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Implementing one-photon three-qubit quantum gates using spatial light modulators
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Increasing the information-carrying capacity of a single photon may be achieved by utilizing multiple degrees
of freedom. We describe here an approach that utilizes two degrees of freedom to encode three qubits per
photon: one in polarization and two in the spatial-parity symmetry of the transverse field. In this conception,
a polarization-sensitive spatial light modulator corresponds to a three-qubit controlled-unitary gate with one
control qubit (polarization) and two target (spatial-parity-symmetry) qubits. We describe the construction of
controlled-NOT (CNOT), n

√
CNOT, controlled-PHASE, and Fredkin gates, and the preparation of one-photon, three-

qubit Greenberger-Horne-Zeilinger (GHZ) and W states. This approach enables simple optical implementations
of few-qubit tasks in quantum information processing.
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Introduction. The most utilized realization of a photonic
qubit is polarization. Increasing the information-carrying
capacity of a photon requires making use of other degrees
of freedom, such as orbital angular momentum (OAM) [1],
discrete paths [2], spatial positions [3], time bins [4], frequency
combs [5], or combinations thereof [6]. We have recently
demonstrated [7–9] an alternative realization of a photonic
qubit that relies on a global spatial symmetry: the parity
symmetry of the transverse photon field. One qubit may be
encoded per transverse field dimension [10], thus allowing two
logical qubits to be encoded in a one-photon (1P) field without
spatial or modal filtering. Simple optical devices implement
one- and two-qubit operations on the parity-symmetry Hilbert
space. Moreover, entangled parity-symmetry qubits may be
encoded in photon pairs produced by spontaneous parametric
downconversion [11], leading to the first violation of Bell’s
inequality using an Einstein-Podolsky-Rosen state [7,8].

In this Rapid Communication we investigate the utilization
of polarization in conjunction with two-dimensional (2D) par-
ity symmetry in 1P fields. In this conception, 1P states encode
three logical qubits: two in the x- and y-parity symmetry and
the third in polarization. We show that a polarization-sensitive
spatial light modulator (PS-SLM) corresponds to a three-qubit
controlled-unitary gate that couples spatial parity and polariza-
tion. While the usefulness of spatial light modulators (SLMs)
in quantum optics is now appreciated for spatially modulating
a photon wave front, typically in order to manipulate the orbital
angular momentum content [12], the coupling between spatial
and polarization degrees of freedom engendered by PS-SLMs
has not heretofore been recognized. A PS-SLM corresponds
in one configuration to a three-qubit controlled-NOT (CNOT)
gate between polarization (control qubit) and spatial parity
(two target qubits), and may also be configured to implement
n
√

CNOT gates. Using this device, a wide range of 1P three-qubit
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states may be prepared. Furthermore, the role of polarization
and parity may be reversed. Our approach potentially enables
simple implementations of quantum information processing
protocols, and may also be extended to entangled multiphoton
states.

One-qubit parity-symmetry operators. Consider a 1P state
|�〉 = ∫

dxψ(x)|1x〉 with ψ(x) = αue(x) + βuo(x), where
ue(x) and uo(x) = h(x)ue(x) are even and odd functions,
respectively, and h(x) = sgn(x) is the unit sign function. We
map this class of states to the qubit |�〉 = α|e〉 + β|o〉 by
associating the basis {|e〉,|o〉} with the orthonormal functions
{ue(x),uo(x)} [7]. Simple optical transformations implement
one-qubit logical operators. (1) Introducing a phase π between
the two halves of the plane along x using a SLM corresponds
to the Pauli operator X̂x . (2) Introducing a phase θ between
the two halves of the plane corresponds to a parity rotation
R̂x(θ ) = exp {i θ

2 X̂x} [Fig. 1(a)]. (3) A spatial reflection along
x implemented with a dove prism, for example, corresponds to
the Pauli operator Ẑx [Fig. 1(b)]. (4) Projections P̂ e

x = 1
2 {Î +

Ẑx} = |e〉〈e| and P̂ o
x = 1

2 {Î − Ẑx} = |o〉〈o| are implemented
using a balanced Mach-Zehnder interferometer (MZI) with
Ẑx in one arm [Fig. 1(c)]. Similar devices, after appropriate
rotations that exchange x for y, implement the corresponding
operators on y-parity symmetry: X̂y , R̂y(θ ), Ẑy , P̂ e

y , and P̂ o
y

[Figs. 1(d)–1(f)]. See Refs. [7,9,10] for details.
Two-qubit parity-symmetry operators. Two qubits are en-

coded per photon in the x and y transverse spatial dimen-
sions. The 1P state |�〉 = ∫∫

