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We show that complex PT -symmetric photonic lattices can lead to a new class of self-imaging Talbot

effects. For this to occur, we find that the input field pattern has to respect specific periodicities dictated by

the symmetries of the system. While at the spontaneous PT -symmetry breaking point the image revivals

occur at Talbot lengths governed by the characteristics of the passive lattice, at the exact phase it depends

on the gain and loss parameter, thus allowing one to control the imaging process.
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Introduction.—The Talbot effect [1,2], a near-field dif-
fraction phenomenon, in which self-imaging of a periodic
structure illuminated by a quasimonochromatic coherent
light periodically replicates at certain imaging planes, is an
important phenomenon in optics. These imaging planes are
located at even integer multiples of the so-called Talbot
distance zT ¼ 2a2=�, where a represents the spatial period
of the pattern and � the light wavelength. The simplicity
and beauty of Talbot self-imaging have attracted the inter-
est of many researchers. Such effects nowadays find appli-
cations in fields ranging from imaging processing and
synthesis, photolithography [3], and optical testing and
metrology [4] to spectrometry and optical computing [5]
as well as in electron optics and microscopy [6]. Similar
processes are encountered in other areas of physics involv-
ing nonclassical light [7], atom optics [3,8], Bose-Einstein
condensates [9], coupled lasers [10], and waveguide arrays
[11]. However, all these achievements are limited in view
of studying the properties of the input beams and using real
gratings for imaging. Overcoming these limitations will
not only enrich the conventional self-imaging research, but
also offer new methods for imaging technologies. It is
therefore extremely desirable to investigate and propose
self-imaging architectures that incorporate gain and loss
mechanisms.

In the present Letter we study the Talbot revivals in a
new setting, namely, a class of active lattices with anti-
linear symmetries. These structures deliberately exploit
notions of (generalized) parity (P ) and time (T ) symmetry
[12,13] in order to achieve new classes of synthetic meta-
materials that can give rise to altogether new physical
behavior and novel functionality [14–16]. Some of these
results have been already confirmed and demonstrated in a
series of recent experimental papers [15–17]. In classical
optics, PT -symmetries can be naturally incorporated [14]
via a judicious design involving the combination of
delicately balanced amplification and absorption regions
with modulation of the index of refraction. In optics,

PT -symmetry demands that the complex refractive index
obeys the condition nðrÞ ¼ n�ð�rÞ. It can be shown that
these structures have a real propagation constant (eigene-
nergies of the paraxial effective Hamiltonian) for some
range (the so-called exact phase) of the gain and loss
coefficient. For larger values of this coefficient, the system
undergoes a spontaneous symmetry breaking, correspond-
ing to a transition from real to complex spectra (the so-
called broken phase). The phase transition point shows all
the characteristics of an exceptional point (EP) singularity.
PT -synthetic matter can exhibit several intriguing fea-
tures [14–31]. These include, among others, power oscil-
lations and nonreciprocity of light propagation [14,15,19],
nonreciprocal Bloch oscillations [20], unidirectional in-
visibility [28], and a new class of conical diffraction
[31]. In the nonlinear domain, such nonreciprocal effects
can be used to realize a new generation of optical on-chip
isolators and circulators [22]. Other results include the
realization of coherent perfect laser-absorber [23,29] and
nonlinear switching structures [24].
Here, we define conditions that guarantee the existence

of Talbot self-imaging for a class of active PT -symmetric
lattices. We find that the nonorthogonality of the Floquet-
Bloch modes imposed by the non-Hermitian nature of the
dynamics together with the discreteness of the lattice
structures imposes strong constraints for the appearance
of Talbot recurrences. We show that while at the sponta-
neous PT -symmetric point the Talbot length zT is char-
acterized by the structural characteristics of the lattice, in
the exact PT -symmetric phase it is controlled by the gain
and loss parameter �. This allow us to have reconfigurable
Talbot lengths for the same initial pattern. Finally, we
discuss possible experimental realizations where our pre-
dictions can be observed.
Model.—We consider a one-dimensional (1D) array of

coupled optical waveguides. Each of the waveguides can
support only one mode, while light is transferred from
waveguide to waveguide through optical tunneling. The
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array consists of two types of waveguides: type (A) involv-
ing a gain material and type (B) exhibiting an equal amount
of loss. Their arrangement in space is such that they formN
coupled (A-B) dimers with intra- and interdimer couplings
k and c, respectively, such that both couplings are of
similar (but not the same) size; i.e., k� c (for example,
see Fig. 2, where k ¼ 1:05c). In the tight binding descrip-
tion [32], the diffraction dynamics of the electric field
amplitude �n ¼ ðan; bnÞT at the n-th dimer evolves ac-
cording to the following Schrödinger-like equation:

i
danðzÞ
dz

¼ �anðzÞ þ kbnðzÞ þ cbn�1ðzÞ

i
dbnðzÞ
dz

¼ ��bnðzÞ þ kanðzÞ þ canþ1ðzÞ;
(1)

where � ¼ �0 þ i� is related to the complex refractive
index [14]. Without any loss of generality, we will assume
below that �0 ¼ 0, � > 0, and c < k [19]. The effective
Hamiltonian that describes the system commutes
with an antilinear operator (in [19] we coined this
P dT -symmetry) that is related with the local
PT -symmetry of each individual dimer.

