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Local PT invariance and supersymmetric parametric oscillators

Ramy El-Ganainy,1 Konstantinos G. Makris,2 and Demetrios N. Christodoulides3

1Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7
2Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA

3College of Optics/CREOL, University of Central Florida, Orlando, Florida 32816, USA
(Received 14 April 2012; published 11 September 2012)

We introduce the concept of local parity-time symmetric (PT ) invariance in optical waveguides (or cavity)
structures. Starting from a Lagrangian formalism, we establish the connection between light dynamics in
these configurations and the seemingly different physics of “supersymmetric” parametric oscillators. Using
this powerful tool, we present analytical solutions for optical beam propagation in local PT -invariant coupled
systems and we show that the intensity tunneling between the two channels critically depends on the initial
conditions. For unbalanced inputs, symmetric as well as asymmetric power evolution can be observed depending
on the excitation channel. On the other hand, under certain physical conditions, our analysis predicts that for
a modal PT -symmetric input, a unidirectional fractional phase exchange can take place. Few cases where
analytical solutions cease to exist are also investigated numerically. Finally, by exploiting the supersymmetric
nature of the oscillator equations, we show that under certain initial conditions, one can obtain the propagation
dynamics of field amplitudes that “resides” on the supersymmetric eigenfunctions of the system—a phenomenon
we call resonant propagation.
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I. INTRODUCTION

Parity-time (PT ) symmetric Hamiltonian systems have
attracted considerable attention in the past decade. This
interest arose after the seminal work of Bender et al. [1],
who first suggested that a certain class of PT -symmetric
Hamiltonian operators can exhibit entirely real eigenvalue
spectra. This is indeed a counterintuitive result given that
in general these Hamiltonians are not Hermitian. Moreover,
such systems can experience a sudden phase transition, better
known as spontaneous PT -symmetry breaking [1,2]. Above
this critical threshold the spectrum ceases to be real and
the eigenvalues can spread over the entire complex plane
[1–4]. Within the framework of the Schrödinger picture, PT
symmetry arises as a direct outcome of complex potentials
exhibiting symmetric and antisymmetric real and imaginary
parts, respectively. While the Hermiticity of quantum me-
chanics was never in doubt, the formal analogy between the
Schrödinger equation and the paraxial equation of diffraction
was recently exploited to introduce for the first time the
notion of PT symmetry within the context of optical physics
[5–9]. Parity-time symmetry in optics can be realized by
introducing a complex refractive index profile having an even
space guiding index (real part) distribution, while the gain
or loss (imaginary part) component is odd. In analogy with
their PT -symmetric Hamiltonian counterparts, these optical
structures were shown to exhibit real eigenvalue spectra and
phase transitions [5,6]. Quite recently, PT -symmetric behav-
ior and dynamics were experimentally observed in optical
systems [10,11]. Moreover, a new family of optical isolators
that exploits the interplay between optical nonlinearities and
nonreciprocal PT behavior was also proposed [12]. It is
important to note that in all the above-mentioned studies, the
investigated configurations were assumed to exhibit globalPT
symmetry in the transverse direction, while being uniform in
the propagation direction or stationary with time. In other
words, along the evolution direction (distance z or time t),

the aforementioned systems exhibit this symmetry in a z/t-
invariant fashion. Lately, PT -symmetric two-level time peri-
odic systems were investigated where the levels crossing rules
were analyzed [13] and adiabatic evolution in non-Hermitian
Hamiltonians with isolated degeneracies was investigated
[14]. Time-dependent dissipative nonlinear Bose-Einstein
systems were also studied and nonlinear Zeno effects were
reported [15].

Another seemingly independent and different line of re-
search is that of parametric oscillations (PO). This process
(PO) represents a very general phenomenon and can be
observed in wide varieties of physical systems [16–18].
Mechanical pendulums and springs, electric circuits, and
optical devices are just a few examples in which PO were
thoroughly studied. The underlined principle of PO in all
the above-mentioned systems is well understood and can
be viewed as oscillations taking place under the action of
time-dependent parameters. PO has found a broad range of
applications, from microwave electronics [19] to frequency
mixing in optics [20]. A closely related phenomenon is
parametric amplification (PA), also widely used in many areas
of engineering [19,20]. Many interesting effects emerge from
the physics of PO. For instance, parametrically driven systems
exhibit a special type of resonance, naturally called parametric
resonance. Also, as opposed to linearly forced oscillators,
parametric ones demonstrate some nonlinear characteristics
such as instabilities, for example.

In this work, we consider optical coupled systems ex-
hibiting an even distribution and an antisymmetric profile for
the real and imaginary parts of the complex refractive index
profiles when the gain-loss distributions are also a function of
the propagation distance or evolution time, i.e., they exhibit z

or t dependence. In these configurations, as long as the index
guiding is even and the gain-loss arrangement remains odd at
every propagation distance or time step, we say that the system
exhibits local PT symmetry (see Fig. 1).
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FIG. 1. (Color online) Schematics of local PT -symmetric cou-
pled waveguides (a) and cavities (b).

In Sec. II we establish the mathematical equivalence of
parametric oscillations and local PT systems. Starting from
a Lagrangian formalism for a parametric oscillator, we derive
the system’s Hamiltonian and we show that through a proper
choice of the canonical variables, the equation of motion
reduces to that of local PT -symmetric coupled systems. It is
worth noting that the analogies between photonic structures
with modulated parameters and parametric systems were
discussed in previous publications [21] where the authors
demonstrated parametric amplification of soliton steering in
modulated optical lattices.

