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Strength of electromagnetic, acoustic and
Schrodinger reflections

By SErGIY Mokuov AND Boris Ya. ZeLpovicu*

College of Optics and Photonics: CREOL and FPCE,
University of Central Florida, PO Box 162700, Orlando, FL 82816-2700, USA

The notion of reflection strength S of a plane wave by an arbitrary non-absorbing layer
is introduced, so that the intensity of reflection is R=tanh®S. We have shown that
the total strength of reflection by a sequence of elements is expressed through particular
element strengths and mutual phases between them by a simple addition rule; in
particular, its possible maximum is the sum of the absolute strengths of constituents. We
show that the standard Fresnel reflection may be understood in terms of variable S as a
sum or difference of two separate contributions, due to an impedance step and a speed
step. Strength of reflection for propagating acoustic and quantum mechanical waves is
also discussed.

Keywords: reflection; electromagnetic waves; acoustic waves; continuous spectrum;
Schrédinger equation

1. Introduction

Reflection of light by layered media is the subject of an enormous number of
works, including numerous monographs (see Brekhovskikh 1980; Haus 1984;
Landau & Lifshitz 1984; Azzam & Bashara 1987; Yeh 1988; Born & Wolf 1999).
In particular, reflection of light by volume Bragg gratings (VBGs) is usually
studied in a slow-varying envelope approximation (see Kogelnik 1969; Collier
et al. 1971; Zel’dovich et al. 1992) and recent experiments with VBGs in photo-
thermo-refractive glass by Glebov et al. (2002). This work is devoted to the
theoretical study of the general properties of reflecting elements. We allow for
modulation of both dielectric susceptibility ¢(z) and magnetic permeability u(z).
The latter is especially important in connection with the new types of materials,
including the ones with ¢<0 and u<0 (see review by Pendry 2003).

2. Matrix method for description of strength of reflection

For a better perspective, let us first consider the transmission VBG, which
couples two plane waves, A and B, both having a positive z-component of the

Poynting vector: P,=|A|*+|B|*. Here, the z-axis is normal to the boundaries of
the VBG. Absence of absorption results in the conservation law: P,=const.
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Writing the matrix relationship for wave coupling in linear media, A(z)=
Nya-A(0)+ Nyp-B(0) and B(z)=Nps-A(0)+ Npp-B(0) one comes to the
conclusion that matrix N(z) must be unitary, i.e. it belongs to the elements of
the unitary group U(2).

Consider now a reflecting device, where the waves A and B propagate in opposite
directions with respect to the z-axis, so that P,=|A|*—|B|?. Absence of absorption
results in the conservation law: | A|*— | B|*=const. Writing the matrix relationship
for wave coupling in linear media,

A(z) = My,-A(0) + Myp-B(0) and B(z) = Mpy-A(0) + Mpg-B(0), (2.1)

one can deduce from the assumption of energy conservation that the matrix M (2)
satisfies the following conditions:

~ [0 .8 * *
M=<7 6), o=y =1, =8 =1 and o =75". (2.2)

The most general form of such a matrix M depends on the following four real
parameters: strength S, inessential phase ¢ and two phases { and 7,

. (e 0 coshS sinh S\ e 0
M =eY _ . (2.3)
0 e sinh S cosh S 0 e

The determinant of such a matrix equals exp(2iy), so that the modulus of that
determinant is 1. Such matrices constitute a U(1, 1) group: their multiplication and
taking inverse leave them within the same set. One can see an analogy between our
transformation of wave amplitudes (2.1)—(2.3) and the Lorentz transformation if
|A|* is playing the role of ¢*t*, |B|? the role of z° and the quantity tanh S
corresponding to velocity parameter §= V/c, where V'is the relative velocity of the
coordinate frames.

