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Abstract
The majority of natural sources (black-bodies, fluorescent bulbs, etc) generate completely
un-polarized light; the majority of detectors (eyes, photo-cameras, photomultipliers, etc) are
polarization-insensitive. To reflect this, we attempt to describe approximately electromagnetic
waves without polarization. Corresponding scalar equations are non-trivial modifications of
standard d’Alembert and Helmholtz equations to the case of spatially inhomogeneous
propagation speed v(r) = 1/

√
ε(r)µ(r). A description of Fresnel reflection (FR) and

Goos–Hänchen shift for total internal reflection phenomena is given on the basis of these
modified equations.

Keywords: polarization, wave propagation, transmission, absorption

(Some figures may appear in colour only in the online journal)

1. Introduction

Let us admit that we live in an un-polarized world in the
following sense: (1) most sources of light in everyday life,
e.g. the Sun with its black-body radiation, and incandescent
and fluorescent light-bulbs, generate un-polarized light;
(2) the detection of light, e.g. by eyes, by photo-cameras, or
by photomultipliers, is mostly polarization-insensitive; (3) the
propagation of light through clean air, water, glass, and other
isotropic media is mostly un-affected by polarization.

All this gives us an incentive to look for an approximate
description of electromagnetic waves in everyday life (which
definitely are known to possess two transverse polarizations)
via a scalar approach. We want to account for the refraction
of light by the spatial gradients of propagation speed v(r),
be those gradients sharp (boundaries between two media) or
smooth. Here

v(r) (m s−1) =
1

√
ε(r)µ(r)

=
c

n(r)
,

n(r) =

√
ε(r)µ(r)
εvacµvac

,

(1)

where ε(r) (F m−1) and µ(r) (H m−1) are local dielectric
permittivity and magnetic permeability, respectively; n(r) is

the local refractive index, and c, the speed of light in a
vacuum.

Maxwell equations and material relationships are taken
as follows:

∂D
∂t
= curl H,

∂B
∂t
= −curl E, (2)

D = ε(r)E, B = µ(r)H. (3)

Together they possess the property of being invariant under
the substitutions

E⇒ H, D⇒ B, H⇒ −E,

B⇒ −D, ε(r)⇒ µ(r), µ(r)⇒ ε(r).
(4)

TE and TM have to be interchanged under the aforementioned
substitution, and the influence of impedance upon them was
not the same. (Reminder: TE and TM polarizations are
introduced for complete classification of waves in layered
media, i.e. in the media with properties depending on
one Cartesian coordinate (e.g. on z) only. Meanwhile, the
waves propagating in dielectric waveguides (with properties
dependent on cylindrical coordinate r =

√
x2 + y2 only) are

mostly ‘hybrid’, i.e. are neither of pure TE type nor of pure
TM type.) Local propagation speed v(r) = 1/

√
ε(r)µ(r) and

local refractive index n(r) stay invariant under transformation
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Figure 1. (a) Reflection and refraction by a flat boundary z = 0. (b) Fresnel reflection coefficients for intensity for TE (upper curve) and
TM polarizations versus incidence angle θ1 at the boundary between glass (n2 = 1.5) and air (n1 = 1). (c) Reflection coefficient in an
‘un-polarized world’, i.e. the arithmetic average of TE and TM reflectivities (dotted line) and the reflection coefficient according to the
Z-Helmholtz equation (solid line.) (d) The ‘error’ of the Z-Helmholtz equation in the description of the un-polarized world (solid curve) and
the difference between reflectivities of TE and TM polarizations (dotted curve).

(4). Meanwhile, the value of local impedance

Z(r) (�) =

√
µ(r)
ε(r)

(5)

changes under transformation TE ⇔ TM given by
equation (4):

Znew(r) =

√
µnew(r)
εnew(r)

=
1

Zold(r)
. (6)

In this work we explore the properties of the scalar
waves (not the electromagnetic ones) in a medium, where
the spatial profile of propagation speed v(r) is considered
inhomogeneous, but impedance is constant, Z(r) = Z1 =

const. After that we discuss which properties of light
propagation in our everyday life can be approximately
described by that scalar approach and which ones cannot.