A specific example of localPT -symmetric coupled waveg-
uide systems is investigated in Sec. III where we consider
different scenarios of the input power excitations. We show
that, depending on the initial conditions, the dynamics of
intensity evolution can vary considerably. For example, by
exciting only the initial gain or loss arm, our work indicates
different dynamics where certain symmetry emerges in one
case and is lacking in the other. We also investigate what
happens when the input beam is a PT -symmetric mode. In
such situation, our analysis reveals an interesting property
related to the evolution of the optical beam phase. As we
will see, while the normalized phase in one arm varies with
propagation, the phase in the other channel remains constant—
a process here we call unidirectional phase exchange.

In Sec. IV, we highlight the connection between local PT
optical structures and supersymmetry (SUSY) in quantum
mechanics. More specifically, we investigate situations where
the coupling constant values are chosen from a specific
discrete set of values that correspond to solutions of stationary
Schrödinger equations with SUSY-related potentials. We show
that carefully tailored inputs will evolve residing on the
corresponding set of eigenfunctions.

II. PARAMETRIC OSCILLATIONS AND LOCAL PT
SYMMETRY

We start our analysis by considering a parametric harmonic
oscillator described by

ẍ + 2γ (ξ )ẋ + ω2x = 0, (1)

where ẋ = dx/dξ , ξ stands for time t (or as we will see
later, propagation distance z), γ (ξ ) is a time (distance)-varying
friction (or gain), and ω is the natural frequency of the
oscillator. The Lagrangian associated with the above equation
is given by [22]

L̃ = 1
2M(ξ )ẋ2 − 1

2M(ξ )ω2x2. (2)

A direct substitution in the Euler-Lagrange equation
(d/dξ )(∂L̃/∂ẋ) − (∂L̃/∂x) = 0 yields Eq. (1) with 2γ =
Ṁ/M . Next we use the standard transformation x =

Dq, where q is a new coordinate variable and D =
exp(− ∫ ξ

0 γ (ξ ′)dξ ′) = 1/
√

M . Accordingly, Eq. (1) becomes

q̈ + [ω2 − γ̇ (ξ ) − γ 2(ξ )]q = 0, (3)

and the new Lagrangian takes the form

L̃ = 1
2 (q̇2 − 2γ qq̇) − 1

2 (ω2 − γ 2)q2. (4)

Let us define p to be the conjugate momentum for the
variable q. It follows that

p = ∂L̃

∂q̇
= q̇ − γ q, (5a)

H̃ = pq̇ − L̃ = p2

2
+ γpq + ω2

2
q2. (5b)

In Eq. (5b), H̃ is the system’s Hamiltonian. So far, our analysis
is only restricted for real coordinates and momenta, but in
principle, one can solve the parametric oscillation problem
using real as well as complex functions. In order to establish
the connection with local PT -symmetric systems, we need
to write down a Lagrangian that would allow for complex
canonical variables:

L = q̇q̇∗ − (ω2 − γ 2)qq∗ − γ (qq̇∗ + q∗q̇). (6)

One can immediately check that δL/δq∗ gives the equation
of motion (3), while δL/δq reduces to the complex conjugate
of Eq. (3). The new Hamiltonian defined as H = pq̇ + p∗q̇∗ −
L is given by

H = pp∗ + γ (pq + p∗q∗) + ω2qq∗, (7)

where in Eq. (7), p = ∂L/∂q̇ = q̇∗ − γ q∗ and p∗ =
∂L/∂q̇∗ = q̇ − γ q.

The equation of motion for the canonical momentum
can be found by using Hamilton’s equations:ṗ = ∂p/∂ξ +
{p,H }, where the Poisson brackets are given by {A,B} =
(∂A/∂q)(∂B/∂p) − (∂A/∂p)(∂B/∂q). By doing so, we obtain
ṗ + γ p + ω2q∗ = 0. By using the substitution q∗ = b and
scaling the momentump = iωa, the above formula, together
with the relation p∗ = q̇ − γ q gives:

iȧ + iγ (ξ )a + ωb = 0, (8a)

iḃ − iγ (ξ )b + ωa = 0. (8b)

These are the equations of motion for the scaled canonical
coordinate b and the variable a which is proportional to the
canonical momentum.

Note that the gain-loss profile of Eqs. (8) is always
antisymmetric irresepective of the value of γ (ξ ) and hence
the second-order parametric harmonic oscillator is reduced to
two first-order local PT -symmetric coupled configurations.
Equations (8) can be used, for example, to describe the physics
of two coupled waveguides (cavities) with an asymmetric
gain-loss profile that varies with distance (time) as shown in
Fig. 1. This unexpected connection opens the door for taking a
fresh look at the behavior of PO through the properties of PT
symmetry and for establishing a link between two seemingly
different physical systems. The decoupling of the above system
of first-order differential equations will result in Eq. (3) and
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another equation for p:

p̈ + [ω2 + γ̇ (ξ ) − γ 2(ξ )]p = 0. (9)

It is important to note the structure of the time- or
distance-dependent parts of the natural frequency components
in both Eq. (3) and Eq. (9). They are related via the same
relationship that defines supersymmetric (SUSY) potentials
in quantum mechanics [23]. That is to say, if one considers
Eqs. (3) and (8) as stationary Schrödinger equations, ω2

will play the role of the eigenvalues and γ̇ (ξ ) ± γ 2(ξ )
will be the potential. This form of the potential with the
plus-minus sign defines supersymmetry (SUSY) in quantum
mechanics [24]. This observation has important implications
in constructing mathematical solutions for “supersymmetric”
parametric oscillator problems. In addition, as will be shown
later, it leads to altogether new dynamics.

