December 1, 2012 / Vol. 37, No. 23 / OPTICS LETTERS

5003

Bessel-like optical beams with arbitrary trajectories
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A method is proposed for generating Bessel-like optical beams with arbitrary trajectories in free space. The method
involves phase-modulating an optical wavefront so that conical bundles of rays are formed whose apexes write a
continuous focal curve with pre-specified shape. These ray cones have circular bases on the input plane; thus their
interference results in a Bessel-like transverse field profile that propagates along the specified trajectory with a
remarkably invariant main lobe. Such beams can be useful as hybrids between non-accelerating and accelerating

optical waves that share diffraction-resisting and self-healing properties.

OCIS codes: 050.1940, 260.2030, 350.5500, 070.2580.

Nondiffracting optical beams play an important role in
contemporary optics. Two major classes of such beams
can be distinguished: nonaccelerating and accelerating.
The first class refers to waves whose transverse profile
and propagation direction remain invariant. Perhaps the
most renowned examples are Bessel beams, which came
to light in 1987 [1] and have found numerous applications
in micromanipulation, atom and nonlinear optics [2].
Mathieu [3] and parabolic beams [4] are other character-
istic counterparts with explicitly known angular
spectrums. This class also includes waves that remain
invariant in a frame rotating around the propagation axis
[6]. The second class is represented by recently discov-
ered nondiffracting beams with the peculiar property to
self-accelerate along a parabola. These waves emerged in
2007 with the introduction of Airy beams [6], a concept
stimulated by quantum mechanics [7]. Parabolic acceler-
ating beams [8] are another characteristic example.
These beams (mostly Airy) have also found several appli-
cations for light trajectory control and navigation around
objects, micromanipulation, surface plasmon routing,
curved plasma filaments and autofocusing (see [9] for
a recent review).

Although the two wave families have evolved rather
independently, it would be interesting to combine their
features toward the design of new wave entities. A pos-
sibility would be to design beams with the symmetry and
resistance to diffraction of Bessel beams that are also
capable of self-acceleration. Moreover, it would be desir-
able to control the beam trajectory beyond the parabolic
law. Although not strictly nondiffracting, such beams
could be useful as hybrids between the two classes in
applications, such as microfabrication and optical twee-
zers. Interestingly, few recent works point toward this
direction by proposing techniques to create Bessel-like
beams with spiraling and snaking trajectories [10-13].

In this Letter we propose a method for generating
Bessel-like beams with arbitrary trajectories. Specifi-
cally, we consider the general problem of finding the
phase of an input wavefront that directs rays to create
an arbitrary focal curve. Any point on this curve is the
apex of a conical ray bundle emanating from a circle
on the input plane and interfering to create a Bessel-like
field pattern that propagates along the specified path.
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The beam shows resistance to diffraction keeping its
main lobe remarkably invariant.
We consider the paraxial Fresnel integral

O (X-)2 )2
u(X, Y,Z) = /Mez%dxdy’

2miZ @

where u(x,y,0) = A(x,y) exp[iQ(x,y)] is the phase-
modulated input wavefront with the transverse and
longitudinal coordinates being scaled by I and k2, respec-
tively, k being the wavenumber, and [ is arbitrary. Our
goal is to determine @ so that a focal curve is created that
is parametrically expressed as (f(Z),9(Z), Z), where f, g
are given functions. Any point F'(Z) of that curve must be
the intersection of a conical ray bundle. Equivalently,
from a stationary phase approach to Eq. (1), the first par-
tials of @ must satisty @, = (f -2)/Z, Q, = (9-¥)/Z,
where (x, y, 0) is the starting point of any ray in that bun-
dle. The continuum of points (x, ¥, 0) defines a geometric
locus C(Z) on Z = 0 that can be viewed as the isocurve of
a function Z(x, y). Now note that, if @ is to be twice con-
tinuously differentiable, its mixed partials should be
equal, ie., roy = anm yielding (x - xc)Zy =Y -Ye)Zy
where x, = f - Zf', y, = 9 - Zg' ('denotes d/dZ). There-
fore, along an isocurve, VZ is collinear to vector
(x -2,y - ¥y,), which means that C(Z) is a circle with
center (x,,%.,0) and radius R(Z) that is arbitrary for
the moment. From the expressions of x,, ¥y, it is also
obvious that the circle center is the point at which the
tangent to the focal curve at F'(Z) intersects the input
plane. We are therefore led to a clear physical picture:
The continuous focal line is the locus of the apexes of
conical ray bundles emitted from expanding and shifting
circles on the input plane (Fig. 1).