Electromagnetic waves in media with constant impedance
have been considered in a number of works of metamaterials
and cloaks; see e.g. [1–3]. However, as for the media
considered in numerous works on metamaterials, they have
electromagnetic properties that are very different for two
eigen-polarizations and thus they are out of the scope of
interest of this paper.

A preliminary variant of this work was presented in [4].

2. Fresnel reflection in an un-polarized world and in
the Z-Helmholtz approach

We consider a hypothesis here that equation (A.20) from
the appendix for the complex scalar amplitude p(r) of a
monochromatic wave

Z = const ⇒ k(r) E∇ ·

{
1

k(r)
E∇p(r)

}
+ k2(r)p(r) = 0, (7)

(i.e. the Z-Helmholtz equation, in the terminology of
the appendix) may serve the purpose of an approximate
description of an ‘un-polarized world’.

It is instructive (for subsequent comparison with optics)
to calculate, within the framework of the Z-Helmholtz
equation, the coefficient R(θ1) = |r(θ1)|

2 of Fresnel reflection
for a plane wave, which is incident at an angle θ1 to the normal
of a sharp flat boundary between two media with k(z)= k1 and
k(z) = k2, respectively, figure 1(a).

One looks for the solution

p1(x, z) = exp(ik1x sin θ1)[1 exp(ik1z cos θ1)

+ r · exp(−ik1z cos θ1)] at z < 0, (8)

p2(x, z) = exp(ik2x sin θ2)[t exp(ik2z cos θ2)]

at z > 0. (9)

2
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Boundary conditions follow from equation (7) itself:
continuity of p and of its normal (i.e. z)-derivative, divided
by the corresponding value of k:

p1(x, z = 0) = p2(x, z = 0),

1
k1

(
∂p1(x, z)

∂z

)
z=0
=

1
k2

(
∂p2(x, z)

∂z

)
z=0

.
(10)

As a result, from x-dependence one gets Snell’s law:

k2 sin θ2 = k1 sin θ1, (11)

and then

r = rZH(θ1) = −
B2,1(θ1)− 1
B2,1(θ1)+ 1

, (12)

where

B2,1(θ1) =
cos θ2

cos θ1
, (13)

and the dependence of θ2 on θ1 is defined by Snell’s law (11).
It is instructive to compare the (12), (13) with the

well-known formulae for Fresnel reflection amplitudes for TE
and TM polarizations reflected by a sharp boundary between
two media with (generally different) k1,Z1 and k2,Z2.

Snell’s law is still the same, equation (11), dependent
on phase velocities v1,2 = ω/k1,2 ≡ c/n1,2 only. Standard
electrodynamic boundary conditions of continuity of electric
field components parallel to the boundary and of magnetic
field components parallel to the boundary lead to well-known
formulae, which may be found in textbooks on radiophysics:

rTE(θ1) ≡ r(Ey ← Ey) =
[A2,1/B2,1(θ1)] − 1
[A2,1/B2,1(θ1)] + 1

, (14)

rTM(θ1) ≡ r(Ex ← Ex) =
[A2,1B2,1(θ1)] − 1
[A2,1B2,1(θ1)] + 1

. (15)

Here we have introduced the ratio of impedances (which does
not depend on incidence angle):

A2,1 = Z2/Z1. (16)

Figure 1(b) depicts well-known graphs of reflected
intensities R(θ1) ≡ |r(θ1)|

2 for TE and TM polarizations, for
a particular boundary between air (n1 = 1,Z1 = 377 �) and
glass (n2 = 1.5,Z2 = (377/n2) �), parameter A2,1 = 1/n2 =

0.67. At θ1 = arctan(n2) ≈ 56◦, polarization TM exhibits
the Brewster phenomenon of zero reflection, i.e. 100%
transmission. Normal incidence yields the well-known R(0)=
4% for both polarizations, while grazing incidence (θ1→ 90◦)
yields almost 100% reflection, R(90◦) = 100%, again for
both polarizations. Figure 1(c) depicts the reflection curve
for the un-polarized world, i.e. arithmetic average: RD(θ1) =

0.5[RTE(θ1) + RTM(θ1)]. Indeed, in the un-polarized world
incident illumination is 50/50 split in intensities between
TE and TM, and detection is equally sensitive for both
polarizations. For comparison we depict on the same
graph (figure 1(c)) the reflection curve calculated from
the Z-Helmholtz equation, RZH(θ1). Figure 1(d) depicts the
‘error’ of the Z-Helmholtz description, ERR(θ1) = RD(θ1)−

RZH(θ1), and the difference between two polarizations:

POLD(θ1) = RTE(θ1) − RTM(θ1). One can see that the
difference in reflectivities between the two polarizations is
considerable: it reaches 30% at θ1 = 79◦. Meanwhile the
‘error’ changes from +4% at normal incidence (θ1 = 0) to
−1.3% at θ1 = 86◦ and to zero at θ1 = 90◦.

