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Abstract—A common critique of photovoltaic energy is the 

susceptibility of the systems to high variability-- passing clouds 
can affect a site’s day-to-day energy production substantially. 
This research developed a tool to simulate photovoltaic energy 
systems in several scenarios throughout the state of Florida and 
quantifies the hour-to-hour impact of these systems on the 
statewide generation mix using 11 years of historical weather 
data. While the hourly changes in aggregate system output for 
distributed PV systems was predictable between months, finer 
geographic granularity of irradiance data coupled with sub-
hourly time intervals are required to further develop this model 
into one that is indispensable for utility system operators. 
 

Index Terms—Forecasting, interconnected power systems, 
photovoltaic power systems, power generation planning, and 
power system meteorological factors. 

I.  NOMENCLATURE 
POA: irradiance incident upon the plane of a PV array 
PV: photovoltaic energy source 
GHI: global horizontal irradiance: diffuse plus direct 
irradiance incident upon a horizontal plane 
ETR-GHI: extraterrestrial GHI 
K: clearness index (GHI divided by ETR-GHI). 
STC: Standard Test Conditions, at which a PV system 
nameplate capacity is calculated—1000 Wm-2 irradiance, 25 
°C ambient temperature, 1 ms-1 wind speed. 

II.  INTRODUCTION 
RIVEN by concerns about climate change and long term 
energy security, including reducing reliance upon fossil 

fuels, it is evident that photovoltaic (PV) power sources will 
be part of the solution in supplying an increasingly energy-
intensive world. Despite recent economic woes, solar PV has 
been one of the fastest growing industries in the world, with 
global PV module production capacity more than doubling in 
2010 to 23.5 GW [1] and continuous market growth for over 
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30 years [2]. Currently, PV produces less than 0.02% of the 
overall electrical energy used in the United States—in 2010, 
3.48 TWh of a total 22,200 TWh [3]—but the market has 
maintained a 40% annual growth rate in spite of the recent 
global economic downturn [1]. Increasingly high levels of PV 
penetration on distribution feeders, and, eventually even in 
localized parts of the transmission system, drives the need for 
a more thorough understanding of the intermittent nature of 
the PV power output and the collective impact of grid-
connected PV systems on the electric power system.  

In addition to traditional market barriers (e.g. cost, policy), 
there still exist technical challenges that will need to be 
overcome in the coming years to allow PV to be successfully 
integrated into power grid operations. One of these challenges 
is the uncertainty regarding the impact of very high 
penetration of PV on power systems, particularly arising from 
the intermittent nature of the resource. Because the PV 
generation is connected to the power system through power 
electronics, changes can be passed on very quickly to the grid, 
yet, with a great degree of control and protection. The North 
American Electric Reliability Corporation (NERC) anticipates 
PV output changes of ±70% in time frames of two to ten 
minutes, and suggests that PV plants have the ability to 
manage ramp rates and/or curtail their own power output [4]. 
Moreover, NERC enforces system operators to maintain a 
balance between generation and load as well as scheduled 
imports and exports across transmission systems. Currently, 
this means that dispatchable conventional generation is held in 
reserve to respond to rapid fluctuations in PV systems. This 
must also be taken into account in resource adequacy 
planning.  Increased understanding of the variable nature of 
the resource can allow generation and transmission planning, 
accounting for variable generation sources that minimize 
investment in standby and reserve generating assets while 
maintaining system reliability.   

There is also a need to more thoroughly understand the 
effects of high-penetration PV at the distribution system level, 
such as voltage regulation and reverse power flows, protection 
coordination, low frequency “flicker” (voltage swings) from 
passing clouds that can impact lighting and industrial motor 
loads, and island detection and islanded operation. This begins 
with detailed analysis and understanding of PV output 
variation for different time scales (from seconds to days). 
Numerous studies have been conducted on PV resource 
variability and high penetration PV effects in the Western 
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VII.  FUTURE WORK 
Future work will involve the investigation high temporal 

resolution data, with particular interest in the clearness index, 
which as described above, can eliminate much of the seasonal 
and location specific effects and better quantify the 
predictability of various deployment scenarios due to short 
term weather changes (e.g. clouds). 

Enhanced resolution data would be required to better 
determine irradiance and climatic differences along the coast 
of Florida. Higher temporal resolution data will also require a 
modified tool for power simulations, as SAM is presently 
limited to hourly weather data. 
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