At this point, we examine the conserved quantities of
the first-order system in Eqs. (8). We first define the usual
Stokes parameters S0 = |a|2 + |b|2, S1 = |a|2 − |b|2,S2 =
ab∗ + a∗b,S3 = i(ab∗ − ab∗). First we examine the situation
when γ is constant. In such situation one can verify by direct
substitution that the system exhibit two constants of motions:
J1 = ωS0 + γ S3 and J2 = S2. Note that for γ = 0, J1 = ωS0,
i.e. up to a constant factor, it reduces to S0 as expected. It is
instructive to understand the origin of these invariant quantities
using the parametric oscillator formalism. Of course when the
gain-loss profile is constant, the problem reduces to that of
a harmonic oscillator and we note that the Lagrangian of the
system (6) becomes ξ independent. It follows immediately
from Noether’s theorem that the Hamiltonian of Eq. (7) is a
conserved quantity. Expressing the Hamiltonian in terms of
the new variables a and b, we find that in this case H =
ω(ωS0 + γ S3) = ωJ1. Thus we identify J1 as the constant
of motion that corresponds to distance (or time) translation
symmetry. It is an external symmetry of the system when
γ = const. and obviously it breaks down when the gain-loss
profile varies with ξ .

On the other hand, the second quantity J2 is always con-
served, even when γ = γ (ξ ) and thus it must be connected to a
stronger symmetry that is not violated by varying the gain-loss
profile. By investigating the form of the Lagrangian of Eq. (6),
we find that it exhibits global gauge symmetry under the action
of the U(1) group. In other words, it is invariant under the
transformation q → qeiα , where α is a continuous real param-
eter. If one considers small α we find that dq → iαq and the
change in the Lagrangian becomes dL = 0 = (∂L/∂q)dq +
(∂L/∂q̇)dq̇ + (∂L/∂q∗)dq∗ + (∂L/∂q̇∗)dq̇∗. By using dq →
iαq, dL can be written as

dL = iα

{[
∂L

∂q
− d

dξ

(
∂L

∂q̇

)]
q −

[
∂L

∂q∗ − d

dξ

(
∂L

∂q̇∗

)]
q∗

}

+ iα
d

dξ

{
∂L

∂q̇
q − ∂L

∂q̇∗ q∗
}

= 0.

The terms inside the first two brackets are recognized as
the Euler-Lagrange equations and they are identically zero and
we are thus left with (d/dξ ){(∂L/∂q̇)q − (∂L/∂q̇∗)q∗} = 0,
i.e., the quantity Q = {(∂L/∂q̇)q − (∂L/∂q̇∗)q∗} is conserved
[25]. In the context of quantum field theories, this constant of
motion is termed the Noether current. A direct substitution

shows that Q = q̇∗q − q̇q∗ = pq − p∗q∗. In terms of the
variables a and b, Q = iω(ab∗ + a∗b) = iωJ2. Thus we see
that the invariance of J2 is a direct outcome of the internal U(1)
gauge symmetry. Typically, in the context of PT symmetry,
J2 is termed the “quasipower,” however, our analysis suggests
that it might be more adequate to reserve this term for J1 and
use “PT current” for J2 instead.

III. PT -INVARIANT OPTICAL COUPLED STRUCTURES

So far our discussion on the connection between local PT
symmetry and parametric oscillations has been general and can
be applied to any distance- or time-dependent gain-loss profile.
In order to gain further insight into the dynamical evolution of
the system, here we consider a specific example of local PT
symmetry that admits an analytical solution. We focus our
attention on the coupled waveguide system shown in Fig. 1(a)
and we consider the case where the gain-loss profile γ (z)
varies with propagation distance, while the coupling κ = κ0 is
constant.

Within the framework of coupled mode theory, the structure
under consideration can be described by a set of differential
equations similar to those of Eq. (8):

i
da

dz
+ iγ (z)a + κ0b = 0, (10a)

i
db

dz
− iγ (z)b + κ0a = 0. (10b)

In Eq. (10) a and b are the electric field amplitudes in the
two different coupled channels. Note that in general, the above
system might not possess PT symmetry in the rigorous sense.
However, as we explained before, since the gain-loss profile
satisfies the antisymmetric property at every point z, the system
is said to exhibit local PT symmetry. The above equations can
also be used to describe optical PT -symmetric cavities where
in this case the coordinate z is replaced by the time variable t .
Figure 1(b) depicts a schematic for such geometries.

As has been pointed out previously, the coupled mode
equations are equivalent to a set of two “supersymmetric”
parametric oscillators:

ä + (
κ2

0 − γ 2 + γ̇
)
a = 0, (11a)

b̈ + (
κ2

0 − γ 2 − γ̇
)
b = 0, (11b)

where ȧ = da/dz, etc. Equations (11a) and (11b) are not
independent; instead they are linked through Eqs. (10). Thus
it is only sufficient to solve either one of Eqs. (11) and then
deduce the rest of the solution from Eq. (10a) or Eq. (10b).