One can easily draw similar graphs and estimates for
other values of the relative step of refractive index in the
electrodynamics of non-magnetic media, for which one has
impedance rigidly tied to the refractive index:

Z(�) =
377

n
(non-magnetic media). (17)

For example, for diamond-like material, n2 = 2.4, the ‘error’
of the Z-Helmholtz approach is less than 17%, being at a
maximum for normal incidence, while the difference between
reflectivities of the two polarizations reaches 60%.

By the very sense of the approximation, the Z-Helmholtz
equation predicts perfectly correct trajectories of rays, since
phase velocities are taken true from the properties of the
original media. As we have seen above, the Z-Helmholtz
equation (7) (meaning Z = const) gives a quite realistic
description of Fresnel-reflected intensities in the un-polarized
world, at least for dielectric media with a not too large
refractive index.

3. Goos–Hänchen shift

Another interesting application of the notion of the un-
polarized world is the Goos–Hänchen shift of the centre of
a beam reflected via total internal reflection (TIR), figure 2(a).
The phenomenon of TIR may occur at the boundary of a
medium ‘1’, which has larger refractive index n1 = k1c/ω,
with another medium, which has smaller refractive index n2 =

k2c/ω, i.e. if n2 < n1. The condition of TIR is k2 < k1 sin(θ1),
and it requires the angle of incidence θ1 to be larger than the
critical angle of TIR at that boundary. Goos–Hänchen shift is
considered in a large number of publications and reviews, see
e.g. [5–7].

The theory is based on the calculation of reflection
coefficient, which happens to have a unit absolute value (in
the case of TIR for non-absorbing media, real n2 and n1).
Introducing tangential component q ≡ k1x of the wavevector
k1 of the incident wave,

q = k1 sin(θ1), (18)

one can use the same Z-Helmholtz boundary conditions,
equation (10), to get:

r(q) ≡ r(k1 sin(θ1)) =
1− iγ
1+ iγ

≡ exp(−iδ) ⇒

δ = δ(q) = 2 arctan[γ (q)], (19)

γZH(q) =

√
(q/k2)2 − 1√
1− (q/k1)2

. (20)

An approximation of the small angular spread of the incident
beam allows us to derive a standard expression for the value
of the Goos–Hänchen shift:

1x =
dδ(q)

dq
. (21)
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Figure 2. (a) Goos–Hänchen shift 1x at total internal reflection. (b) Goos–Hänchen shift 1x for TE-(sTE(θ1), solid line) and TM
polarizations (sTM(θ1), dotted line), in units of vacuum wavelength, versus incidence angle θ1 at the boundary between glass (n1 = 1.5) and
air (n2 = 1). (c) Goos–Hänchen shift 1x in the un-polarized world, i.e. arithmetic average of TE- and TM-shifts (sD(θ1), solid curve), and
the value of the said shift according to the Z-Helmholtz equation (sZH(θ1), dotted curve). (d) Relative error of the Z-Helmholtz equation in
the description of the Goos–Hänchen shift 1x in the un-polarized world, err(θ1) = −1+ [sZH(θ1)/sD(θ1)], for the boundary between
glass, n1 = 1.5, and air, n2 = 1.

One can also calculate well-known formulae for the
Goos–Hänchen shift separately for TE and TM polarizations
of light waves at the boundary of two media. The results are
given by formulae (19), (21), but with a change of γZH(q)
from (20) to

γTE(q) =
1

A2,1
γZH(q),

γTM(q) = A2,1γZH(q), A2,1 =
Z2

Z1
,

(22)

respectively. The corresponding formulae are simply results
of differentiation.