dxdyψ(x,y)|1x,y〉 with a state
function of the form ψ(x,y) = ∑

i,j αijui(x)uj (y), i,j = e,o,
is mapped to the two-qubit state |�〉 = αee|ee〉 + αeo|eo〉 +
αoe|oe〉 + αoo|oo〉. It is understood that |ee〉 = |e〉x ⊗ |e〉y , etc.
By sculpting the spatial distribution of ψ(x,y) an arbitrary 1P
two-qubit state is prepared [10]. One- and two-qubit rotations
are implemented in this 4D Hilbert space by modulating the
phase of the four quadrants of the field in the x-y plane using
a SLM [Figs. 1(g)–1(k)]. A phase modulation θ

2 h(x) corre-
sponds to the one-qubit operator R̂x(θ ) ⊗ Îy which rotates
the x-parity qubit [Fig. 1(g)]. The corresponding operator on
y-parity symmetry, Îx ⊗ R̂y(θ ), is implemented by the phase
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FIG. 1. (Color online) (a)–(c) x-parity-symmetry operators.
(a) A SLM imparting a phase distribution θ

2 h(x) corresponds to
a parity-symmetry qubit rotation by an angle θ ; (b) a dove prism
that flips the field distribution along x corresponds to the Pauli
Ẑx operator; and (c) a balanced MZI with Ẑx placed in one arm
corresponds to a projection operator in the even-odd basis. (d)–(f) The
y-parity-symmetry operators corresponding to (a)–(c). (g)–(k) Phase
distributions in the x-y plane imparted by a SLM (black-bordered
squares) to the transverse optical field in order to implement (g),
(h) one-qubit and (i)–(k) two-qubit parity-symmetry rotation oper-
ators, and the corresponding quantum-circuit representations. Black
lines correspond to 1D parity-symmetry qubits, and black boxes to
rotation operators.

modulation θ
2 h(y) [Fig. 1(h)]. These one-qubit operators may

be combined by adding the corresponding phase distributions
on one SLM. For example, R̂x(θ ) ⊗ R̂y(θ ), which rotates
each parity qubit an angle θ , is implemented using the phase
modulation θ

2 {h(x) + h(y)} [Fig. 1(i)]. One may rotate each
parity qubit a different angle, R̂x(θ1) ⊗ R̂y(θ2), using the phase
modulation θ1

2 h(x) + θ2
2 h(y) [Fig. 1(j)]. A rotation in the joint

two-qubit space, R̂xy(θ ) = exp{i θ
2 X̂x ⊗ X̂y}, is implemented

using the phase distribution θ
2 h(x)h(y) [Fig. 1(k)] and results in

entangling the two qubits: R̂xy(θ )|ee〉 = c|ee〉 + is|oo〉, where
c = cos θ

2 and s = sin θ
2 . These operators commute and their

products may thus be implemented using a single SLM by
adding the corresponding phase distributions.

Finally, note that a spatial rotation by 90◦ in the x-y plane,
thereby exchanging the x and y axes, corresponds to a two-
qubit SWAP gate. Such a spatial rotation may be implemented
using mirrors or an appropriate prism.

Three-qubit parity-polarization operators. Taking polariza-
tion now into consideration, three logical qubits are encoded
in a 1P state: two in the spatial parity (x and y) and one
in polarization. The 1P state space is now 8D and is the
direct product of the 2D polarization space and the 4D-parity-

FIG. 2. (Color online) Phase distributions on a PS-SLM (with
dashed bottom and top borders) to produce controlled one-
and two-qubit rotation operators. (a) Controlled-R̂x(θ ) or Ĉx(θ ),
(b) Ĉy(θ ), (c) Ĉx(θ ) · Ĉy(θ ), (d) Ĉx(θ1) · Ĉy(θ2), and (e) Ĉxy(θ ). In
the corresponding quantum-circuit representations, the red (black)
line corresponds to the polarization control (parity-symmetry target)
qubit.

symmetry space with basis {|H 〉,|V 〉} ⊗ {|ee〉,|eo〉,|oe〉,|oo〉}.
Besides increasing the information-carrying capacity of the
photon, including polarization enables polarization-sensitive
devices, such as a PS-SLM, to play the role of controlled-
unitary gates. In particular, consider the phase distributions
in Figs. 1(g)–1(k) when implemented by a PS-SLM that
modulates one polarization component (say, |H 〉, while |V 〉
is unaffected); see Fig. 2. Imparting this phase modulation
to the 2D wave front implements a three-qubit polarization-
controlled-unitary gate on the parity qubits. Such a PS-SLM
has in general the 8 × 8 matrix representation Ĉ = ( R̂ 0̂4