Here we take γ (z) = W tanh(Wz) = WT (z), where W

is a constant and T (z) = tanh(Wz). Note that the gain-loss
distribution is antisymmetric with respect to z. In the regime
where W > κ0, the PT symmetry is broken and the system
will experience total net exponential gain or loss depending
on the details of the gain-loss variations and the input initial
conditions. Here we consider only the case of W < κ0,
where local PT -symmetry breaking never occurs along z.
Under these conditions, Eq. (11b) reduces to that of a simple
harmonic oscillator, e.g., b̈ + λ2b = 0 with λ2 = κ2

0 − W 2.
The dynamics of this system is obtained by solving the above
equation in conjunction with Eq. (10b).
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We first analyze the case when the optical input enters
the channel exhibiting loss as shown in Fig. 1(a). We assume
the length of the coupled structure is 2z0 and we chose our
coordinates such that the system extends from −z0 to z0. Under
the initial conditions a(−z0) = 0 and b(−z0) = b0, the field
amplitudes in both arms are given by

b = b0

{
cos [λ (z + z0)] − WT0

λ
sin [λ (z + z0)]

}
, (12a)

a = ib0

κ0

{
W [T0 + T (z)] cos [λ (z + z0)]

+
(

λ − W 2To

λ
T (z)

)
sin [λ (z + z0)]

}
, (12b)

where in the above expression,T0 = tanh(Wz0). Note that both
z0 and T0 are positive quantities.

In the opposite scenario when the beam is excited from the
gain channels, i.e., a(−z0) = a0 and b(−z0) = 0, the optical
wave evolves according to

b = a0
iκ0

λ
sin [λ (z + z0)] , (13a)

a = a0

{
cos [λ (z + z0)] − W

λ
T (z) sin [λ (z + z0)]

}
. (13b)

Figures 2(a) and 2(b) show a plot of the intensities |a|2 and
|b|2 in both of these scenarios, respectively. The blue and red
lines represent optical power in the loss and gain channels,
correspondingly.

In both cases tunneling between the two channels occurs
in an oscillatory fashion. Power oscillations are also ob-
served, which is a characteristic of PT -symmetric systems
[6–9]. However, the coupling dynamics are quite different
for these two cases. In the first case the intensity initially
experiences loss, while in the second situation gain takes
over at the beginning of the cycle. This result is expected
given the exact character of gain-loss distribution in our
specific example. As shown in Figs. 2(a) and 2(b), a phase
shift takes place around the axis of symmetry (shown by a
green dotted line). This is clearly manifested by the order
of the leading peaks before and after that center line. An
important difference, however, is that in Fig. 2(b), the intensity
evolution as a function of z is symmetric around the middle
axis. The absence of this feature from Fig. 2(a) can also
be understood through the analytical solutions presented in
Eqs. (12). In all the above, as well as the following simulations,
the parameters of the coupled PT structure were chosen to be
κ0 = 0.7 and W = 0.5.

We also examine the case when both channels are excited
with the local modal PT -symmetric eigenvector (stationary
solution at the input waveguide in the absence of z modulation),
i.e., when a(−z0) = e−iθ and b(−z0) = 1, where tan(θ ) =
WT0/

√
κ2

0 − W 2T 2
0 . Substituting these values for a and b into

the general solution of the harmonic equation, we find that

b = cos [λ (z + z0)] + iσ sin [λ (z + z0)] , (14a)

a = i

κo

{[WT (z) − iσλ] cos[λ(z + z0)]

+ i [σWT (z) − iλ] sin[λ(z + z0)]}. (14b)

FIG. 2. (Color online) Tunneling dynamics when the input beam
initially excites (a) the lossy and (b) the gain channel. Blue (red)
color represents initially loss (gain) arms. The dashed green line
marks the axis of time symmetry for γ (z). The curves representing
light evolution in initially loss-gain channels are indicated in the
figure.

In Eqs. (14), σ =
√

κ2
0 − W 2T 2

0 /

√
κ2

0 − W 2. It is worth
noting that in the limit of Wz0 � 1 we have T0 ≈ 1 and hence
σ ≈ 1. In this regime, the above solutions can be cast into the
simple forms

b = exp(iλz), (15a)

a =
√

W 2T 2(z) + λ2

κ2
0

exp

[
i tan−1

(
WT (z)

λ

)]
exp (iλz) ,

(15b)

where in the above formula we dropped the common constant
phase factor exp(iλz0). The evolution of the amplitude square
is depicted in Fig. 3(a). Surprisingly, the amplitude of the lossy
waveguide remains almost constant (constant in the limit z0 →
∞), while that of the gain arm experiences an intermediate
appreciable loss before it is restored to its initial value. The
phase advance in both channels is plotted in Fig. 3(b). At
z = −z0, a/b = exp(−iθ ), while a(z0)/b(z0) = exp(iθ ), i.e.,
the PT mode at z = −z0 evolves into the PT -symmetric