Figure 2(b) shows the graphs of dependence of shift
for TIR at the boundary of glass (n1 = 1.5) with air (n2 =

1), separately for TE (sTE(θ1)) and for TM (sTM(θ1))
polarization; the value of the shifts is expressed in units of
the vacuum wavelength. One can see a rather considerable
difference between shifts for two polarizations. Figure 2(c)
shows the arithmetic average of two shifts, (sD(θ1)), which
corresponds to the notion of the un-polarized world, and the
shift calculated on the basis of the Z-Helmholtz approach,
(sZH(θ1)). Figure 2(d) depicts the relative error of the
Z-Helmholtz approach, err(θ1) = −1 + [sZH(θ1)/sD(θ1)].

One can see that for TIR at the glass–air boundary, the thus
defined relative error does not exceed 10% at any angle, and
mostly is less than 7%. For the boundary of a diamond-like
medium (n1 = 2.4) with air (n2 = 1) the relative error does
not exceed 30% at any angle and is mostly less than 15%.

From the very sense of the approximation, the Z-
Helmholtz equation predicts perfectly correct trajectories of
rays, since the phase velocities are taken true from the
properties of the original media. One can see again that
the Z-Helmholtz equation (meaning Z = const) gives a
quite realistic description of the Goos–Hänchen shift in the
un-polarized world, at least for dielectric media with not too
large refractive indices.

It is quite interesting also to consider angular shifts of the
beam in the process of Fresnel reflection, as well as lateral
shifts of circularly polarized beams (the Fedorov–Imbert
effect). As for angular shift (see [8–10]), it exhibits very
strong resonant behaviour in the vicinity of the Brewster
angle, but for p-polarization only. Fedorov–Imbert shifts
(see [9–15]) by their very nature have opposite sign for
two circular polarizations. Thus both angular shifts and
Fedorov–Imbert shifts constitute the phenomena, where the
scalar approach of the Z-Helmholtz equation cannot give the
correct answer, even an approximate one.

4
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4. Strength of reflection and additivity of two causes
of reflection

In the works [16–19] Zeldovich and Mokhov have introduced
the notion of ‘strength of reflection’, a dimensionless
parameter S(θ1), defined through r(θ1) by

r(θ1) = tanh[S(θ1)] ≡
exp[2S(θ1)] − 1
exp[2S(θ1)] + 1

. (23)

One can see from equations (14) and (15) above that the values
of Fresnel reflection strength satisfy simple laws of additivity
(or, so to say ‘subtractivity’):

STE(θ1) = SZZ − SZH(θ1),

STM(θ1) = SZZ + SZH(θ1).
(24)

Here SZZ is the angle-independent strength of reflection,
governed by a step of impedance only, and SZH(θ1) is
the strength of reflection, calculated from the Z-Helmholtz
equation and governed by step of propagation speed only:

SZZ =
1
2

ln(A2,1) ≡
1
2

ln
(

Z2

Z1

)
,

SZH(θ1) =
1
2

ln(B2,1(θ1)) ≡
1
2

ln
(

cos θ2

cos θ1

)
.

(25)

Even for TIR, when n1 > n2 and cos(θ2) becomes purely
imaginary one has

TIR: B2,1(θ1) ≡
cos θ2

cos θ1

≡ iγZH(q = k1 sin(θ1)) ≡ i

√
(q/k2)2 − 1√
1− (q/k1)2

, (26)

STE(q) = SZH(q)+
1
2

ln(A2,1) ≡ −
iπ
4

+
1
2 ln(A2,1)+

1
2 ln(γZH(q)), (27)

STE(q) = SZH(q)−
1
2

ln(A2,1) ≡ −
iπ
4

−
1
2 ln(A2,1)+

1
2 ln(γZH(q)). (28)

Thus we see that the notion of ‘reflection strength S’ helps in
understanding many features of reflection. It was also shown
in [18, 19] that reflection of longitudinal acoustic waves also
satisfies the additivity law (24). The Brewster phenomenon,
both in optics and in acoustics, may be interpreted as
mutual cancellation of ‘speed-step’ (i.e. Z-Helmholtz) and of
‘impedance-step’ contributions to reflection strength.

