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AgGasS, optical parametric oscillator continuously tunable
from 3.9 t0 11.3 um
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This is the experimental realization of a silver gallium sulfide (Ag&a8ptical parametric
oscillator(OPO with a wide mid-IR tuning range. The singly resonant angle-tuned Ag&a®-I|
OPO was pumped by 1.06m pulses from a nanosecond Nd:YAG laser and yielded idler wave
continuously tunable from 3.9 to 11,8 with a linewidth of 1 cm®. The OPO threshold was 0.03
Jlcnt corresponding to sub-MW/chpump intensity and sub-10@J pump energy. The slope and
absolute quantum conversion efficiencies reached 41% and 22%, respectivelfd93American
Institute of Physics.S0003-695(99)02435-3

Chalcopyrite AgGasg(AGYS) crystal transmits light be- which was grown at INRAD from the congruent melt by the
tween 0.5 and 12um and demonstrates a high nonlinear horizontal gradient freeze technique. In order to eliminate
optical coefficient combined with good mechanical proper-optical scattering due to the G&-rich precipitates present
ties. Its most remarkable characteristic, however, is that it i$h all melt-grown AGS crystals, the ingot was annealed at
one of the few crystalswhich can be pumped by commer- 900°C in an excess of A§.*° The crystal was cut ap
cially available 1um lasers to achieve phase-matched down-=45.1° to the opticak axis in the[100] direction (¢=0),
conversion into the.>5 um region. for type-1l phase matching, and was 20 mm in length and

Difference frequency mixingDFM) in AGS extending 7> 10 mm in cross section. Type Il was chosertijachieve
to A=11um has been demonstrated in a number of studie§arrower OPO linewidths andi) to maximize the effective
with nano-2-5 pico-¢ and femtosecord pulses, as well as Second-order nonlinearity which is given‘by
in the cw"1° regime. Seymouet al® demonstrated that the
long-wavelength limit of DFM output can be extended to as  d.4=dsgsinésin2¢ (type I, 1)
far as 18.3um (with weak yet detectable powerbeyond
the two-phonon absorption band. A traveling-waseper-
fluorescent optical parametric generator based on AGS,
pumped by 20 ps Nd:YAG laser pulses, with tunability over
the range from 1.2 to 1@m and a photon conversion effi- (here dzs=12pm/\* is the AGS nonlinear tensor compo-
ciency of 0.1%—10% was demonstrated by Elsaessat!*  nent, and¢ and ¢ are polar and azimuthal angles, respec-

The first OPO based on AGS was reported in 1984 bylively). Thus type-Il phase matching withr45° givesde
Fan et al’? A type-l OPO was pumped by @-switched =12 pm/V, which is 25—30% higher than in the case of type
Nd:YAG laser (=18 ns) and was tunable from 1.4 tquan. | (6~52°), used in previous worH§:13The crystal surfaces
The photon conversion efficiency was 16%.)4t 4 um the ~ Were antireflectionAR) co_ate_d using ThHZnSe dl_electrlc
parametric oscillation threshold could not be reached bel@Yers so that the transmission at 1;06_1/"46 varied be-
cause of surface damage to the crystal. This tuning range wi¥€en 97% and 99%thus theicirystal s bulk absorption can
extended2.8—4.2um) in a recent work by Booret al13 be estl_ma_ted to bes0.005 cm 7). In the 4-8.5um range,

A synchronously pumped singly resonant OPO with atransmlsspn of the coated crys_tal wag0%. )
signal wavelength near 1,8m and an idler wavelength near . Accord|.ng to our SRO. design, both GPO mirrors have
5.5 um was reportetf with a cw actively mode-locked .h'gh reﬂchon(HR) at the S|gna[1.17—1.46Mm) wave. The
Nd:YAG laser as a pump source. A true cw OPO based Omput mirror M1 transmits, a_nd the output mlrr‘(‘)r M2 _reflscts
temperature-tuned, noncritically phase-matched AGS cryst € pump at 1.0Gum _(to achieve pump beam *recycling:
was recently reported by Douillegt al®> The subharmonic he Q factor for the idler should be kt_apt small, thus at least
(3w— 20+ w) doubly resonant OPO was pumped by a di_one of the two mirrors should have high transmittagde)

L : at 4-12um.
%dv(\a/ laser withh =845 nm at an input threshold power of 60 Figure 1 shows two configurations of SRO OPO, namely

’ . . ) with one mirror transmissive and one reflective for the idler
We report in this paper a singly resong®R0O OPO

db a1 I th i (configuration A and both mirrors transmissive for the idler
pumped by nanoseco -06um pulses with a continu- (configuration B. The parameters for configuration A are:

ous tuning range of 3.9-11,8m, with 22% quantum con- \,q hasT=75% for the pumpR=98%—100% for the sig-
version efficiency and extremely low pumping threshold.naL T~80% for the idler; M2gold) has R~98% for all
The OPO uses a single type-ll phase-matched AGS crystglayelengths. Configuration B: M1 hak=75% for the
pump,R=98%—-100% for the signal,>76% for the idler;
dElectronic mail: kvodopyanov@inrad.com M2 hasR=99.5% for the pumpR>98.6% for the signal,

de=dgzgSin260cos2p  (type ) 2
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theoretical curve based on dispersion relatig®sf. 17). Inset: OPO thresh-
FIG. 1. Two configurations of SRO OPO based on AGS. Configurationg|d fluence as a function of the output idler wavelength.
A—with recycling both the pump and idler beams and configuration
B—with recycling of the pump beam only. M1 and M2 are OPO mirrors;
BS is a dichroic beam-splitter for extraction of the idler wave. We assumedl =12 pm/V for AGS, and the roundtrip sig-

nal wave losses 173%. With some uncertainties of experi-

T>76% for the idler. In both cases M1 and M2 were flat ang™ental parameters and relative simplicity of the mddiehe

spaced apart by 2.7 cm, just at the minimal distance alloweg@/culated thresholds are surprisingly cldgéthin 309 to
by the length of the AGS cryst&® cm). the experimental values. It is clear that one would expect the