At this point, it is beneficial to adopt a momentum
representation anðzÞ ¼ 1

2�

R
�
�� dq~aqðzÞ expðinqÞ (and

similarly for bn), where the integral is taken over the
Brillouin zone �� � q � �. Because of the translational
invariance of the system Eq. (1), the equations of motion in
the Fourier representation break up into 2� 2 blocks, one
for each value of momentum q,

i
d

dz

~aqðzÞ
~bqðzÞ

 !

¼ Hq

~aqðzÞ
~bqðzÞ

 !

; Hq ¼ � vq

v�
q ��

� �
; (2)

with vq ¼ kþ ce�iq. The two-component wave functions

for different q values are decoupled, thus allowing for a
simple theoretical description of the system. This allows
us to perform the evolution in Fourier space and then
evaluate the spatial representation by a backward trans-
formation; i.e.,

�nðzÞ ¼ 1

2�

Z �

��
c qðzÞeinqdq; (3)

where�nðzÞ � ðanðzÞ; bnðzÞÞT is the field amplitude for the

n-th dimer in the spatial representation and c qðzÞ �
ð~aqðzÞ; ~bqðzÞÞT the corresponding Fourier component.

Dynamics.—Substituting the stationary form
ðan; bnÞT ¼ expð�iEzÞðA; BÞT in Eq. (2) and requesting
nontrivial solutions of the resulting stationary problem,
i.e., ðA; BÞ � 0, we obtain the band structure of this dia-
tomic PT system [19],

E � ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk� cÞ2 þ 4kccos2ðq=2Þ � �2

q
: (4)

For � ¼ 0, we have two bands of width 2c, centered at
E ¼ �k. In this case, the two bands are separated by a
gap � ¼ 2ðk� cÞ and the exact PT phase extends over a

large � regime. It follows from Eq. (4) that when � �
�PT ¼ �=2, the gap disappears and the two (real) levels at
the ‘‘inner’’ band-edges of the two different bands (corre-
sponding to q ¼ ��) become degenerate. The corre-
sponding eigenvectors are also degenerate, resulting in an
EP singularity. For � > �PT , the spectrum becomes par-
tially complex [19]. Below, we focus our analysis on the
domain � � �PT .
The eigenvectors associated with the Hamiltonian

Eq. (2) are biorthogonal, and therefore do not respect the
standard (Euclidian) orthonormalization condition. As a
result, the conservation of total field intensity is violated

for any � � 0. Denoting by jR�ðqÞi ¼ 1ffiffi
2

p ð1; E�ðqÞ�i�
vq

ÞT the

right eigenvectors corresponding to the eigenvalue E�ðqÞ,
we have that the q-th momentum components of any initial
excitation can be written as c qð0Þ ¼

P
l¼�cljRlðqÞi. The

evolved q-field component is

c qðzÞ ¼
X

l¼�
cql e

�iElðqÞzjRlðqÞi; (5)

where cql ¼ hLlðqÞjc qð0Þi is the expansion coefficient and

hLlðqÞj the left eigenvector associated with eigenvalue
ElðqÞ. The above expansion is valid as long as the
Hamiltonian Hq in Eq. (2) does not have a defective

eigenvalue. The latter appears at the spontaneous
PT -symmetric point �PT ¼ k� c (EP) for q ¼ ��.
The corresponding evolved q-field component is then
written as

c q¼��ðzÞ ¼ ðc1 þ c2zÞð1;�iÞT þ c2ð�i=�; 0ÞT: (6)

Direct substitution of Eqs. (5) and (6) into Eq. (3) provides
the evolution of the field in this system. A note of caution is
in order here. For the existence of Talbot revivals, a neces-
sary condition is that the initial preparation must not excite
the q ¼ �� defective mode. In the opposite case, the field
increases linearly with the propagation distance z [see
Eq. (6)], thus destroying the possibility of revivals of any
initial pattern.
Talbot self-imaging.—We are now ready to analyze the