0̂4 Î4
),

where R̂ is a 4 × 4 2D-parity-symmetry unitary rotation (for
|H 〉 alone), and Î4 and 0̂4 are the 4D identity and zero
operators, respectively. Polarization is the control qubit and
the x- and y-parity symmetry are two target qubits. If the
phase modulation on the PS-SLM is along x alone [Fig. 2(a)],
then the resulting transformation is a controlled-unitary gate
Ĉx(θ ) on the x-parity qubit, similarly for a phase modulation
on the PS-SLM along y alone, Ĉy(θ ) [Fig. 2(b)]. Two
independent one-qubit controlled-unitary rotations may be
combined on the same PS-SLM: Ĉx(θ ) · Ĉy(θ ) [Fig. 2(c)] and
Ĉx(θ1) · Ĉy(θ2) [Fig. 2(d)]. Finally, the phase modulation in
Fig. 2(e) corresponds to a polarization-controllable two-qubit
rotation by an angle θ , Ĉxy(θ ). Moreover, such a gate may be
dynamically reconfigured in real time by changing the encoded
phase.

CNOT, CPHASE, and Fredkin gates. Several important quantum
gates may be realized by setting specific values of rotation
angles in these general controlled-unitary gates. For example, a
CNOT gate corresponds to the special case of θ = π . Therefore,
a CNOTx gate that operates on the x-parity-symmetry qubit is
implemented using a PS-SLM imparting the phase modulation
in Fig. 3(a). Similarly, a CNOTy gate is implemented as shown
in Fig. 3(b). CNOTx and CNOTy gates may be implemented
simultaneously using a single PS-SLM [Fig. 3(c)]. It is impor-
tant to stress the simplicity of constructing such gates which
require only encoding the appropriate phase distributions on
the PS-SLM.

Other quantum gates may be similarly implemented. For
example,

√
CNOTx ,

√
CNOTy ,

√
CNOTx · √

CNOTy [Fig. 3(d)]
correspond to setting θ = π

2 in the phase distributions in
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FIG. 3. (Color online) Three-qubit quantum gates. (a) CNOTx ,
(b) CNOTy , (c) the cascade CNOTx · CNOTy , and (d)

√
CNOTx · √

CNOTy

gates, each implemented using a PS-SLM with the shown phase
distribution. (e)–(g) Controlled-PHASE (CP) gates. PBS: polarizing
beam splitter. The upper and lower paths in the MZI correspond
to |H 〉 and |V 〉 polarization components, respectively. Z refers to
the appropriate Pauli-Z operator acting on x or y parity. (h) A
controlled-SWAP gate, or a quantum Fredkin gate.

Figs. 2(a)–2(c), respectively. A n
√

CNOT gate is implemented
by setting θ = π

n
.

One- and two-qubit controlled-PHASE (CP) gates may also
be constructed on the joint polarization and parity-symmetry
space, as shown in Figs. 3(e)–3(g). Finally, in Fig. 3(h) we
show an implementation of a Fredkin gate, a controlled-SWAP

gate, using a balanced MZI that employs two polarizing beam
splitters and a SWAP gate (a 90◦ spatial rotation) placed in one
arm.

Generating one-photon three-qubit entangled states.
Within this framework, a wide variety of three-qubit states
may be prepared using simple optical arrangements (Fig. 4).
We start from a separable state |�1〉 = |Hee〉 [Fig. 4(a)].
As a first example, we entangle the two parity qubits while
keeping the polarization qubit independent, thus producing
the state 1√

2
|H 〉{|ee〉 + i|oo〉} [Fig. 4(b)] using an SLM

imparting the phase distribution in Fig. 1(k) with θ = π
2 ,

corresponding to R̂xy(π
2 ). Alternatively, one may entangle x

parity (y parity) with polarization (Fig. 4(c) [Fig. 4(d)]), by
rotating the polarization qubit with a half-wave plate (HWP),
|H 〉 → 1√

2
{|H 〉 + |V 〉}, followed by a CNOTx (CNOTy) gate.