The circle radius is directly related to the transverse
beam profile. To see this, notice that each point (x, y, 0)
of C(Z) approximately contributes a plane wave to the
field around F'(Z). Neglecting amplitude variations, this
contribution can be expressed in the paraxial approx-
imation as du = exp[iP +i(f -x,9-y)  (6X,6Y)/Z],
(- denotes inner product) where (6X,0Y)=X-f,Y-g)
are local focal coordinates and

P(2) = Q.y) +[(f -2)* + (9 -v)?*1/2Z
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Fig. 1. (Color online) Schematic of the principle: Rays emitted
from expanding circles on the input plane intersect on the spe-
cified focal curve. The dots are the shifting circle centers.

is constant along C(Z) due to the phase stationarity
imposed on the integrand of Eq. (1). By integrating all
du along C(Z) and using polar coordinates (6X,8Y) =
r(cos 6,sin ), (x —x,,y — y,) = R(cos ¢, sin ¢), we end
up with 2zK exp(iP)Jy(Rr/Z), where K =exp[i(f-x,,
9-Y.)-(6X,8Y)/Z] and J is the Bessel function. There-
fore, at any Z plane, the optical field around the focus
behaves like a Bessel function modulated by a plane
wave. By further choosing R(Z) = yZ, the Bessel depen-
dence becomes J,(yr), namely independent of Z, thus
imparting to the beam a diffraction-resisting quality.
Now, to determine P, we differentiate Eq. (2) with
respect to x (or ) and use the stationarity conditions and
the circle equation to obtain

P@) = [WOF +WOP - RO/PIE @)

where arbitrarily P(0) = 0. Summarizing, the procedure
for computing @ for given trajectory and radius functions
is as follows: For any point (x, y, 0), solve the circle equa-
tion (¥ - x,)?> + (y - y,)® = R? for Z, and then substitute
to Egs. (3) and Eq. (2) to find P and @, respectively.
The above algorithm is well defined only when the
circle equation has a unique solution for Z, which means
that circles C(Z) corresponding to different Z must not
intersect. This is equivalent to the requirement that VZ
is finite. The gradient can be obtained by differentiating
the circle equation and reads VZ = (x - xy,y — ¥,)/D,
where D =RR + (x —x.)x; + (Y - Y.)Y., Where z, =
-Zf", Y, = —Zg". It follows that D is never zero iff

R(Z) > Z\lf @F +1d DF. @

This condition defines a maximum propagation distance
Z,, at which the focal curve can be created or, equiva-
lently, a maximum circle C(Z,,) in the exterior of which
the above definition of @ fails. Beyond Z,,, a different tra-
jectory must be defined. In order that @ is continuously
differentiable on C(Z,,) and the beam keeps resisting dif-
fraction, we choose to continue the trajectory along its
tangent at the ultimate point F'(Z,,) while keeping the
same R(Z). Then, circles C(Z) for Z > Z,, are concentric
and centered at (x.(Z,,),¥Y.(Z,,),0) and the emitted ray
cones create a Bessel beam propagating in the direction
of vector (f'(Z,,),9'(Z,,), 1). The maximum Z range is de-
termined by the most exterior (largest) cone.

OPTICS LETTERS / Vol. 37, No. 23 / December 1, 2012

Figure 2 shows an example of a Bessel-like beam with
a parabolic trajectory lying on plane Y = 0. The input
condition is the Gaussian exp(-r2/900) modulated by
the phase @ shown in Fig. 2(a). The amplitude evolution
on Y = 0 verifies the beam trajectory, which is a parabo-
la up to Z,, = 20 and a straight line thereafter. From the
transverse profiles at different distances, the Bessel-like
pattern is observed with a remarkably diffraction-
resisting main lobe that is an almost perfect fit of J(7)
(y = 1). Note also how the Bessel rings deform asymme-
trically while the beam accelerates. Beyond Z,,, accelera-
tion stops and the symmetric Bessel profile is restored.

The beam’s trajectory can also be defined piecewise.
Figures 3(a)-3(c) refer to a beam that initially propagates
straight and then is deflected along a half-period cosine
to finally return to a straight but parallel to the initial
path. The case of a hyperbolic trajectory is shown in
Figs. 3(d)-3(f). A hyperbola is asymptotic to a straight
line (f" — 0); hence its parameters can be chosen so
that (4) is satisfied for all Z. In both cases of Fig. 3 note
how accurately the trajectory of the main lobe repro-
duces the expected analytical curve (dashed line). Also
notable is again the resistance of the main lobe to
diffraction.