FIG. 3. (Color online) Evolution of (a) intensity and (b) phases
of an input mode. Asymmetric behavior in both figures is observed
with fractional phase transfer. Intensity evolution when the gain-loss
profile is γ (z) = 0.5 tanh(z/10) and (d) top view of the intensity tun-
neling dynamics for rapid gain-loss variations:γ (z) = 0.5 tanh(0.9z).
In all the above, the input was a PT tilted supermode. In (d), the left
channel is initially experiencing loss and vice versa for the right arm.
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FIG. 4. (Color online) (a) One period of the periodic evolution
of γ (z) defined in the text. (b) and (c) depict the amplitude and
phase dynamics indicating accumulation of net fractional phase 2θ

after one complete cycle. (d) Evolution as observed in the Stokes
space where trajectories live on hyperbola and trace closed curves
encompassing finite areas. The curves representing light evolution in
initially loss-gain channels are indicated in the figure.

eigenstate at z = z0. However, a close inspection of Fig. 3(b)
reveals the counterintuitive and unanticipated result of unidi-
rectional phase exchange, i.e., in the plotted phases, measured
with respect to “λz,” we find the phase of the amplitude b

remains constant, while that of a gradually changes from −θ

to θ . The dynamics associated with intensity tunneling for
slower as well as steeper gain-loss profile variations are also
depicted in Figs. 3(c) and 3(d), respectively for the parameters
explained in the figure caption. Note that in Fig. 3(d), the
intensity evolves smoothly until the optical beam experiences
a large slope gain-loss variation in the central region of the
structure. In this region a sizable fraction of the input PT
mode is transferred into another PT mode (in the absence of
z modulation a two-dimensional PT coupled structure will
exhibit two stationary PT modes) and the superposition of
the two modes experiences beating, thus leading to intensity
oscillations.

The fact that the phase swap of Fig. 3(b) occurs in an
asymmetric fashion is a highly nontrivial result with more
implications than one would initially appreciate. In order
to appreciate the last statement, let us consider a situation
where the gain-loss variation is periodic. A simple cyclic time
variation that admits a semianalytical solution is the case when
γ = W sn[W (z − l),k], where sn[W (z − l),k] is the Jacobi
elliptic function. As the elliptic modulus k approaches unity,
the function behaves very much like hyperbolic tangent within
a certain limit. Figure 4(a) shows the z dependence of γ (z) for
this last case when k = k0 = 0.99999. Evidently the function
is periodic with a profile behaving like tanh[W (z − l/2)]
in the range 0 < z < l, while in the domain l < z < 2l it
varies as − tanh[W (z − 3l/2)]. Thus, this situation eventually
resembles that of two reversed “tanh” profiles concatenated
back to back in order to form one cycle. An approximate
solution in the first half cycle is given in terms of elliptic

functions as (in the regime of Wl � 1)

a ≈
√

W 2SN2(z) + λ2

κ2
0

exp

[
i tan−1

(
WSN(z)

λ

)]
exp(iλz).

(16)

while similar to the previous case, b = exp(iλz). In Eq. (16)
SN(z) = sn(z − l,k0). Similar expressions for a(z) and b(z)
can be written in the second half of the full period. Figure 4
depicts gain-loss variation as well as the system’s dynamics in
real and phase space. The evolution of the phases is plotted in
Fig. 4(c). Apart from a common factor exp(2iλl), the system
returns to its initial state after accumulating a net fractional
phase of 2θ . This result is a direct outcome of the asymmetric
phase swapping. If such an exchange was symmetric for each
half cycle (one channel lags by θ/2 and the other advances
by the same amount), the net acquired phase would have been
zero. Finally Fig. 4(d) demonstrates the system’s dynamics
on the Stokes space. Note that this evolution takes place on
a hyperbola as opposed to the spherical manifold associated
with the γ (z) = 0 case. This, of course is due to the fact that the
conserved quantity here is S2 [6,8,12] instead of S0. Evidently,
the evolution in phase space traces a closed trajectory (i.e., a
loop).

Note that, even under modal PT -symmetric initial condi-
tion, the input PT eigenfunction does not evolve adiabatically
into the output PT -symmetric normal mode. Instead, we
observe a dip in the total power of the system, indicating
a mixture between the two different PT -symmetric eigen-
modes. These results are depicted in Figs. 3(a) and 4(b) and are
a direct outcome of the analytical solutions presented above
[Eqs. (15) and (16)]. However we would like to point out
that this behavior is general and is independent of the
specific details of the gain-loss variations in the intermediate
stage. Even if the gain-loss profiles change adiabatically with
distance, this feature will still persist. In order to illustrate the
generality of this behavior, we express the field amplitudes in
terms of the dynamical basis that rotates in the complex plane
of the PT -symmetric eigenfunctions:

[ a b ]T = A(z)V1(z) exp

(
i

∫ z

−z0

λ1(z′)dz′
)

+ B(z)V2(z)

× exp

(
i

∫ z

−z0

λ2(z′)dz′
)

. (17)

In Eq. (17), up to a normalization constant,
V1(z) = {1 exp[iθ (z)]}T , V2(z) = {1 − exp[−iθ (z)]}T
and both A(z) and B(z) are scalar amplitudes. At
any propagation distance z, V1,2(z) satisfy the equation

λ1,2 (z) V1,2 (z) = � (z) V1,2 (z), with �(z) = [ iγ (z) κ0
κ0 −iγ (z) ].