These examples correspond to states featuring two-qubit
entanglement and a separable third qubit. It is well known that
there are two families of genuine three-qubit entanglement:
Greenberger-Horne-Zeilinger (GHZ) and W states [13]. 1P
three-qubit GHZ and W states are readily prepared from
|Hee〉, as shown in Figs. 4(e) and 4(f), respectively. The
GHZ state 1√

2
{−|Hoo〉 + |Vee〉} is prepared by rotating the

FIG. 4. (Color online) Preparing one-photon three-qubit entangled states. HWP: half-wave plate rotating |H 〉 by φ: R̂p(φ)|H 〉 = cos φ|H 〉 +
sin φ|V 〉; SLM: spatial light modulator (square with black boundary); PS-SLM: polarization-sensitive SLM (square with dashed bottom and
top black boundary). The top row shows schematics of the optical arrangements to prepare the desired states starting from |�1〉 = |Hee〉. The
second row depicts the corresponding quantum circuit; the red line represents the polarization qubit and the black lines represent the x- and
y-parity-symmetry qubits. The third row lists the prepared quantum state and the last row shows a pictorial representation of the state. Each
qubit is represented by a circle (red for polarization, black for parity) and the blue lines represent entanglement between the connected qubits.
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FIG. 5. (Color online) (a) Schematic of an optical arrangement to
implement a CNOT gate with a control x-parity-symmetry qubit and a
target polarization qubit and (b) the equivalent quantum circuit. (c),
(d) Corresponding implementation and circuit for y-parity-symmetry
control qubit.

polarization π
4 followed by a CNOTx · CNOTy gate. The W

state 1√
3
{i|Heo〉 − |Hoe〉 + |Vee〉} is prepared by rotating the

polarization by θW = tan−1 1√
2

followed by a CNOTy gate

then Ĉxy(π
2 ). Since CNOTy and Ĉxy(π

2 ) commute, they are
implemented using a single PS-SLM [Fig. 4(f)]. The 1P three-
qubit GHZ and W states cannot be converted into each other
by unitary operators that affect polarization or parity alone.

Reversing the role of parity symmetry and polarization.
A PS-SLM implements a controlled-unitary gate with the
polarization qubit representing the control and the parity-
symmetry qubits the target. The role of polarization and
parity-symmetry qubits may be reversed, and a CNOT gate may
be constructed with the x-parity-symmetry qubit the control
and polarization the target. An example of one such implemen-
tation is shown in Fig. 5(a). The HWP rotates the {|H 〉,|V 〉}
basis to { 1√

2
(|H 〉 ± |V 〉)}. It is straightforward to confirm that

the setup in Fig. 5(a) implements the transformation |He〉 →
|Ve〉,|Ho〉 → |Ho〉,|Ve〉 → |He〉,|Vo〉 → |Vo〉. In other words,
|p,x〉 → |p ⊕ x,x〉, which is a CNOT gate with x-parity
symmetry the control and polarization the target. A similar
arrangement may be implemented, |p,y〉 → |p ⊕ y,y〉, by
rotating the SLMs by 90◦ and exchanging Ẑx for Ẑy [Fig. 5(c)].
The construction of further gates is facilitated using such a

gate. For example, a two-qubit SWAP gate between x parity
and polarization may be constructed by adding two CNOTx

gates [polarization control, x-parity target, Fig. 2(a)] to the
gate in Fig. 5(a), one preceding it and one following it.

Implementation. Spatial-parity symmetry is a propagation
invariant as a result of the even parity of the free-space-
propagation operator. This relaxes constraints on placement
of components in the optical arrangement. For example,
the optical paths in the experiments reported in Refs. [8,9]
extended for ∼2 m with optical components manipulating the
parity symmetry along this length.

Two limitations to the performance of these gates arise
from the SLM’s: the effects of the “edges” between domains
of constant phase and the precision of phase selection. We
estimate the reduction in gate fidelity using current SLMs to be
∼1%–2%, which may be reduced via technical improvements.
The main limitation in parity-symmetry experiments is the
stability of the modified MZIs [Figs. 1(c)–1(f)] used for state
projection. In Ref. [8] we achieve 91% visibility limited chiefly
by alignment.

While optical realizations of CNOT gates have been realized
[14], reports of implementations of fractional gates, such as√

CNOT, are lacking. Furthermore, since we use the full optical
field with no spatial discretization, cascading multiple gates
is straightforward. Moreover, by applying our approach to
photon pairs produced by SPDC, two-photon six-qubit states
may be prepared and sophisticated forms of hyperentangle-
ment [15] may be explored. Finally, our approach may be
applied to other spatial degrees of freedom, such as OAM [1].
In that case, a PS-SLM implements a controlled-unitary gate
with polarization the control and OAM the target.

In conclusion, we have described an approach to encoding
three qubits in one-photon states. Two qubits are encoded in
the global spatial-parity symmetry of the 1P transverse field
distribution and the third in its polarization. Simple optical
components implement three-qubit controlled-unitary gates
with either polarization or parity symmetry playing the role
of control. Multiple gates may be readily cascaded, thereby
paving the way to convenient implementations of few-qubit
quantum information processing algorithms.
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