There are a few advantages of schemdipall the idler minimal threshold pump fluence at shorter pulse durations.

output goes in one direction, as compared to B where it goe§°" exarrnﬁple, ar=12ns the threshold fluence is as small as
in both directionsii) the idler wave generated in the first 0-03 J/cm. Experimentally, we found that the threshold flu-

pass is reflected back, thus reducing the OPO threshold, argj'¢&(@nd intf”Sity remains the same when the beam size is
(iii) there is no walk-off of the output beam, due to the ro-"€duced tav=0.6 mm(stil,, this is larger than the AGS crys-
tation of the AGS crystal. tal's birefringent walkoff distance of0.4 mm atL=2 cm,

We used as a pump an EQ-switched Nd:YAG laser 6=45°). The pump energy needed to achieve OPO operation

(Quantel YR58, which delivered pulses with up to 40 mJ atw=0.6mm was as sfmall as ga). Clearly, th? minimal
per pulse at 10 Hz with a TE)] beam diameter-1.6 mm thresholdintensityis achieved alonger pulse durationge.g.,
and pulse width of 12-100 ngepending on the energy ~ 'tr=0-67 Mw/cnf at 7=100n3. _

We measured the OPO spectrum by using a compact _ 'N- Fig. 4, idler beam energiatAy~6 um) is plotted as
—15cm grating monochromator with a pyroelectric linear@ function of pump energy. We used a Molectron J4-05 py-
array (Spiricon LP-256-12in the output focal plane. Figure roelectric energy meter and an InAs filter to cut off radiation
2 shows the calculated@solid linel and measured tuning with )‘<3'9'f‘m' The laser pulse width varied W'th energy
curve for the AGS type-ll OPO pumped at 1.0fdn. We but was typically 20—30 ns. The pump beam diameter was

have found that the calculated dependence, based on dispdfried between 1.4 and 2.2 mm using a telescope and an iris

sion relations by Roberf<, gives the best agreement with diaPhragm. A comparison of curves 1 and 2 shows that
our experimental data. larger pump beam diameters gave higher output energies.

From Fig. 2 one can also see that an idler beam tunabil- The conversion efficiency in configuration A reaches its

ity of 3.9-11.3um was achieved with a single AGS crystal maximum at about 2—3 pump thresholds. The laser-to-idler

(the signal was tunable between 1.17 and 1u46, respec- conversion(curve ) was 4.9%, the quantum conversion ef-
tively). This is an unprecedented range for the AGS opoficiency 22%, and slope quantum conversion efficiency 39%.

The longest wavelength achieved so far was 2% The In configuration B the maximum conversion efficiency laser-
OPO linewidth was smaller than the spectral resolution of

the monochromator, which we estimate to be 1.5-2 tm 0.08

The inset to Fig. 2 gives an OPO threshold dependence ver- & .

sus idler wavelength for configuration A. The curve is prac- E 0.06 /

tically flat between 4 and Zm; atA>7 um, however, the ::; //.

threshold starts rising, which correlates with the increasing 2 0.04 .

AGS linear absorption at longer wavelengths. In addition, 0 -

the threshold OPO intensity increagas ~ Agg\iq)) When the g oozl

OPO is tuned away from degeneracy, because of the de- ol

crease of gain increment. 0 !
Figure 3 represents the OPO threshold pump energy den- 10 20 50 100

sity (fluence as a function of the pump pulse width for con- pump pulsewidth (ns)

flguratlon A, )\id'.%6’um.' The dashed curve IS.based on the-FIG. 3. OPO threshold fluence as a function of the pump pulse wdth-
oretical calculations, similar to Ref. Iﬁ/e took into account figuration A). Dashed curve—theoretical curve. The idler wavelength is

that both pump and idler are reflected by the rear mirro).M2 around 6um.
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FIG. 4. OPO idler energyaA~6um) plotted vs input laser energy. Curves 1 -'8_ 4
and 2 correspond to OPO configuration A and curve 3 to configuration B. O 3l
Pump beam diameters ave=1.4, 2.2, and 1.6 mngcurves 1, 2, and 3,
respectively. oL |
1 -AN\
to-idler reached 3.1%curve 3. This corresponds to quan- o P ! i

tum conversion efficiency of 18.2% and the slope efficiency 2050 o0 2160 7200

41.2%. The maximum idler energy was 3#2. These values -1

are underestimated, however, because in configuration B we wavenumber (Cm )

regarded only the idler radiation coming through the M2piG. 5. co absorption spectrum taken with a FTIR spectrom@em *
mirror (Fig. 1), ignoring the idler coming in the opposite resolution, upper curyeand with the OPO systerfiower curve.

way.

A comparison of configurations A and B shows that Awavelength OPO pumped at Am. The remarkably low

has smaller pumping thresholdby a factor of ~5) and threshold pump energids-100 J) make this OPO system

. ; 2 xtremely promising when used with existing commercial
higher absolute conversion efficiencies. However, scheme . S -
: : i . . . aser diode-pumped Nd lasers delivering millijoule nanosec-
is superior from the viewpoint of maximum extracted idler

energy. The smaller absolute output in configuration A isond pulses with a repetition rate 1 kHz.
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