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ZnGeP2 optical parametric oscillator
with 3.8–12.4-mm tunability
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A ZnGeP2 (ZGP) optical parametric oscillator (OPO) with wide mid-IR tunability has been demonstrated. The
singly resonant angle-tuned ZGP OPO was pumped by 100-ns erbium laser pulses at l � 2.93 mm and yielded
output that was continuously tunable from 3.8 to 12.4 mm (type I phase matching) and from 4 to 10 mm (type II
phase matching). An OPO pump threshold was less than 1 mJ in the whole 4 12 mm range of the output,
and the quantum conversion eff iciency reached 35%. An OPO linewidth was typically a few wave numbers;
however, with a single intracavity etalon (uncoated Si plate) in a type II OPO it was narrowed to ,0.5 cm21.
We demonstrate the sensitive detection of N2O gas with the narrow-linewidth OPO.  2000 Optical Society of
America

OCIS codes: 190.2620, 190.4360, 190.4410, 190.4970, 160.4330.
The very high nonlinear-optical coefficient of ZnGeP2
(ZGP; deff � 75 pm�V), combined with good optical,
mechanical, and thermal properties, favors a vari-
ety of nonlinear-optical applications, including efficient
high-average-power �.10-W � optical parametric oscil-
lators1,2 (OPO’s) and picosecond–femtosecond optical
parametric generators3 – 5 that deliver .1-MW peak-
power pulses. When ZGP-based OPO’s are pumped
by nanosecond pulses, their infrared tunability is re-
portedly 6.9 9.9 mm (2.8-mm pump)6 and 2.7 8 mm
�2.1-mm pump�.7

We demonstrate in this Letter that the continuous
tunability of the ZGP OPO can be extended to the
3.8 12.4-mm range; the long-wave limit of this span
is set entirely by the linear transmission of the crystal.
We also show that the OPO linewidth can be dramati-
cally reduced without sacrificing much of the conver-
sion eff iciency and that such an OPO can be used for
sensitive detection of gas.

The pump laser was based on a f lash-lamp-pumped
Er, Cr, Tm:YSGG crystal �l � 2.93 mm�. The laser
was Q switched by Brewster-cut electro-optical
LiNbO3 and delivered 100–110-ns TEM00 pulses with
a linewidth of 0.3 cm21, a repetition rate of 10 Hz, and
an energy of 10 mJ.

ZGP crystals, grown at Inrad, Inc., by the horizontal
gradient freeze technique, were 20 mm long (7 mm 3
10 mm cross section) and cut at u0 � 49.5±, w � 90±

(type I) and u0 � 70±, w � 45± (type II). The ref lection
per face in the 2.93 5.8-mm (i.e., for pump plus signal)
range was less than 2%.

An optical damage test of ZGP at l � 2.93, mm t �
100 ns (exposure, 2000 pulses) has shown that surface
damage starts (at both the front and the back surfaces)
at a f luence of 3.5 J�cm2 �35 MW�cm2�; however, no
damage was observed for OPO mirrors at a f luence of
3.77 J�cm2.

The lowest OPO threshold was obtained in scheme A
of Fig. 1 (f lat–f lat OPO configuration, L � 2.7 cm).
The front mirror, M1, is transmissive �.75%� for the
pump and the idler waves and highly ref lective (98%)
for the signal. A gold rear mirror, M2, highly ref lects
�R . 98%� pump, signal, and idler. The signal wave
0146-9592/00/110841-03$15.00/0
resonates, while the pump and the idler are recycled
to have a second pass before leaving the OPO cavity.
A dichroic beam splitter (BS) separates the incoming
pump beam from the outcoming idler. The pump

Fig. 1. A, Simple f lat–f lat OPO configuration �L �
2.7 cm� with a resonating signal and recycling of pump and
idler beams. B, OPO configuration with an intracavity
etalon for line narrowing. HT, highly transmissive; HR,
highly ref lective.
 2000 Optical Society of America
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Fig. 2. ZGP OPO angular tuning curves with a l �
2.93 mm pump. (a) Type I OPO; continuous tunability of
3.8 12.4 mm is achieved with a single-orientation crystal.
(b) Type II OPO. Solid curves, theoretical, based on
dispersion relations.8

beam radius �1�e2� was 0.82 mm, and the OPO mirrors
were slightly ��0.25±� tilted from the normal to the
laser beam to prevent laser cavity feedback.

Figure 2(a) shows the ZGP OPO type I angular
tuning curve. The solid curve is theoretical,
based on the most recent refractive-index measure-
ments.8 Continuous tunability (signal plus idler) of
3.9 12.4 mm was achieved with a single-orientation
ZGP crystal and a set of two OPO mirrors M1. This
is a remarkable range for this crystal; the long-
est ZGP OPO wavelength previously achieved had been
9.9 mm.6 The OPO linewidth was 5.5 cm21 at lidler �
10 mm, 6.5 cm21 near 8 mm, and rather broader,
20 30 cm21, near the degeneracy point ��6 mm�.