Physical addition of two sequential elements with the parameters S, 1, 1, 71
and Sy, Yo, Lo, Mo, respectively, yields the element described by the matrix

My = M,M, i.e. the matrix of the same type as (2.3). Here is the expression for
the resultant strength parameter Ss,

Sy = arcsinhy/sinh?(S; + S,)cos?7 + sinh?(S; — Sy)sin’r, 7= —n,, (2.4)

which can vary due to a mutual phase difference between reflective elements.
The knowledge of the matrix M(z) allows one to find the amplitudes of the
reflection and transmission coefficients. For example, for the problem with the wave
A incident to the layer at the front, z=0, and with no wave B incident to the
back, z= L, one substitutes boundary conditions A(0)=1 and B(L)=0 to get

M .
0= Mpy(L)+ Mpg(L)-r=r=r(B<—A)= —ﬁﬁgz —e MMtanh §  (2.5)

and ) )
R=|r(B« A)|" =tanh"S. (2.6)

The presence of a hyperbolic tangent function is very satisfying: when the strength
S goes to infinity, the reflection goes to 1 asymptotically. Kogelnik’s (1969) theory
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of reflection by VBGs predicts the following value of the resultant strength:

sinhy/ 93 — X?
Rypg = tanh?S ,  S=arcsinh | S§5————+—|,
V56— X (2.7)

SO = |K‘L7 X = <%COS Oinside — Q) L.
c 2

Here, Sy is the strength of the VBG at perfect Bragg matching when the detuning
parameter is X=0 and the coupling parameter |k|=1/2 (nw/c)-|cos(E4,Ep)|
corresponds to modulation of the refractive index dn(z) =n, cos(Qz). The angle
Binside 18 the propagation angle of the waves A and B inside the material of the
VBG. Note that our formula (2.7) is mathematically identical to the result found
by Kogelnik (1969), but is written in a somewhat different form.

3. Superposition law for strength values of several elements

If a reflective VBG slab has a certain residual reflection by the boundaries, R, =
|r|* and Ry=|m|?, then the question arises about coherent interference between
the main VBG reflection from equation (2.7) and these two extra contributions.
Attentive consideration of the result (2.4) allows us to predict that, at any
particular wavelength and/or angle of the incident wave, the strength S, of the
total element will be within the limits

Sypa — 51 =92 £ Sior < Sypa + 51| + 5], Sio = —arctanh ry,.  (3.1)

Consider a particular example of the grating strength Sygg=3.0 at resonance, so
that Rvpe=0.99. Even if one has to deal with Fresnel reflections, R; = R,=0.04
for ng=1.5, the modified reflection at the exact Bragg condition is within the
boundaries 0.978 < R, <0.996. On the contrary, in the spectral points of exactly
zero Rvpg, the residual reflection varies within the interval

tanh?(S; — S,) < R< tanh*(S; + S,). (3.2)

In particular, if Ry=R,=0.04, then 0< R<0.148. Another example is if R;=
R>=0.003, then 0<R<0.012. Formula (3.2) allows us to also easily estimate
maximum and minimum reflection of a Fabri—Perot interferometer with lossless
mirrors of unequal reflectivities Ry and Ro.

4. Understanding Fresnel reflection

Consider now a fundamental problem of electrodynamics: reflection of light by
the sharp boundary between two media at the incidence angle 6, so that the
refraction angle is 6,. We denote by &, ui, €2 and u, the values of the dielectric
permittivity and magnetic permeability in these two media, so that the values of
phase propagation speed v, » and impedance Z; » are

cC 1 Ei M 2]
vi = —, c = Ee—— n] = JMJ and Z] = &’ ] - 1,2 (41)
’ n; v EvacMvac ' EvacMvac &
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The angles 6, and 60, are related by Snell’s law, which is governed by propagation
speed ratio, i.e. by the ratio of refractive indices n; and n,, namely n; sin §; =
no sin fs. Cases of total internal reflection (TIR) and/or of absorbing second
medium require the definition

2
cos fy = \/1 — (ﬂ> sin?0, = C5 +iC3, 5> 0. (4.2)

g

The condition C% >0 guarantees the exponential decrease of the transmitted
wave into the depth of the second medium. Amplitudes of reflection for
transverse electric (TE) and transverse magnetic (TM) polarization are well known,

cos 0,/Z, —cos 0,/ 75 )
cos 0,/ 7 +cos b,/ 7,

and (4.3)
_ Zycos 0 —Z cos by
7y cos by + Zy cos Oy

"TE = T(EU «— EU) =

rT™M = T(Ex -~ E?:) =

These expressions have two very instructive limiting cases. The first one is the
case of two media that have the same phase speeds v;=v, (and thus refractive
indices), so that ;=6,. In a surprising manner, the reflection coefficients for such
a problem do not depend on the angle and are equal to each other,

Jo— I
"TE = 'tM = Taz = ﬁ (4.4)
2 1

The other case corresponds to media 1 and 2 having exactly the same impedances,
7= Zs, but different propagation speeds, i.e. n;+# no. In this case, both reflection
coefficients are equal to each other (up to the sign),

cos 0, —cos 0
T = —rrv = Tay(01) = — 2 (4.5)

