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Large nonlinear phase shifts in second-order
nonlinear-optical processes
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We show that processes such as second-harmonic generation and subsequent downconversion, and parametric
mixing in general, can lead to large field-dependent phase shifts for the input beams under a variety of conditions.

There are many potential applications for materials
in which a single (or multiple) incident beam expe-
riences a field-dependent phase shift or local change
in refractive index. Typically this has been achieved
with an intensity-dependent refractive-index coef-
ficient n2 (n = no + n21) originating from different
processes such as electronic X(3) susceptibilities.
Currently the best materials appear to be organics
such as conjugated polymers, which exhibit non-
resonant nonlinearities out of the ground state of
10-12 cm2/W in low-loss spectral regions and even
larger nonlinearities when virtual transitions out of
optically pumped excited states are used.1'2 In this
Letter we show that a widely used phenomenon,
second-harmonic generation (SHG), can in certain
limits produce large (>IT) nonlinear phase shifts.

SHG was one of the first nonlinear processes
investigated and has been discussed extensively in
the literature. The emphasis has been on efficient
SHG, which requires wave-vector matching of the
fundamental to the second harmonic. It is also
known, but not widely appreciated, that general for-
mulations of nonlinear optics contain processes that
involve the product of second-order nonlinearities
and lead to effective third-order nonlinearities.4 5

To our knowledge the first application of this
phenomenon was to produce phase and amplitude
distortion in intense pulses in GaAs by means of a
combination of the dc field generated by x(2)(0; Ac, -0v)
and the electro-optic effect through x(2)(-cv; cv, 0).
The existence of an effective n2 was demonstrated
experimentally in CDA and KTP crystals.7'8 In
the KTP case, the d(2) was only a few picometers
per volt; and the effective n2 was of the order of
10-14 cm2 /W for a 1-mm length. However, based
on the recent development of new ways to use
large existing nonlinearities through waveguides and
new organic materials with large nonlinearities, we
have found that the cascading approach now holds
considerable promise for use with phenomena that
require a nonlinear phase shift.' Initial discussions
of the theory leading to an effective n2 were given
in Refs. 7 and 8. Here we discuss more-general
features, including the question of whether an n2
description of this phenomenon is appropriate.

Starting from the wave equation driven by polar-
ization sources including X(1) and x(2), and using the

slowly varying phase and amplitude approximation,
one obtains the usual coupled-mode equations that
describe SHG,7 58 namely,

d a2 .,(Z) = -iK(- 2 &v; Ai, c))a ,2(z)exp(iA,6z)-ac(2Cv)a2 )(z) ,
d a,,,(z) = -iK(-C); 2 co, - &)a2 a(z)aw,*(z)

x exp(-iA,3z) - a(co)aa,(z),

K(- 2cw; w, w) =

(1)

(2)

CvdZjk(-2c; cvt ov)ei(2 w)ej(ov)ek(W)
[2ni(2w )nj(co)n (cv)c

3 eo]1
/2

(3)

and a similar expression for K(-C;
2 w, -co). Here

the wave-vector mismatch is A,8 = 2kvac(c)[n(2&v) -
n(ov)], the complex field amplitudes a(z) are normal-
ized so that la(z)12 is the intensity, the ei's are the field
unit vectors, and a is the frequency-dependent linear
loss. For frequency-independent loss, far from any
material resonances, and in the absence of coupling
to other fields, these equations can be solved ana-
lytically in terms of Jacobi elliptic functions.10 We
numerically solved coupled-mode Eqs. (1) and (2).