(©)

2% 0x 20

Fig. 2. (Color online) (a) Modulo-27z input phase for a Bessel-
like beam with trajectory f(Z) = Z?/40, g = 0 and R(Z) = Z.
(b) Evolution of amplitude on plane ¥ = 0. Dashed curve is
the analytic trajectory. Bottom row: Transverse amplitude pro-
files at different Z.
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Fig.3. (Color online) (a) Modulo-2z input phase; (b) amplitude
evolution on Y = 0; and (c) transverse profile at the indicated
distance for a Bessel-like beam with a piecewise trajectory.
The 10<Z <60 part of the trajectory is f(Z)=
41 - cos(n(Z - 10)/50)]. (d)-(f) Corresponding results for the
hyperbolic trajectory f(Z) = (0.64Z2 - 32Z + 800)!/2 — 8001/2
R(Z) = Z for both beams.
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Fig. 4. (Color online) (a)—(c) Self-healing evolution and trans-
verse profiles of the hyperbolic beam of Fig. 3, when a disk with
center (-10,0) and radius 20 is obstructed on Z = 0. (d)-(f) A
beam with trajectory 8 sech[0.05(Z - 45)] propagating around a
cylindrical potential with strength 0.5 (dashed line).
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Fig. 5. (Color online) Main lobe track and transverse profiles
of a beam with trajectory f(Z) =5 tanh[0.12(Z - 10)] + 5,
g(Z) = 6sech[0.12(Z - 10)]. The dashed curves are the projec-
tion of the trajectory on the X-Y plane.

By virtue of their ray structure, the proposed waves
inherit from standard Bessel beams the property to
self-reconstruct their profile after being distorted [14].
Figure 4(a) shows the evolution of the beam with hyper-
bolic trajectory of Fig. 3 after removing a circular disk
from its input wavefront. Despite the initial distortion
[Fig. 4(b)], the beam profile is fully recovered after some
healing distance [Fig. 4(c)]. Furthermore, the beams’ tra-
jectory can be engineered to guide light around objects.
In Fig. 4(d) a beam propagates along a hyperbolic secant
path to avoid an on-axis index potential, thus keeping its
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main lobe nearly unaffected [Fig. 4(e)]. Finally, the case
of a beam with a 3D trajectory is examined in Fig. 5.

In conclusion, we have proposed a method for gener-
ating Bessel-like optical beams with arbitrary trajec-
tories. The proposed beams combine the circular profile,
resistance to diffraction, and self-reconstructing proper-
ties of standard Bessel beams with the ability to acceler-
ate along rather arbitrary paths. Their implementation
should be straightforward by phase-modulating a
simple optical wavefront via a spatial light modulator
and is limited only by the pixelization of the input
phase. As hybrids between nonaccelerating and acceler-
ating diffraction-resisting beams, the new waves can
find applications in particle manipulation and laser
microfabrication.

This work was supported by project ACMAC, FP7-
REGPOT-2009-1, and by action “ARISTEIA”—Operational
Programme “Education and Lifelong Learning,” cofunded
by the European Social Fund and National Resources.

References

1. J. Durnin, J. Opt. Soc. Am. A 4, 6561 (1987).

2. D. Mcgloin and K. Dholakia, Contemp. Phys. 46, 15 (2005).

3.J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and

S. Chavez-Cerda, Opt. Lett. 25, 1493 (2000).
4. M. A. Bandres, J. C. Gutiérrez-Vega, and S. Chavez-Cerda,
Opt. Lett. 29, 44 (2004).
5. R. Piestun and J. Shamir, J. Opt. Soc. Am. A 15, 3039 (1998).
6. G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979
(2007).
. M. Berry and N. Balazs, Am. J. Phys. 47, 264 (1979).
. M. A. Bandres, Opt. Lett. 33, 1678 (2008).
.Y. Hu, G. Siviloglou, P. Zhang, N. Efremidis, D.
Christodoulides, and Z. Chen, Self-Accelerating Airy
Beams: Generation, Control, and Applications (Springer,
2012), pp. 1-46.
10. V. Jarutis, A. MatijoSius, P. D. Trapani, and A. Piskarskas,
Opt. Lett. 34, 2129 (2009).

11. A. Matijosius, V. Jarutis, and A. Piskarskas, Opt. Express
18, 8767 (2010).

12. J. Morris, T. Cizmar, H. Dalgarno, R. Marchington,
F. Gunn-Moore, and K. Dholakia, J. Opt. 12, 124002 (2010).

13. S.-H. Lee, Y. Roichman, and D. G. Grier, Opt. Express 18,
6988 (2010).

14. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and
K. Dholakia, Nature 419, 145 (2002).

© 0