"~ cos B, +cos by
In particular, there is no reflection at normal incidence for the pair of impedance-
matched media (stealth technology). Reflection strength values S= —arctanh r
for these two limiting cases are

1 A 1 cos 0y
SAZ = 2].I1(Z2> and SAU(ﬁl) = 9 ].Il(cos 01) . (46)

Here is a truly remarkable relationship, which we have found. One can produce
the reflection strengths Srg(6;) and Sty(6;) by simple addition (for TE) or
subtraction (for TM) of the speed-governed and impedance-governed contri-
butions from (4.6),

Ste(th) = Saz + Sp(01) and  Spyi(0h) = Saz — Sau(61), (4.7)

and according to equation (2.6), 7= —tanh S. One can easily verify that the
expressions (4.6) and (4.7) reproduce standard formulae (4.3) identically.
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5. Maxwell equations for coupled waves: exact approach

We have actually found (4.7) for ourselves, not empirically, but have derived the
result of additivity for reflection strength S directly from the Maxwell equations.
The idea is to formulate exact Mazwell equations for the layered medium in terms of
two coupled amplitudes A and B propagating with P,>0 and P,<0, respectively.
We consider the incidence plane to be the (z, z)-plane, for a monochromatic wave

xexp(—iwt) incident upon a layered medium with the properties being
z-dependent only. By 6,;,, we denote the incidence angle of the wave in air, so that

~ A w . w
kair = mkr + Zkair,za k:v = ? ThjyS1IL 0air7 kair,z = ? Thyjr COS 0air' (51)

The waves in a layered medium are naturally separated into TE and TM parts.
We will write electric and magnetic vectors of two polarizations through
appropriately normalized components u,, u,, v, and w,, w,, w,, respectively,

TE: E(r,t) =—gu,(2)exp(ik,z — iwt)\/ Z(2), } (5.2)
H(r,t) = [gw,(2) + zw,(2)]exp(ik,z — iwt) /\/ Z(2),
and
TM: E(r,t) = [#u,(2) + 2u,(2)lexp(ik,2 — iwt)\/Z(2), } 53)
H(r, t) = yw,(z)exp(ik,z — iwt) /\/ Z(2).

Here and below, we use quantities k(z), p(z), g(z) and f(z) defined by

k(z) = ‘*’"C(Z) C p(2) = \/R2(2) — k2 = k(2)cos 0(2), (5.4)
g9(z) = % %lnﬁ and f(z) = % %ln ZE;; = % %ln cos 0(z). (5.5)

The Maxwell equations for amplitudes of TE polarization are
iku, = 0,w, — ik,w, + gw,, —ikw, =—0,u, + gu, and —ikw, =ik,u,, (5.6)
and may be rewritten as
. . 2
0,u, = gu, +ikw, and 0,w, =ip”/ku,— gw,. (5.7)

It is convenient to introduce the amplitudes A(z) and B(z) for TE polarization by
the definitions

(Dbl 2) = = \/%W) + \/gwm

and (5.8)

BTE(Z)eXp(_ ikair,zz) = % \/%uy(z) - \/%’U)T(Z) .
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The value of the z-component of the Poynting vector for any incidence angle at
any point zis

P.(2) =~ (B} — By +c.c.) = [A(2) = | B(:)[". (5.9

4
It should be emphasized that we have deliberately chosen such normalization of
amplitudes A(z) and B(z) so that relationship (5.9) is valid at any point z. One
may consider the transformation (5.8) as a transition to ‘slow-varying envelopes’
A(z) and B(z). It is important to emphasize, however, that no approximations
were made up to this point. Indeed, the exact Maxwell equations for TE
polarization are reduced to a very simple coupled pair,

i(ATE(z)> _ v (ATE(z)> )
dz \ Brg(2) " Brg(2)

