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We report the first experimental implementation of Glauber–Fock oscillator lattices. Bloch-like revivals are
observed in these optical structures in spite of the fact that the photonic array is effectively semi-infinite and
the waveguide coupling is not uniform. This behavior is entirely analogous to the dynamics exhibited by a driven
quantum harmonic oscillator. Our observations are in excellent agreement to the analytical results obtained in this
fully integrable lattice system. © 2012 Optical Society of America
OCIS codes: 270.0270, 350.5500, 130.2790.

Lattice systems play a ubiquitous role in diverse areas of
physics and science in general. In solid state and atomic
physics, crystalline structures govern the transport dy-
namics of charged carriers by establishing a sequence
of allowed energy bands and forbidden bandgaps [1,2].
On the other hand, in the optical domain, such discrete
arrangements can be readily realized in arrays of evanes-
cently coupled waveguides [3]. As indicated in several
studies [4–7], this family of optical structures can serve
as an ideal environment where one can directly generate
and observe a wide range of physical processes [4]. In
this regard, in previous works we have suggested and
successfully observed classical analogues of displaced
Fock (number) states in fully integrable Glauber–Fock
photonic lattices [8,9]. The classical realization of these
displaced oscillator eigenstates was performed by estab-
lishing a correspondence between the number state jni
and classical light launched into the nth waveguide of the
array and the coupling coefficients obeying a square root
law distribution between nearest neighbors. If in addition
a transverse optical potential is linearly ramped along the
waveguides, the resulting Glauber–Fock oscillator lat-
tices [10] are among a handful of integrable lattice mod-
els that can lead to Bloch-like oscillations and dynamic
delocalization [11–14]. What makes this even more im-
pressive is the fact that these revivals are possible in a
semi-infinite arrangement. Figure 1 depicts a schematic
view of a Glauber–Fock oscillator array and its corre-
sponding refractive index profile. Yet as of now, no ex-
perimental demonstration of such effects has been
reported in the literature. In this Letter, we report the
first experimental realization of a discrete Glauber–Fock
oscillator by employing evanescently coupled waveguide
arrays. It is shown that the evolution of classical light in
this type of quantum inspired lattices can give rise to in-
tensity profiles that emulate the probability number dis-
tributions expected from a quantum harmonic oscillator
when driven by a constant external force. Both periodic
collapses and revivals are observed in the intensity evo-
lution, at intervals that are entirely independent of the
excitation site. The light dynamics in this novel class
of arrays is described in closed form, from where one

can deduce the associated turning points. In general,
the propagation of the modal optical fields fEng∞n�0 in
a semi-infinite Glauber–Fock oscillator lattice is gov-
erned by the following set of coupled equations:
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where C denotes the coupling between the first two
guides, f �Z� is an arbitrary function of the propagation
distance, the integer n ≥ 1, and α is the ramping constant,
which can be either positive or negative. Here we assume

Fig. 1. (Color online) Glauber–Fock oscillator lattice and the
associated effective refractive index profile.
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that the small index ramping does not affect the coupling
coefficients. In Eq. (1) the last term represents the linear
gradient of the refractive index, which in a quantum
oscillator system corresponds to a constant external driv-
ing force. As found in [10], Eq. (1) can be solved analy-
tically for any arbitrary function f �Z�. Here, in this
experimental study we restrict our attention to the spe-
cial case f �Z� � 1. In addition, each waveguide in the
array is supposed to be single-moded. In our optical sys-
tem, the oscillator eigenstate jki corresponds to the clas-
sical excitation of the kth guide, whereas the transition
probability amplitude between the states jki and jni is
represented by the field amplitude at the nth waveguide.
In this case, one can directly show that the impulse re-
sponse of this system is given by:
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In deriving Eq. (2), we have assumed that only the kth
waveguide was excited with unity amplitude, corre-
sponding to a preparation of the oscillator in a single
eigenstate [10]. Under such single site excitation condi-
tions, the associated intensity distribution exhibits revi-
vals at regular intervals Ẑ, that are given by Ẑ � 2πm ∕ α,
where m is an integer. In Fig. 2 we demonstrate this pro-
cess for a Glauber–Fock oscillator lattice having a ramp-
ing constant α � 0.5 and C � 1, when the third channel is
excited (n � 2). In this case the revival distance is
Ẑ � 4π. Given that the n � 2 channel is excited, the in-
tensity evolution features three maxima (like a displaced
Fock state [9]) midway in the cycle, while the intensity
pattern collapses back into the initially excited wave-
guide at Ẑ � 4π [10]. On the other hand, it can be shown

that the response of this system is different for a positive
or negative ramping (�α) if the array is excited with
a wavepacket. This is clearly shown in Figs. 3(a) and 3(b)
using a discrete Gaussian beam at the input when
α � �0.5, respectively. In order to experimentally de-
monstrate these effects, we have fabricated such
Glauber–Fock oscillator lattices in polished bulk fused
silica glass by using femtosecond laser writing technol-
ogy [15]. The required Glauber–Fock coupling distribu-
tion, Cn � C