We first examine approximate solutions in the limit
of small fundamental depletion, i.e., la<, (z)1 I a<,,(0)
and a(cv) = O.7,8 Integrating Eq. (1), substituting
into Eq. (2), and noting that the imaginary part of
the right-hand side of Eq. (2) can be approximately
written as -in2(z)kvacjaw,(0)12a. (z), we get

n2(z) - Im[ K(-2 w; cv, c)K(-w; 2c, -co)

1 - cos,(qlz) + i sin,(z) 
X kvac(.iq) ] (4)

where & = Af - ia(2co) and the subscripts c refer
to trigonometric functions with complex arguments.
[The real part of the right-hand side of approximation
(4) corresponds to the usual fundamental depletion
for A,3L 0 O.] Note that, although one can formally
define an n2 , it varies with distance z even in this
limit of small depletion.

From approximation (4) an effective n2 can be
obtained in different ways. For to and 2wo far
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Fig. 1. Variation in (a) the nonlinear phase shift qNL and
(b) the fractional fundamental intensity la.(z)12/la.(0)12

with z for different detunings AJ3L = 0.01, 1.0, 10, 100.
Here KL = 4 and la,,(0)12 = 25.

from any material resonance frequency (Cv,.) SO
that K(2)(-2Cv;co,cv) and K (2)(-co;2Cv),-Cv) are real
or complex conjugates, a wave-vector mismatch
A/3L : 0 is required for n2 # 0.7,8 When either cv
or 2wo is near a resonance, there is an effective
n2 , even for Ž43 = 0. We discuss these two limi-
ting cases.

To examine the simplest limit of approxima-
tion (4), we first assume that a(2cv) = 0. When
A/3L = ± is chosen, n2 is maximized, with n2 =
T21deff12 /n 3ceo X L/A.8 This effective nonlinearity
can be either positive (self-focusing) or negative (self-
defocusing), depending on the sign of Ž,4. These
features and the magnitude of n2 were recently
measured by a Z scan in KTP.8 For a periodically
poled polymer waveguide with optimized parameters
d(2) - 50 pm/V,11 n - 1.8, L/A - 104, and n2 - 6 x
10-11 cm2 /W. Given that d(2) in excess of 40 pm/V
have been reported,'2 this approach to nonlinear
phase shifts should prove interesting.

The physical origin of this effective third-order non-
linearity is straightforward. When the SHG process
is mismatched, the second-harmonic field propagates
with the wave vector 2n(2cv)kvac(cv) # 2n(cv)kvac(v).
Therefore the product E2z0,E,, * in Eq. (2) produces a
polarization source term with a component in quadra-
ture with the fundamental and hence slows it down
(Af, < 0) or speeds it up (A/3 < 0).

We now generalize to include pump depletion.
Shown in Fig. 1(a) is the evolution of the nonlinear

phase shift ONL of the fundamental beam with
the normalized distance zIL for different values
of wave-vector detuning A 4L, where L is the
sample length. Here ONL is defined by a,(z) =
a.,(z)lexp[i bNL(z)], and in terms of n2 usually by

NL(Z) = Jo n2(z')kvaclaa(z')I2dz'. The corresponding
spatial variation of the normalized fundamental
power, la. (z)12/la,,(0)12 , is given in Fig. 1(b).

qNL accumulates in a basically stepwise fashion,
one step for every full oscillation in the fundamental
(and harmonic) intensity, with a maximum step
of 7r/2 for AI3L << 1. As A/3L becomes larger,
the steps become progressively more smoothed out,
smaller in phase change, and more frequent along
the propagation. Note that the step-averaged phase
change remains linear in KL up to very large phase
changes (>2 0r investigated numerically). Because
the number of oscillations in the fundamental
increases and the step in ONL per oscillation decreases
as AJ3L increases, there is a value of AJ3L for which
the rate of increase of 4 NL with KL is an optimum.
This optimum AJ3L increases with increasing input
intensity.