and (5.10)
V l(p(z) - kair,z) (g(z) + f(z))exp(_Qikair,zz)
TE = . . .
(g(Z) + f(z))exp(2lkair,zz) —l(p(Z) - kair,z)
A similar set of transformations may be done for TM polarization
—iku, = —0,w, —gw,, —iku, =ik, w,
—ikw, = iku, —0,u, + gu, = 0,u, = gu, +1p/k and 0w, = iku, —gw
(5.11)
with the same parameters k(z), g(z) and p(z). The amplitudes of coupled TM
waves are
. p
ATM(z)eXp(lk‘air P \/7 \/%wy(z)
and (5.12)
. 1 k P
Bry(z)exp(—ikyy ,2) = — —u,(2)— 7w, (z
r(Jexp(—ik,.2) \/g\/;mﬁy()
Finally, the exact Maxwell equations for TM polarization are
i <ATM(Z)> — VTM(ATM(Z)>
dz \ Brm(2) Brni(2)
and (5.13)
V _ l(p(Z) - kair,z) (g(z) _f(z))exp(_Qikair,zz)
M\ 0(2) — £ () exp (2 .2) =i(p(2) = hirs) )’

with the same parameters f(z) and ¢(z) as in (5.5). The gradient functions f(2)
(related to propagation speed) and g(z) (related to impedance) enter as a sum
(for TE polarization) or as a difference (for TM polarization) into our ‘coupled’
equations. Sharp steps of n(z) and Z(z) yield our result: equations (4.7).

The notion of reflection strength was originally introduced by us for non-
absorbing media. It is worth noting that the reflection by a sharp step with an
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absorbing second medium and a reflection in the TIR regime are both described
by S= —arctanh(r) and the equations (4.6) and (4.7) are still valid. In particular,
the TIR regime corresponds to

2 .9
_ 1 Z w1 \/(n1/n2) sin’f; — 1
s =yh(z;) md Suio) =ifagm

5.14
cos 64 ( )

As expected, |r|=|tanh(ir/4+Re S)|=1 for the case of TIR.

6. Acoustic and Schrodinger reflections

It is interesting to consider the reflection of longitudinal acoustic waves from the
boundary between two liquids that have densities p; and ps, propagation speeds
¢, and ¢, and therefore acoustic impedances Z;,=p;¢; and Zo= pyco, respectively.
A well-known expression for the reflection coefficient for the wave’s pressure
(Brekhovskikh 1980; Landau & Lifshitz 1987) is

cos 6,/ Z; —cos 0,/ Z,
cos 0,/ Z; +cos 05/ Z,

For this acoustic case, we see that again the reflection strength is given by the
sum of two contributions,

Tiongitud = —tanh[S,(0,)] and  S,(0;) = Saz + Sa.(01)- (6.2)

The Schrédinger equation for the motion of an electron in a given Bloch
band should generally account for two kinds of spatial inhomogeneity (see Nelin
2007). One of them is U(r) (Joule), i.e. the spatial profile of the bottom of the
Brillouin zone. The other one must describe m(r) (kg), i.e. the inhomogeneity
of the coefficient 1/(2m) in the parabolic approximation E(p)=p*/(2m) of
the dependence of electron energy in the vicinity of the bottom of the Brillouin
zone on the momentum p. The corresponding Hermitian Hamilton operator is

A 1
H=p——p+U 6.3
P o) P (7) (6.3)
and it acts upon the wavefunction . Consider now the motion with fixed energy
E, ie. y(r,t)=y(r)exp(—iEt/h). Then, the stationary Schrodinger equation
takes the form

Nongitud = T(p(_ p) = (61)

1 2m(r)
Vi——VW| +——=|F—-U =0. 6.4
)3 || + 20 - vy (6.0
If m(7)=const., then equation (6.4) is reduced to the conventional Schrédinger
equation. It is convenient to introduce the following two quantities: the
‘kinematic parameter’ k(r), i.e. the wavenumber, and the ‘dynamical parameter’
Z(r), the analogue of impedance, by the definitions

Kr) = 2 VImE— O], ] =m™
and (65)
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Numerically, the parameter Z(r) coincides with the local value of the inverse
group velocity. With these notations, the equation (6.4) takes the form
Z(r)k(r)V

1 0
_Ww] + K (r)y = 0. (6.6)

This equation (6.6) has two interesting limiting cases. One of them is equation
(6.6) with Z= Z,=const., )
1 2

k(r)V|——=V k =0 6.7
()9 7 9] + v =0, (67

and we may call it the Z-Helmholtz equation, to emphasize the condition Z=

Zy=const. The other limiting case is when k=k,=const., but the impedance is
coordinate dependent,

o w] + K2y =0, (6.8)

and for similar reasons (6.8) may be labelled as the kHelmholtz equation.
Finally, when both Z=Z,=const. and k= ky=const., we come to the standard
Helmholtz equation V?y+ k2y=0. The usual (i.e. with #kZ=m,=const.)

stationary Schrodinger equation V¥ + k*(r)y=0 is a certain intermediate
case between Z- and kHelmholtz equations.