5. Conclusion

The generalization of d’Alembert and Helmholtz equations
for one scalar amplitude is given, which allows us to describe
approximately optical phenomena in an un-polarized world.
The approximation turned out to be surprisingly good. The
notion of ‘strength of reflection’ is discussed in connection
with these generalized equations.
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Appendix

In this appendix we derive the equations for longitudinal
acoustic waves in a generally inhomogeneous liquid, where
both the speed of sound c(r) and background density
ρ0(r) may be coordinate-dependent. Linearized equations of
hydrodynamics (i.e. of acoustics) deal with the following
dependent variables:

density

ρ(r, t) = ρ0(r)+ ρ′(r, t)+ ρ′′(r, t) (kg m−3), (A.1)

velocity

v(r, t) = E0+ v(r, t) (m s−1), (A.2)

and pressure

p(r, t) = p0 + p′(r, t) (Pa ≡ kg s−2 m−1). (A.3)

Thus the background velocity is assumed to be absent in
this stationary medium and background pressure is constant,
p0 = const.

The linearized Newton’s second law may be written as

ρ0(r)
∂v(r, t)

∂t
= −E∇p(r, t). (A.4)

The less evident part of the derivation is the separation
of small variations of density due to the propagation of sound
waves into two parts; ρ(r, t)− ρ0(r) = ρ′(r, t)+ ρ′′(r, t).

The first part, ρ′(r, t), describes the compressions and
rarefactions of physically the same particles of acoustically
moving liquid, that is to say the change of density in Lagrange
coordinates.

The second one, ρ′′(r, t), describes that part of local
density change in Euler coordinates that arises due to the
displacement of the particles of liquid from the previous
position (r − δr), where the background density ρ0(r) was
slightly different, so that

ρ0(r− δr) ≈ ρ0(r)− δr · E∇ρ0(r),

δr = vδt ⇒
∂ρ′′(r, t)

∂t
= −v(r, t) · E∇ρ0(r).

(A.5)

The necessity for this separation of density variation into
ρ′(r, t) and ρ′′(r, t) is connected with the physical assumption
about the material equation of state of compressible liquid.
Namely, that the change in pressure is a result of the first
(Lagrangian) part of density change only:

p′(r, t) = c2(r) ·ρ′(r, t), (A.6)

where

c2(r) ≡ ∂p/∂ρ (A.7)

5
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is the square of the local speed of sound. Meanwhile, the
mass conservation law may be written (in the same linearized
approximation) as

∂
[
ρ′(r, t)+ ρ′′(r, t)

]
∂t

+ E∇ · {v(r, t)ρ0(r)} = 0. (A.8)

As a result of very convenient cancellation, one can get rid of
ρ′′(r, t) altogether:

∂ρ′(r, t)

∂t
= −ρ0(r)( E∇ · v(r, t)). (A.9)

Expressing ρ′(r, t) via pressure variation by equation (A.6),
one gets the system of coupled equations for velocity and
pressure:

∂v(r, t)

∂t
= −

1
ρ0(r)

E∇p′(r, t),

∂p′(r, t)

∂t
= −ρ0(r)c2(r)( E∇ · v(r, t)).

(A.10)

It is convenient to introduce now the notion of the acoustic
impedance Z(r) of our liquid:

Z(r) = ρ0(r)c(r) ≡ ρ0(r)
√
∂p/∂ρ. (A.11)

With this definition, our system may be reduced to

∂v(r, t)

∂t
= −

c(r)
Z(r)
E∇p(r, t), (A.12)

∂p(r, t)

∂t
= −Z(r)c(r)( E∇ · v(r, t)). (A.13)

The prime symbol in p′(r, t) was omitted for brevity.
Any serious textbook dealing with acoustics contains some
equivalent of this derivation, see e.g. [20–22].