Talbot self-imaging recurrences in the case of the
PT -symmetric structure of Fig. 1. We recall that for
the Talbot effect to occur, the input field distribution should
be periodic [11], and thus in general �nð0Þ ¼ �nþNð0Þ,
where N represents the spatial period of the input field.
Because of this periodic boundary condition, q can take
values only from the discrete set

qm ¼ 2m�

N
; m ¼ 0; 1; 2; . . . ; N � 1: (7)

Substituting the above constrain in Eq. (3), we get the
following expression for the evolved field at the n-th dimer:

�ðNÞ
n ðzÞ ¼ XN�1

l¼�;m¼1

cqml e�iElðqmÞzjRlðqmÞi: (8)
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It is therefore clear that field revivals are possible at inter-
vals z if EðqmÞzT ¼ 2�� where � is an integer. Therefore,
the ratio of any two eigenvalues Em � EðqmÞ has to be a
rational number; i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk� cÞ2 þ 4kccos2ðm�

N Þ � �2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk� cÞ2 þ 4kccos2ðm0�

N Þ � �2
q ¼ �

�
; (9)

where � and � are relatively prime integers. At the same
time, revivals in the field intensity are ensured provided that
ðEm � E	Þ=ðEm0 � E	0 Þ ¼ �=�, where the indices belong

to the set f0; 1; . . . ; N � 1g and are taken at least three at a
time. It is straightforward to show that this condition is
trivially satisfied for the same set of N-input pattern perio-
dicities as for the fields.

Next, we consider the field Talbot revivals of input
patterns with period N at the spontaneous
PT -symmetric point. To this end, we observe that the
direct substitution of � ¼ �PT in Eq. (9) for the ratio
Em=E0 leads to the simple condition cosðm�=NÞ ¼ �=�.
The latter is rewritten in terms of the Chebyshev

polynomials, defined as cosðmxÞ ¼ Tmð cosðxÞÞ ¼
P½m	

j¼0 c
ðmÞ
j ðcosðxÞÞm�2j, where [m] represents the integer

part of m. The Chebyshev coefficients cðmÞ
j are integer

numbers; of importance to our discussion is the fact that

the first one is given by cðmÞ
0 ¼ 2m�1. Given that cðmÞ

j are

integers, then cosð�mN Þ is rational if and only if cosð�NÞ is
rational [11]. Using the Chebyshev identity with m ¼ N
(assuming N is an odd number), we obtain the following
polynomial in cosð�NÞ:

2N�1

�
cos

�
�

N

��
N þ 
 
 
 þ cN½N=2	 cos

�
�

N

�
þ 1 ¼ 0 (10)

where we have used the fact that TNðcos�NÞ ¼
cosðN�=NÞ ¼ �1. By applying the rational root theorem,
one can show that the roots of this polynomial in cosð�=NÞ
are rational only if N ¼ 1, 3. A similar technique leads to
the fact that for even values of N, the only possibility is
N ¼ 2 [11]. However, input patterns with N ¼ 2 period-
icity excite the q ¼ �� Fourier mode, and therefore based
on our previous discussion [see Eq. (6) above] have to be
excluded. Therefore, strictly speaking, discrete Talbot re-
vivals at the spontaneous PT -symmetric point are pos-
sible only for a finite set of periodicities N ¼ 1, 3, where,
for example, the N ¼ 1 case can represent initial patterns
f1; 0; 1; 0; . . . ; 1; 0g or f0; 1; 0; 1; . . . ; 0; 1g or the more trivial
case of a plane wave with f1; 1; 1; 1; . . . ; 1; 1g. Some repre-
sentative intensity revivals for N ¼ 1 and 3 periods are
depicted in Fig. 2.
Talbot revivals can appear also in the exact phase

�< �PT . A simple examination of Eq. (9) indicates that
an initial periodic pattern with periodicityN ¼ 1 [resulting
in eigenvalue index m ¼ 0 in Eq. (7)] leads to a rational
value �=� ¼ 1. In this case, the Talbot length zT depends

on the gain and loss parameter, as zT ¼ 2�=E0 ¼
2�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
PT

þ 4kc� �2
q

and therefore it varies by changing

�. Such reconfigurable behavior of the Talbot length is
characteristic of the exact phase �< �PT and can be
found also for the N ¼ 2, 3-period input patterns. For N ¼
2 [corresponding to eigenvalue indicesm ¼ 0, 1 in Eq. (7)]
one can show that for fixed k; c and �PT ¼ k� c such that
�PT =ðkþ cÞ>�=�, Eq. (9) is satisfied provided that

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
PT

� 4kc�2=ð�2 � �2Þ
q

(we assume that �<�).