The variation in qNL(L) as a function of input
intensity [la,,,(0)12] is shown in Fig. 2(a). A stepwise
variation change is also obtained with increasing
intensity. For small depletion and phase shifts, 5NL
is linear in incident intensity. However, its increase
with la,,(0)12 becomes sublinear for high intensities,
consistent with the larger intensity increment be-
tween the progressively deeper oscillations in the fun-
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Fig. 2. Variation in (a) the nonlinear phase shift ONL and
(b) the normalized fundamental intensity la. (L)12/la.,(0)12
versus input intensity for various A/3L and KL = 4.
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Fig. 3. Variation in the nonlinear phase shift with input
amplitude la,,(O)l for large phase shifts and A,6L = 0.01,
1.0, 10, 100. Here KL = 32.

damental as a function of input, shown in Fig. 2(b).
As Fig. 3 shows, the increase in kNL for large phase
changes becomes quasi-linear in input fundamental
amplitude. Such large changes might require unre-
alistically large input intensities.

A number of features are unique to this nonlinear
phase change. The first is the stepwise variation
with distance and intensity. The distance and
intensity increments required for a step phase change
increase as AJL - 0, with the steps becoming
progressively steeper. Because d[PNL(z)]/dz and
d(bNL)/dla. 12 oc n2 , the corresponding effective n2

becomes essentially a series of 8 functions. For this
reason, and the fact that q$NL a la, (0)I for large phase
shifts, we conclude that an n2 description for this
process is not appropriate and that the key variable is
the nonlinear phase change itself (which is frequently
the important device parameter).13

There are a number of potential problems with
using this process for obtaining large nonlinear
phase shifts. The oscillation in the fundamental
beam power with distance is the principal drawback.
If the interaction is terminated at the incorrect
length, the effective loss for the fundamental, i.e.,
SHG conversion, can be large. This is effectively a
two-photon loss.8 Also, there is a finite bandwidth
usually associated with phase matching, and this will
impose a limit to the bandwidth of usable pulses.
Furthermore, a noncentrosymmetric medium is
required. Note that the only potential limits to large
phase shifts are material damage and the usual
problems for efficient SHG.

The only optical beams that experience a nonlinear
phase shift are those linked by second-order coef-
ficients. This means that the usual index-change-
mediated cross-phase modulation associated with an
electronic n2 process does not exist. However, when
three beams of different frequency and appropri-
ate polarization are almost phase matched for sum-
or difference-frequency generation, nonlinear phase
shifts can occur for all interacting beams. In addi-
tion, a probe beam can experience a form of cross-
phase modulation through an orthogonally polarized
pump beam if both fundamental polarizations are
linked by nonzero d(2) to the same SHG wave.

Finally, we note that the x(2) can be reso-
nantly enhanced, leading to even larger phase
shifts when either c)v or 0)2 is near a material

resonance, even in the limit of phase-matching
A,3 = 0. For simplicity we choose a(2cv) = 0. [For
a realistic case a(2cv) must be included, be-
cause the same electronic states give rise to both
the complex d(2) and a(2cv).] When an anhar-
monic oscillator model is used, deff(-2co; cv, c) =
d(2)(-2cw; cv, cv){cv, 6/[D(2cv)D2 (cv)]} where nr and r

refer to nonresonant and resonant, respectively.
Here D(cv) = (Cv, 2 - (O

2 = ico F), with F the linewidth.
For d(2 )(-co; 2cv), -cv), D2 (cv) is replaced by ID(co)12 so
that d(2)(-2ct) and d(2)(- c) are no longer complex
conjugates. A nonlinear phase shift is obtained
whose sign depends on the sign of the frequency
detuning from resonance. Decreasing such detuning
results in an enhancement of d(2) and consequently
in larger ONL.

In summary, macroscopic cascading of second-order
nonlinearities leads to a nonlinear phase shift of
the fundamental beam under a variety of conditions.
These phase shifts can require intensities orders of
magnitude lower than required by the usual third-
order nonlinearities. Some unique features, specif-
ically the stepwise response, can be useful for de-
vices and will be reported in subsequent publications.
Another interesting problem for future work is the
trade-off between the enhancement and the loss near
resonance.
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