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where in Eq. (6), without any loss of generality, an
anomalously dispersive system was assumed. For ex-
ample, a localized Airy finite energy spatiotemporal
wave packet can be obtained using Bessel–Gauss
beams,9 i.e., at the input 	=Ai�T�exp
�aT�J0�r�exp�−r2 /w0

2�, where r= �X2+Y2�1/2 and w0 is
the “aperture” spot size of the beam. Under these ini-
tial conditions, using separation of variables we
find that this wave evolves according to 	
=��Z ,T�U�Z ,X ,Y�, where ��Z ,T� is given by Eq. (5)
and U�Z ,X ,Y� is given by the solution of Gori et al.9

Figure 4 depicts an isosurface plot of such an Airy–

Fig. 4. (Color online) Isosurface intensity contour plot for
a spatiotemporal Airy–Gauss–Bessel wave packet (with a
=0.15, w0=9) (a) at the input Z=0 and (b) after a normal-
rection of acceleration.
Bessel–Gauss wave packet at the input Z=0 [Fig.
4(a)] and after propagation at Z=3 [Fig. 4(b)]. Even
in this case the wave accelerates forward and re-
mains essentially invariant.

Accelerating Airy wave packets can also be imple-
mented in dispersive optical fibers. Equation (3) sug-
gests that in the temporal domain such an exponen-
tially decaying Airy pulse can be produced by passing
a transform-limited Gaussian pulse through a sys-
tem with appreciable cubic dispersion.14 A system of
this sort can be implemented using another fiber at
the zero dispersion point or by employing pulse shap-
ing techniques.15 Acceleration pulse dynamics can
then be observed in a fiber with either normal or
anomalous group velocity dispersion.

In conclusion, we have shown that freely accelerat-
ing finite energy Airy beams are possible in both one-
and two-dimensional configurations. The possibility
of observing this same process in the spatiotemporal
domain was also considered.
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