The consequence of this system (A.12), (A.13) is a
second-order d’Alembert-type equation for pressure only:

1

c2(r)
∂2p(r, t)

∂t2
−

Z(r)
c(r)
E∇ ·

{
c(r)
Z(r)
E∇p(r, t)

}
= 0. (A.14)

It is instructive to consider two exceptional cases. The
first one is when our liquid, having inhomogeneous speed of
sound c(r), possesses ideally constant impedance:

Z = const ⇒
1

c2(r)
∂2p(r, t)

∂t2

−
1

c(r)
E∇ · {c(r) E∇p(r, t)} = 0. (A.15)

The other exceptional case is when our liquid, having
inhomogeneous impedance Z(r), possesses ideally constant
speed of sound:

c = const ⇒
1

c2

∂2p(r, t)

∂t2

− Z(r) E∇ ·
{

1
Z(r)
E∇p(r, t)

}
= 0. (A.16)

One can call equation (A.15) with Z = const the Z-d’Alembert
equation, while equation (A.16) with c = const can be called
the C-d’Alembert equation. Certainly, when Z = const and

c = const, these equations are both reduced to the standard
d’Alembert equation:

c = const, Z = const ⇒
1

c2

∂2p(r, t)

∂t2

− ( E∇ · E∇)p(r, t) = 0. (A.17)

Limiting oneself to monochromatic time-dependence ∝
exp(−iωt) and introducing the value of local wavevector

k(r) = ω/c(r), (A.18)

one can get the equation for the general case:

Z(r)k(r) E∇ ·
{

1
Z(r)k(r)

E∇p(r)
}
+ k2(r)p(r) = 0. (A.19)

Its Z-Helmholtz variant becomes

Z = const ⇒ k(r) E∇ ·

{
1

k(r)
E∇p(r)

}
+ k2(r)p(r) = 0, (A.20)

while the C-Helmholtz (or K-Helmholtz) variant becomes

c = const, k = (ω/c) = const

⇒ Z(r) E∇ ·

{
1

Z(r)
E∇p(r)

}
+ k2p(r) = 0, (A.21)

and the standard Helmholtz equation is

Z = const, k = (ω/c) = const ⇒ ( E∇ · E∇)p(r)

+ k2p(r) = 0. (A.22)

We use the Z-Helmholtz equation (A.20) in our consideration
of the ‘un-polarized world’.

Equation (A.20) may be obtained also as a consequence
of the variational principle applied to the ‘action functional I’,
taken in this form:

I[p(r), (p(r))∗] =
∫∫∫ [

k(r)p(r)(p(r))∗

−
1

k(r)

(
E∇p(r) · ( E∇p(r))∗

)]
d3r (A.23)

with k(r) = (k(r))∗. In the case of an arbitrary profile of
k(r), allowed to be complex-valued so that k(r) = Re(k(r))+
iIm(k(r)), the variational principle does not hold. Still, even
in that complex case, any pair of solutions p1(r) and p2(r) of
equation (A.20) can be arranged into Wronsky’s vector, which
has zero divergence as a consequence of equation (A.20):

EW1.2(r) =
1

k(r)
(p1(r) E∇p2(r)− p2(r) E∇p1(r)),

div( EW1.2(r)) = 0.
(A.24)

Moreover, if k(r) is real, then for any solution p1(r) of
equation (A.20), the function p2(r) = (p1(r))∗ is a solution
of equation (A.20) as well, giving a time-reversed or
‘phase-conjugate’ solution, and thus for any solution p(r) one
gets:

Ej(r) =
1

2ik(r)
[(p(r))∗ E∇p(r)− p(r) E∇(p(r))∗],

div(Ej(r)) = 0.
(A.25)
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Thus the flux vectorEj(r) has zero divergence as a consequence
of the Z-Helmholtz equation (A.20) with real k(r). This
may be considered as a manifestation of Noether’s theorem
whereby the invariance of functional (A.23) with respect to
infinitesimally small transformation of phase,

p(r)→ p(r)(1+ iε),

(p(r))∗→ (p(r))∗(1− iε), ε→ 0.
(A.26)

The one-dimensional case has an especially simple
solution: for k = k(z), two functions,

p+(z) = exp
[
+i
∫ z

0
k(z′) dz′

]
,

p−(z) = exp
[
−i
∫ z

0
k(z′) dz′

]
,

(A.27)

happen to be exact solutions of equation (A.20) for arbitrary
profile of k(z), even a complex one. These functions look
like WKB-type approximations without a pre-exponential
factor, but they are exact solutions of equation (A.20)!
This should not be a surprise as there is no reflection in
1D-propagation, if impedance is constant, either in acoustics
or for radio-frequency coaxial cables or in electrodynamics in
general, even for the step-like change of k(z).
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