This transformation is similar to a change from a diabatic
basis to adiabatic ones in the adiabatic perturbation theory,
except that in our case adiabatic conditions are not imposed.
Applying this change of basis to Eqs. (10), we end up with
the vectorial equation (ȦV1 + AV̇1) exp(i

∫ z

−z0
λ1(z′)dz′) +

(ḂV2 + BV̇2) exp(i
∫ z

−z0
λ2(z′)dz′) = 0. If we assume in the

above expression that both A and B are constants, we find
that AV̇1 exp(i

∫ z

−z0
λ1(z′)dz′)+BV̇2 exp(i

∫ z

−z0
λ2(z′)dz′) = 0.

By noting that V̇1 = [0 iθ̇exp(iθ )]T and V̇2 =
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[0 iθ̇exp(−iθ )]T , the first component of the equation is
automatically satisfied. The second one gives B/A =
− exp[2iθ (z)] exp(i

∫ z

−z0
[λ1(z′) − λ2(z′)]dz′). Evidently, A

and B cannot be simultaneously constant. In fact they must
vary with distance (time) in order for the solution to be
self-consistent. This result is an outcome of the nonorthogonal
nature of PT eigenfunctions below symmetry-breaking phase
transitions, and they become constant only if there is no
variation in the gain-loss or coupling profiles. On the other
hand, in a regular symmetric optical coupler, we find that
V̇1,2 = 0 and A as well as B turn out to be constants. In
other words, this eigenfunction mixing is pertinent to local
PT -symmetric structures. It is important to emphasize that
these results are general and do not depend on the details of
the gain-loss variation.

IV. RESONANT PROPAGATION

In this section we explore another interesting phenomenon
associated with the local PT -invariant coupled system de-
scribed by Eqs. (10). As discussed before, this arrangement is
equivalent to second-order oscillators for the field amplitudes
ä + (κ2

0 − γ 2 + γ̇ )a = 0 and b̈ + (κ2
0 − γ 2 − γ̇ )b = 0. In the

previous section, we treated these two equations in the
framework of parametric oscillations with κ0 playing the role
of the natural frequency and ±γ̇ − γ 2 as a time-dependent
variable accounting to parametric forcing. As before, here
we focus our attention on coupled waveguide systems
with distance-dependent variables instead of time-varying

FIG. 5. (Color online) (a) Hierarchy of eigenfunctions and corre-
sponding eigenvalues of the supersymmetric potentials. (b) Resonant
propagation when the input is engineered to match the modes of the
corresponding potential. (c) Resemblance of resonant propagation
when the initial conditions do not coincide with the mode and
numerical solution of

∫ z

z′=−z0
ψ−2(z′)dz′ for the parameters explained

in the text. In (b) and (c) the yellow color is the beam at the initial
gain channel (one peak), while red represents intensity in the other
arm (double peak curve). (d) depicts the function f (z) discussed in
the text.

ones [see Fig. 1(a)]. By rearranging these two equations,
we get

−d2a/dz2 + (γ 2 − γ̇ )a = κ2
0 a (18a)

−d2b/dz2 + (γ 2 + γ̇ )b = κ2
0 b. (18b)

One can now think of these two formulas as stationary
Schrödinger equations with potential given by V1,2(z) = γ 2 ∓
γ̇ and an eigenvalue of κ2

0 . Evidently in this picture, κ2
0 is

not a free parameter that can take any value; instead its
value will be determined by the solution of (18) under a
certain choice of the potential functions. In the language of
quantum mechanics, the two potentials V1,2(z) are called the
supersymmetric partner potentials and γ is typically referred to
as the superpotential. In this context, it is known that apart from
one ground state, V1,2(z) share the same eigenvalue spectra.
In some special cases where the uncommon null ground state
does not exist, one says that supersymmetry is broken. The
relationship between the eigenvalue spectra of both V1,2(z)
is schematically depicted in Fig. 5(a). In order to establish
the relationships between the eigenfunctions sharing the same
eigenvalues, we write Eq. (18) as [23]

Ĥ1a = ÂB̂a = κ2
0 a, (19a)

Ĥ2b = B̂Âb = κ2
0 b, (19b)

where
�

H 1,2 = −d2/dz2 + (γ 2 ∓ γ̇ ), Â = −d/dz + γ (z), and
B̂ = d/dz + γ (z). If ψ (1)

n satisfies Ĥ1ψ
(1)
n = ÂB̂ψ (1)

n =
E(1)

n ψ (1)
n , then it follows that Ĥ2(B̂ψ (1)

n ) = B̂ÂB̂ψ (1)
n =

E(1)
n (B̂ψ (1)

n ). In other words, if ψ (1)
n is the eigenfunction of

Ĥ1, we find that B̂ψ (1)
n is the corresponding (having the same

eigenvalues) eigenket of Ĥ2. Similarly we can show that ψ (2)
n

and Âψ (2)
n are both eigensolutions of Ĥ2,1 sharing the same

eigenvalues. Imposing the same normalization 〈ψ (1)
n+1|ψ (1)

n+1〉 =
〈ψ (2)

n |ψ (2)
n 〉, we finally arrive at the relationships [see Fig. 5(a)]

