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Abstract:  Thin film selenide glasses have emerged as an important 
material for integrated photonics due to its high refractive index, mid-IR 
transparency and high non-linear optical indices. We prepared high-quality 
As2Se3 glass films using spin coating from ethylenediamine solutions. The 
physio-chemical properties of the films are characterized as a function of 
annealing conditions. Compared to bulk glasses, as-deposited films possess 
a distinctively different network structure due to presence of Se-Se homo-
polar bonds and residual solvent. Annealing partially recovers the As-Se3 
pyramid structure and brings the film refractive indices close to the bulk 
value. Optical loss in the films measured at 1550 nm wavelength is 9 dB/cm, 
which was attributed to N-H bond absorption from residual solvent. 
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1. Introduction 

Chalcogenide glasses are ideal candidates for various applications in photonic systems 
because of their wide transparency window from the visible to mid-IR region [1, 2], high 
optical nonlinearities [3, 4], photosensitivity [5, 6], and large photothermal figure-of-merit [7, 
8]. Chalcogenide glass films are most commonly deposited either by thermal evaporation [9, 
10], sputtering [11], or pulsed laser deposition [12-14]. Amine solution processing, first 
developed in the 1980s [15-17], has recently emerged as a promising technique for low-cost, 
large-area chalcogenide glass film deposition. In addition, it has been shown that solution 
processing can be combined with soft lithography such as micro-molding in capillaries [18] 
and micro-transfer molding [19] for photonic device fabrication.  

Previous efforts on chalcogenide glass films via spin-coating have mostly focused on 
sulfides [12, 15, 17, 20-23]; solution processing of selenide glasses, on the other hand, is 
much less explored [15, 24, 25]. Difficulties in dissolving selenides partly account for this 
lack of research coverage. While we observed poor selenide solubility in propylamine and 
butylamine (solvents widely used in sulfide spin-coating), ethylenediamine (EDA) serves as a 
good solvent for selenide glasses. Previous studies by Guiton et al. suggest that the As2S3 
chalcogenide dissolution process in EDA proceeds as the EDA molecules chelate between As 
atoms, which breaks the As2S3 pyramid network and forms EDA chelated As4S4 units 
interconnected by S-S homopolar bonds [26]. Given the structural resemblance between 
As2S3 and As2Se3 (both types of glasses consist of As-chalcogen trigonal pyramids [27], it is 
reasonable to postulate a similar chelation dissolution mechanism of As2Se3 glass in EDA. To 
validate this model, the structural and optical properties of spin-coated As2Se3 films were 
evaluated in this study. Finally, as a proof-of-concept device application, optical guiding in 
planar waveguides in spin-coated As2Se3 films was also demonstrated. 

2. Film deposition and morphology 

Solutions of As2Se3 were prepared by dissolving As2Se3 powder (Alfa Aesar Inc., 99.999%) 
into ethylenediamine (Fluka Chemicals, ≥ 99.5%). The dissolution process was carried out 
inside a sealed glass container to prevent solvent evaporation. A hot plate with magnetic 
stirrer was used to expedite the dissolution process. The solution was then centrifuged at a 
rate of 4000 rpm for 10 min and filtered using syringe filter with 0.2 micron filtration 
membrane to remove suspended particles and insoluble impurities. A maximum glass loading 
of 0.6 g/mL in EDA was achieved without apparent phase separation or precipitation in the 
solution. The resulting solution was stored inside a nitrogen-purged glove box until use to 
prevent oxygen and water contamination. During spin-coating, 1.5 milliliters of solution with 
desired concentrations of As2Se3 was pipetted onto a substrate (microscope slides from Fisher 
Scientific Inc. or 3" silicon wafer from Silicon Quest International), and spun at various rates 
for 30 s. The resulting films are pre-baked in a nitrogen atmosphere at 60 °C for 30 min 
immediately after spin coating. In the present study, we chose films deposited from solutions 
with 0.2 g/mL glass loading at a spin speed of 1000 rpm to evaluate the impact of annealing 
on film structure and properties. Thickness of these as-deposited films was measured to be 
(428 ± 8) nm using a Dektak II surface profilometer. The amorphous nature of all films used 
in this study was confirmed by X-ray diffraction. 

The as-deposited films were annealed in an ambient environment as well as in vacuum. 
Films annealed in an ambient environment were dotted with self-assembled arsenic oxide 
crystals on the surface. As is shown in the scanning electron microscope (SEM) image in Fig. 
1, most of these crystals are 1 to 5 microns in size, and exhibit a nearly perfect triangular 
shape. Their composition was measured using energy dispersive X-ray spectroscopy (EDX) 
to be AsOx (atomic ratio) where x varies from 2 to 2.8 (Table 1). 
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