����
n

p
, (Cn denoting the coupling between

adjacent guides n and n − 1), was accomplished by judi-
ciously varying the waveguide separation dn. In the weak
coupling regime the coupling coefficients vary exponen-
tially with the separation distance [16], that is Cn �
C exp�−�dn − d1� ∕ s� where s is a characteristic distance.
In that case dn � d1 − �s ∕ 2� ln�n� imposes the desired dis-
tribution. In our system, at a wavelength of λ � 808 nm,
the array parameters were chosen to be C � 0.24 cm−1,
s � 8.4 μm, d1 � 33.7 μm. The transverse size of the lat-
tices (N � 27 elements) was chosen such that the light
never reaches the far end at n � N − 1. Hence, the lattice
effectively acts as a semi-infinite system. The gradient for
the refractive index was achieved by varying the wave-
guide writing velocity [15]. Here, we chose a velocity
of 80 mm ∕ min for the central waveguide (n � 13) and
imposed linear gradients Δv≡ vn − vn−1 � 0, 0.5, 1 and
2 mm ∕ min on the individual lattices. Thereby, the case
Δv � 0 yields a regular Glauber–Fock lattice, whereas
lattices with increasing Δv > 0 feature an approximately
linear, increasingly negative index gradient α. The output
intensity patterns after propagating over the total length
of L � 10 cm were imaged onto a CCD.

In Fig. 4 we present our experimental observations of
the output intensities for the various lattices and the
input sites k � 0 to 4. The lengths of the revival periods
Ẑ are fitted to the experimental data from a comparison
with the analytic behavior expected from Eq. (2).
Figures 4(a) and 4(b) depict the output intensities for a
conventional Glauber–Fock lattice (Δv � 0), which exhi-
bit k� 1 maxima for an excitation of the kth site, as
expected for the eigenstates of the displaced harmonic
oscillator [8,9]. The other panels show the output distri-
butions of the lattices with an increasing velocity
gradient. We find revival periods of Ẑ � 5L [Figs. 4(c)
and 4(d)], Ẑ � 3.3L [Figs. 4(e) and 4(f)] and Ẑ � 2L
[Figs. 4(g) and 4(h)] in the investigated arrays. Hence,
oscillations up to half a Bloch-period are observed in
these lattices. The good agreement between the experi-
mental data and the calculations suggests that the refrac-
tive index gradient is indeed approximately linear. The
observed oscillations are a direct outcome of coherent

Fig. 2. (Color online) (a) Intensity evolution in a Glauber–
Fock oscillator when the third (n � 2) waveguide is initially
excited. The beam develops three peaks and eventually revives
at Ẑ � 4π.

Fig. 3. (Color online) Evolution of a discrete Gaussian beam in
a Glauber–Fock oscillator lattice when the ramping parameter
is (a) positive (α � 0.5) and (b) negative (α � −0.5).
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interference caused by the photonic tunneling among
waveguides and the boundary itself. What is remarkable
here is that these Bloch-like oscillations are always pos-
sible and this without any light escaping into the array as
is the case of a Glauber–Fock lattices [9]. In conclusion,
we have directly observed Bloch-like oscillations in one-
dimensional semi-infinite Glauber–Fock oscillator lat-
tices. These fully integrable discrete dynamic systems
are shown to display optical revivals akin to those taking
place in driven quantum harmonic oscillators. What is
also surprising here is that this periodic behavior is pos-
sible in spite of the fact that the array is asymmetric and
semi-infinite. A generalization of the system to binary and
nonlinear lattices promises the optical emulation of the
Jaynes–Cummings model, and thereby should provide

new insights into the dynamics of coupled atom-cavity
systems [17,18]. Finally, observing the periodic evolution
of quantum states in such waveguide lattices could be a
topic of interest in quantum optics.
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Fig. 4. (Color online) Experimentally observed and theoreti-
cally anticipated intensity patterns emerging at the output
of a Glauber–Fock oscillator. (a), (b) Without index gradient
(Δv � 0, Ẑ → ∞); (c)–(f) increasing index gradient (Δv > 0,
Ẑ < ∞). The sites k � 0 to 4 have been excited, as indicated
by the dashed circles. Each image has been rescaled to its
respective maximum.
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