FIG. 1 (color online). (a) Photonic lattice structure with intra-
dimer coupling k and interdimer coupling c. Sublattice (gain
waveguide) A is shown by the red (dark) rectangular cuboid,
while sublattice (lossy waveguide) B is shown by the green
(gray) rectangular cuboid. Each dimer is distinguished by the
index n. (b) Dispersion relations for various �-values. At � ¼
�PT , the gap between the two bands disappears and an excep-
tional point singularity is created.

FIG. 2 (color online). Talbot intensity ‘‘carpets’’ for period-N
input patterns. Length is measured in units of interdimer
coupling c ¼ 1. The intradimer coupling is k ¼ 1:05.
(a) Periodicity N ¼ 1 with the binary input f1; 0; 1; 0; . . .g and
� ¼ 0:05. (b) Periodicity N ¼ 3 with the binary input
f1; 1; 1; 0; 0; 1; 1; 1; 1; 0; 0; 1; . . .g and � ¼ �PT ¼ 0:05.
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Similarly, for N ¼ 3, Talbot revivals are possible provided

that � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
PT

þ kc½1� 4ð�=�Þ2	=½1� ð�=�Þ2	
q

where

0:5<�=�<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3kc=ðkþ cÞ2p

. In both cases, the cor-
responding Talbot length is �-dependent and is given by
the largest period zT ¼ 2�=jEj � Elj � 2�=E0 that results

from the eigenvalues involved in the initial pattern.
Example cases of Talbot self-imaging revivals for initial
periodic patterns with period N ¼ 1, 2, and 3 and different
� values are shown in Figs. 3(a)–3(f), respectively. We see
that for the same initial preparation, the revivals are con-
trolled by � and can occur at different Talbot lengths.

In fact, we can show that larger periods N > 3 do not
result in Talbot self-imaging revivals in the exact
PT -symmetric domain. Using Eq. (9) for jEmj=jE0j ¼
�=� and enforcing the constrain that � � �PT ¼ k� c,
one can obtain the inequality cosðm�

N Þ � �
� , which has to be

satisfied together with equation Eq. (9) (the equality cor-
responds to the case � ¼ �PT discussed above). At the
same time, cosðm�

N Þ has m ¼ 0; 
 
 
 ; N � 1 roots. Applying

the intermediate value theorem, one finds that this inequal-
ity cannot be valid for N > 3.

Experimental implementation.—Finally, we would like
to suggest possible experimental implementations of the
PT - symmetric waveguide arrays, which will allow ob-
servation of the reconfigurable Talbot effect. The proposed
structures involve MBE-grown quantum wells (QW) that
will be patterned to form coupled waveguides. The basic

PT structural element of the array shown in Fig. 1 in-
volves two PT -symmetric sites (dimer). Such a design is
desirable because of its simplicity. The dimensions and
index contrast can be such that each waveguide will be
single moded. For example, for AlGaAs structures, this can
be achieved by a refractive index of n0 ¼ 3:35 operated at
800 nm. Reconfigurable gain can be achieved by running
an electric current through a AlGaAs=GaAs QW p, n
junction. In such structures, one can easily reach gain
and loss values as high as 50 cm�1. The two site channels
in every dimer will be excited at different current levels I1
and I2 so as to establish the antisymmetric gain and loss
profile that is necessary to observePT optical behavior. In
practice, this will be done provided current I1 � I2 so that
the corresponding regions underneath gain equal amounts
of gain and loss. More specifically, I2 will be relatively
small so that the associated waveguide site will experience
material absorption. Its sole purpose will be fine tuning.
Given that I1 and I2 can be interchanged and adjusted, this
will allow us to dynamically control the Talbot length zT of
these PT -symmetric structures. Of course, special con-
sideration has to be given to the effects of gain and loss on
the modal index change in these structures (because of
Kramers-Kronig relations).
Finally, we comment on the robustness of Talbot revivals

against structural imperfections. For realistic values of po-
sitional imperfections (up to 5% of the interdimer coupling),
we could confirm numerically that Talbot revivals are only
slightly distorted. Specifically, we found that revivals asso-
ciated with short Talbot lengths zT are essentially unaffected
for moderate propagation distances z, while revivals asso-
ciated with larger lengths zT are fragile due to the distortion
of the delicate balance between the mode amplitudes and
phases that eventually dominate the evolution.
Conclusions.—In conclusion, we have shown that a class

of PT -symmetric optical lattices support Talbot self-
imaging revivals for input patterns with periodicities
dictated by the discreteness of the lattice and the strength
of gain and loss parameters. It would be of interest to
investigate whether Talbot revivals can also occur in higher
dimensions and in the presence of nonlinearity. Our results
might be applicable to other areas such as self-imaging of
coupled lasers [10] with distributed gain and synchroniza-
tion of PT -symmetric coupled electronic oscillators [16].
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