Type II angular tuning curves [Fig. 2(b)] were
taken with a similar layout. Continuous tunability
of 4 10 mm (with the exception of a small gap at
5.8 6.1 mm near degeneracy) was achieved with a
single-orientation ZGP crystal and set of two dichroic
OPO mirrors M1. Type II OPO output linewidths
are intrinsically narrower than in type I (we obtained
1.5 cm21 at lidler � 6.3 mm and 2.6 cm21 at 7.7 mm),
and the linewidth decreases (owing to the shape of
the type II tuning curve) as the degeneracy point is
approached.
Figure 3 shows the dependence of the type I OPO
idler beam energy (in the case of type II we got
quite similar results) as a function of pump energy
for lidler � 6.6 mm and lidler � 8.1 mm. At lidler �
6.6 mm the maximum absolute laser-to-idler conver-
sion eff iciency was achieved at �2.4-mJ pump energy
(approximately six thresholds) and reached 14.7%, cor-
responding to a quantum conversion efficiency (signal
plus idler) of 33% (Table 1). The maximum idler en-
ergy was 1.2 mJ.

At lidler � 8.1 mm the laser-to-idler conversion ef-
ficiency was 12.8% at 1–2 mJ pump (approximately
four thresholds). This corresponds to a quantum con-
version efficiency of 35.3% and a slope efficiency of
41.75%. If we take into account that input OPO mir-
ror M1 transmits only 77% of the pump, we get an even
higher value of 54.2% for the quantum slope efficiency.

In configuration A, threshold pump energies (both
type I and type II) were as low as �0.37 mJ, cor-
responding to a threshold f luence of 0.035 J�cm2

(0.3-MW�cm2 intensity), close to the theoretical
value �0.02 J�cm 2�.9 Also, this threshold f luence
is 100 times smaller than the ZGP surface damage
threshold.

The OPO type I idler energy is plotted in Fig. 4 as
a function of the wavelength. The two curves corre-
spond to pump laser energies of 5 and 10 mJ. Also
shown (dashed curve) is the pump threshold en-
ergy as a function of the idler wavelength. These

Fig. 3. OPO idler wave energy curves: (a) lidler �
6.6 mm, (b) lidler � 8.1 mm.
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Table 1. OPO Output Idler Characteristics As a Function of Wavelength

Laser-to-Idler Quantum Slope Quantum
Threshold Threshold Threshold Conversion Conversion Conversion Maximum

Wavelength Energy Fluence Intensity Efficiency Efficiency Efficiency Energy
�mm� �mJ� �J�cm 2� �MW�cm2� (%) (%) (%) (mJ)

6.6 0.37 0.035 0.30 14.7 33 34.3 1.2
8.1 0.4 0.038 0.32 12.8 35.3 41.75 1
Fig. 4. OPO output as a function of lidler for two pump
energies: 5 and 10 mJ. Dashed curve, the OPO pump
threshold dependence. Inset, transmission spectrum of
the antiref lection-coated L � 2 cm ZGP crystal.

Fig. 5. Absorption spectrum of N2O gas (L � 10 cm,
p � 0.1 atm) obtained from the OPO transmission
experiment.

dependencies correlate with the ZGP transmission
spectrum (the inset in Fig. 4 shows transmission of the
antiref lection-coated L � 2 cm ZGP crystal taken with
a Perkin-Elmer 1600 FTIR spectrometer). It can also
be seen that the pump threshold stays below 1 mJ in
the range of 4 12 mm of the OPO output.

The OPO idler beam divergence �l � 8 mm� was
found to be 8.2 mrad in the horizontal and 7.3 mrad
in the vertical �kz� planes, which correspond to an
approximately 2.53 diffraction limit.

To achieve a narrow linewidth we used a type II
OPO, configuration B of Fig. 1, with just one low-
f inesse �F � 7� etalon inside the cavity [we used a
tilted (60±–80±) Si plate, 190 mm thick]. In this way,
the OPO linewidth was reduced to less than 0.5 cm21.
The threshold in configuration B was approximately
three times higher than that in configuration A, mainly
because of the longer OPO cavity �L � 6 cm� in con-
figuration A and some etalon losses. The output effi-
ciency decrease was less than 50%, so we observed an
overall enhancement of spectral brightness. Smooth
OPO wavelength tuning was achieved by simultaneous
rotation of the ZGP crystal and the Si plate. The ab-
sorption spectrum of N2O obtained from the transmis-
sion experiment is shown in Fig. 5. From the width
of the peaks we can estimate the OPO linewidth to
be �0.4 cm 21, in agreement with the previously mea-
sured 0.5 cm 21.
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