The flux J (particles/(m?s)) for a plane mono-energetic wave =exp(—ikr)
in the homogeneous part of the medium equals J=(k/k)v|y|*=(k/k)|y|*/Z.
The conservation law, which is valid as a consequence of the mono-energetic
Schrodinger equation (6.6), is

divJ(r,t) =0, J(r,t)=

Z(r)V [ZL

in x
TICLAAR A2 (6.9)

The problem of reflection for the one-dimensional stationary Schrodinger
equation,
d?y 2m

EHREUE) =0, () =13

may also be solved by the coupled waves approach. Namely, we will assume for
definiteness that k*(z)>0 and introduce local amplitudes A(z) and B(z) by

i d
o
and (6.11)

Jethe = i d¢ _ VamE

VR F N dz ko o
The advantage of amplitudes A(z) and B(z) is that the flux J,(z) is expressed
very simply,

(E—V(2), (6.10)

1) = g (Vi 0 ) = (AP -1B0P). (612)

This flux is conserved, J(z) =const., as a consequence of (6.4) with real mass and
potential. The uniqueness of the representation (6.11) is guaranteed if one
requires that, in the homogenous part of the medium, our waves A and B do not
interact with each other. It is important that equation (6.10) is exactly
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k- K (2)

Figure 1. An example of the profiles of |A(z)|* and |B(z)|*> normalized to P(z)=1 for the problem
with k?(2) = k2 + a’s(s+ 1)/cosh?(az). Solid lines, potential well k3 —k?(z) =—2/cosh?z yielding
non-reflection and incident beam energy k3= 0.09. Dashed lines, fluxes |A(z)]> and |B(z)|* of
counter-propagating wave function components.

equivalent to the system of coupled first-order equations,
4 (ACY (i) = ko) F(z)e "3\ [A(2) -

dz B(2) F(z)e®™  —i(k(2) = ko) ) \ B(2) |

(6.13)

Numerical (or analytical, whenever possible) solution of this ezact system in the
form of the M-matrix allows us to find amplitudes of reflection and transmission.
It should be emphasized that boundary conditions for system (6.13) are applied
only at one end, e.g. at z= — o, so that one should solve the Cauchy problem, for
which any standard code of integration of ordinary differential equations works
very well. Figure 1 shows an example of the profiles of |A(z)|]* and |B(2)|?
normalized to P(z)=1 for the problem with
a?s(s+1)
cosh?(az)’
at the particular ‘non-reflective’ value s=1 at ky/a=0.3 (see Landau & Lifshitz 1981).
Reflection of a wave for tilted incidence by the sharp boundary between two
media with different values, (ky, Z;) and (ko, Z»), requires the analogue of Snell’s
law, kq sin 8;=Fk, sin 65; here 6, and 65 are the angles of the momentum with the
normal to the boundary in the respective media. Boundary conditions of continuity

of the wave function ¥ and of (0y/07)/(Zk) yield the following expression for
the reflection coefficient:

K (z2) = ki + (6.14)

1 0 1. (Z
r=—tanh S, S =Sy + Sass Sap= §ln<zzz 0?) Spy = 51n(7;>. (6.15)
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7. Conclusion

To conclude, the notion of reflection strength § is introduced, so that the
intensity of reflection is R=tanh?S. The strength of total reflection S, by a
sequence of lossless elements is expressed through particular element strengths
and mutual phases between them by the simple addition rule (2.4); in particular,
its possible maximum is the sum of the absolute strengths of the constituents.
We have shown that the amplitudes of the standard processes of Fresnel
reflection may be understood in terms of S as a linear sum or difference of the
following two independent contributions: the impedance step and the speed step.
A similar result is obtained for the reflection of longitudinal acoustic waves. The
one-dimensional Schrédinger equation is also treated with specially introduced
amplitudes of coupled counter-propagating components.

The authors express their gratitude to R. M. A. Azzam, G. I. Barenblatt, D. Christodoulides, L. B.
Glebov, J. W. Goodman, A. E. Kaplan, M. G. Moharam, M. I. Stockman and C. C. Tsai for their
discussion of the results of this work.
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