ψ (2)
n = B̂ψ

(1)
n+1/

√
E

(1)
n+1 and ψ

(1)
n+1 = Âψ (2)

n /
√

E(2)
n with En =

E
(1)
n+1 = E(2)

n .
Next consider the evolution equations (19) when the

coupling constant takes the value κ0 = √
En and under

the initial conditions a(−z0) = iψ
(1)
n+1(−z0) and b(−z0) =

ψ (2)
n (−z0). By substituting in Eq. (10a), we obtain ȧ(−z0) +

iγ (−z0)ψ (1)
n+1(−z0) = i

√
Enψ

(2)
n (−z0). However, from the

previous analysis, we also have dψ
(1)
n+1/dz + γ (z)ψ (1)

n+1(z) =√
Enψ

(2)
n (z). By comparing the last two equations together we

find that ȧ(−z0) = idψ
(1)
n+1/dz|z=−z0 . Similar considerations

show that ḃ(−z0) = dψ (2)
n /dz|z=−z0 . In other words, for a

specific chosen coupling constant [being an eigenvalue of
Eqs. (18) or equivalently, Eq. (19)] and by matching the initial
conditions to those of the corresponding eigenfunctions, it is
ensured that the initial values of the field amplitude derivatives
will coincide with those of the eigenmodes of Eqs. (19). Thus
under these initial excitations, the dynamics of the amplitudes
a(z) and b(z) will follow exactly the functional form of ψ

(1)
n+1

and ψ (2)
n —a process that we call resonant propagation.

In order to elucidate this point, let us consider a concrete
example. Assuming γ (z) = z, it follows that V1,2(z) = z2 ∓ 1.
One can easily check that the first two eigenfunctions of
V1(z) are ψ

(1)
0 = exp(−z2/2) and ψ

(1)
1 = 2z exp(−z2/2) with
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eigenvalues of E
(1)
0 = 0 and E

(1)
1 = 2. On the other hand, the

ground state of V2(z) is given by ψ
(2)
0 = exp(−z2/2) with

E
(2)
0 = 2. Thus, if the numerical value of the coupling constant

in Eq. (1) is κ0 = √
2 and the initial input field amplitudes are

a(−z0) = −i
√

2z0 exp(−z2
0/2) and b(−z0) = exp(−z2

0/2), it
will follow that the beam evolution at any location z is given by
a(z) = i

√
2z exp(−z2/2) and b(z) = exp(−z2/2). In order to

verify these results, Eqs. (10) are numerically integrated under
these specific initial inputs and excellent agreement with the
mode profiles is obtained [see Fig. 5(b)]. Here as well as below,
we take z0 = 5.

It is important to make few comments here. First we
note that in spite of the existence of a linear gain-loss
profile, the field amplitudes in both channels die out at the
output and that would still be the case even if the local PT
symmetry were broken, i.e., even if γ (z) > κ0 = √

2 at any
specific range of z. Second, it is interesting to observe that
in the specific case under consideration, the fields propagate
in both arms without accumulating any phase at all, not
even a dynamical one. Another interesting observation is
that even when the input does not satisfy the supermode
initial condition, we find that field amplitude evolution still
resides on a scaled version of the modes before it blows
up eventually. For example, Fig. 5(c) shows the dynamics
when a(−z0) = 0 and b(−z0) = exp(−z2

0/2). Apart from a
scaled factor of −0.0215, the displayed dynamics in Fig. 5(c)
resembles that of Fig. 5(b) for some propagation distance range
before the amplitudes start to grow up unboundedly at around
z = 5. In order to understand this behavior, we investigate
the dynamics of Eq. (18b) under nonmodal excitations. We
assume that the initial conditions are given by b(−z0) = C1

and ḃ(−z0) = C2. Furthermore, we use the ansatz b(z) =
f (z) ψ(z), where ψ(z) is the eigenmode that satisfies Eq. (18b)
with eigenvalue κ2

0 . Substituting in (18) immediately yields
fzz (z) ψ (z) + 2fzψz = 0. Integrating once gives fz(z) =
χ1ψ

−2(z) and finally we find that f (z) = ∫
fz (z) dz =

χ1
∫ z

z′=−z0
ψ−2

(
z′)dz′ + χ2, where χ1,2 are the constants of in-

tegration. Note that f (−z0)ψ(−z0) = χ2ψ(−z0) = C1, hence
it only remains to find the value of χ1. From the second initial
condition, we get (fzψ + f ψz)|z=−z0

= C2, which upon
substitution gives χ1ψ

−2(−z0)ψ(−z0) + χ2ψz(−z0) = C2 or
χ1 = ψ(−z0)[C2 − χ2ψz(−z0)]. For the specific example de-
picted in Fig. 5(c), ψ(z) = exp(−z2/2), C1 = exp(−z2

0/2) =
ψ(−z0), and C2 = z0 exp(−z2

0/2) = −ψz(−z0). Substituting
back, we find that χ2 = 1 and χ1 = −2ψ(−z0)ψz(−z0) =
−10 exp(−25). Finally f (z) can be determined by using the
values of χ1,2 and performing the integral

∫ z

z′=−z0
ψ−2

(
z′)dz′

numerically in the range of interest, which we choose here
to be −5 < z < 5.2. The result of this integration is shown
in Fig. 5(d). It is evident that the function is flat over most
of the range except from the very beginning and close to
z = 5. This result shows that initial values off (z) compensate
for the discrepancy between the initial conditions and the
mode profiles and after a short propagation distance, the fields
adjust to a scaled version of the eigenmodes. In the flat range
centered around z = 0, we find that f (z = 0) ≈ −0.0215,
which accounts for the observed scaling between Figs. 5(b)
and 5(c). Finally we note that shortly after z = 5, the function
f (z) starts to blow up, thus explaining the behavior of the

FIG. 6. (Color online) Schematic of building up a sequence
of SUSY potentials: (a) structure of eigenvalues of the first two
supersymmetric potentials; (b) shifting down the levels of the second
potential in order for it to exhibit a zero ground state (without affecting
the dynamical evolution); and (c) building its SUSY partner.

fields in this range as shown in Fig. 5(c). This analysis cannot
be applied in a straightforward manner to Eq. (18a). However,
one can infer the result by noting that the two fields in both arms
are coupled and that a modal evolution of one implies the same
for its partner, which is confirmed using numerical solutions
of Eqs. (10) as depicted in Fig. 5(c). It is worth noting that
for the particular harmonic oscillator potential, Eq. (18a) can
be reduced to the Hermite differential equation that exhibits
an analytical solution; however, for a general potential, such
solutions might not exist and one has to resort to analyzing
the ground state of Eq. (18b) in order to gain insight into the
system’s behavior. The question that naturally arises at this
point is, what happens if the coupling constant was chosen to
coincide with the eigenvalues of higher excited modes that do
not include any ground state? Numerical simulations show that
under these conditions the input still demonstrates resonant
propagation before it blows up. How can one understand this
result given that the previous analysis cannot be systematically
carried on for any other state than the ground state? Here
also one can use the machinery of supersymmetry to simplify
the situation as depicted in Fig. 6. For concreteness, assume
the coupling constant matches the eigenvalue of the third and
second excited modes of potentials V1 and V2, respectively,
i.e., κ2

0 = E
(2)
2 = E

(1)
3 . Equation (18b) can then be rewrit-

ten as −d2b/dz2 + (γ 2 + γ̇ − E
(2)
0 )b = (κ2

0 − E
(2)
0 )b. In this

modified form, a new potential V3 = γ 2 + γ̇ − E
(2)
0 with null

eigenvalue ground state can be identified. By constructing the
superpartner potential of V3, call it V4, the dynamics of b

can be coupled to that of the field amplitude described by
V4. Noteworthy, the second-order mode of V3 corresponds to a
well-behaved ground state of V4 and thus the previous analysis
can be carried on and then mapped back to b and finally to a.
Figure 6 shows a schematic for building such a hierarchy of
SUSY potentials.
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FIG. 7. (Color online) Broken SUSY is depicted in (a) and its
manifestation in the input beam evolution (b). Note that in this
case the same number of peaks (one in this situation) is shared
by beams in both arms. Colors indicate the same as in Figs. 5(b)
and 5(c).

So far we have considered a case of unbroken SUSY.
This is characterized by the existence of a ground state
with null eigenvalues for one of the potentials. Note also
that SUSY links one eigenfunction of one potential to
another (of the other superpotential) that differs from it
by only one node. Mathematically, unbroken SUSY can be
investigated using the Witten index defined as [26] W =
limβ→0

∫
(dp dz

/
2π ) exp[−β(p2/2) + γ 2/2](βγz/2). When

W = 1, the supersymmetry is unbroken as in the previous
case of γ = z. However, in the case where W = 0, SUSY
is broken and the system is characterized by the absence
of a zero eigenvalue ground state. Under this condition, the
eigenvalues and eigenfunctions of the superpotentials are
linked via ψ (2)

n = B̂ψ (1)
n /

√
E(1)

n and ψ (1)
n = Âψ (2)

n /
√

E(2)
n , and

En = E(1)
n = E(2)

n . This scenario is depicted in Fig. 7(a). A
typical example of a gain-loss profile that will correspond
to broken SUSY is γ (z) = z2. It is easy to check that for
this case, the Witten index is zero, thus indicating broken
symmetry. The superpotentials under these conditions are
given by V1,2(z) = z4 ± 2z. Figure 7(b) shows the behavior
of input beam evolution under these conditions where it is
evident that only one peak (in each arm) exists as expected
from broken supersymmetry.

V. CONCLUSIONS

In conclusion, we introduced the concept of local parity-
time reversal symmetry where even index guiding and odd
gain-loss symmetry is preserved locally while gain-loss pro-
files vary with time or distance. Starting from a Lagrangian
description of PO, we have established the mathematical
connection between local PT symmetry and PO. Using this
analogy, we have shown that the conservation of the quantity
often termed quasipower (in the context of PT symmetry) is a
direct outcome of the global gauge invariance of the system’s
Lagrangian.

We have studied a particular local PT coupled config-
uration where analytical solutions can be obtained via the
parametric oscillation equivalence. Depending on the config-
uration under investigation and on the input initial conditions,
the system was shown to exhibit a host of intriguing behaviors,
ranging from nondynamical fractional phase exchange to reso-
nant propagation. Under fractional phase exchange conditions,
an input PT mode will experience a unidirectional phase
accumulation, while the mode is changing its tilt direction
during evolution. This asymmetric phase exchange results in
a total nondynamical phase factor after one cycle of evolution
(in the case of periodic gain-loss distributions).

Our analysis also pointed out an intriguing connection
between local PT coupled systems and SUSY symmetry.
In particular, under resonant propagation conditions (defined
in Sec. IV), a tailored input beam was shown to propagate
“residing” on the eigenmodes of the corresponding stationary
Schrödinger equation. Depending on the gain-loss profile,
supersymmetry can be broken or not. These properties are
manifested in the dynamics via the appearance of an extra
peak in one arm for unbroken SUSY.
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