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A further extension of the iteration method for beam propagation calculation is presented that can be
applied for volume Bragg gratings (VBGs) with extremely large grating strength. A reformulation of the
beam propagation formulation is presented for analyzing the reflection of a laser beam by a deformed
VBG. These methods will be shown to be very accurate and efficient. A VBG with generic z-dependent
distortion has been analyzed using these methods. © 2009 Optical Society of America
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1. Introduction

Volume Bragg gratings, which are a type of thick
grating [1], have been very useful in high-power
lasers [2–6]. In this type of Bragg grating there
are basically two counterpropagating laser beams;
one is the incident beam and the other is the reflected
beam. The beam propagation method has been ap-
plied to analyze gratings [7,8]. The bidirectional
beam propagation method may also be suitable
for analyzing VBGs [9–13]. The transfer-matrix
method can also calculate bidirectional wave propa-
gation [14].
In [15] an iteration of the beam propagation meth-

od is presented and the VBG is divided into two
parts. The division of the VBG into two parts solves
the difficulty in the convergence of the iteration when
the grating strength of the considered VBG is large.
In this paper, this iteration method is further ex-
tended so that fast convergence can be achieved
when the grating strength is so large that even
the iteration method presented in [15] does not con-
verge. In addition, a reformulation of the deformed
VBG is presented for the calculation using the beam

propagation method. In this reformulation distor-
tions, such as background index change, grating per-
iod distortion, and laser wavelength shift, are
expressed explicitly in the governing equations for
both the incident and the reflected beams. For vali-
dation, an ideal VBG with very large grating
strength has been analyzed and the numerical calcu-
lations were compared to analytical formula [16]. A
VBG with a z-dependent background index change
has also been analyzed with the z axis perpendicular
to the grating planes and the results were compared
to calculations using a matrix approach described in
[17], in which the distorted VBG is represented by a
large number of ideal gratings. These validation cal-
culations demonstrate that the methods presented
here are very accurate.

As a typical example, generic z-dependent distor-
tion was assumed in a VBG, and it was analyzed
using the reformulation and the iteration of the beam
propagation method. This calculation may provide
some insight on the effects of distortions in VBGs
sustaining high-power lasers.

2. Iteration of the Beam Propagation Method

Considering an ideal VBG without distortion, the
index distribution can be written as
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n ¼ n0 þΔn · cosð~q0 ·~rþ φÞ; ð1Þ

where n0 is the background refractive index, Δn is
the amplitude of the refractive index modulation,
which is generally much smaller than n0, ~q0 is the
grating vector, which is along the z axis and q0 ¼
j~q0j ¼ 2π=Λ0, where Λ0 is the grating period of the
ideal VBG, and φ is a phase factor of the cosine func-
tion. The thickness of the ideal VBG is L0. The nor-
mal incidence of a linearly polarized laser beam that
satisfies the Bragg condition is considered and, then,
both the input and the reflected laser beams propa-
gate in the z direction perpendicular to the grating
planes. The paraxial wave equations for the two
counterpropagating beams inside the VBG are [15]

2ik0n0
∂A
∂z

¼ k20n0Δn · B · eiφ þ ∂2A

∂x2
þ ∂2A

∂y2
;

− 2ik0n0
∂B
∂z

¼ k20n0Δn · A · e−iφ þ ∂2B

∂x2
þ ∂2B

∂y2
; ð2Þ

where A is the slow amplitude of the incident beam,
B is the slow amplitude of the reflected beam, and
k0 ¼ ω

c is the free space wavenumber. For a typical
VBG used in high-power laser systems, the diffrac-
tion terms are negligible, which are the last two
terms (the second-order differentiations with respect
to x and y) on the right-hand side in Eqs. (2). The neg-
ligibility of the diffraction terms was also ever used
in analyzing laser propagation in nonlinear optical
media [18]. As a result, Eqs. (2) become

2ik0n0
∂A
∂z

¼ k20n0Δn · B · eiφ;

− 2ik0n0
∂B
∂z

¼ k20n0Δn · A · e−iφ: ð3Þ

These two equations can be numerically solved by
the fourth-order Runge–Kutta method. Here a mea-
sure of the grating strength is defined as
S ¼ ðk0Δn=2ÞL0, which appeared in the coupled-
wave theory of Kogelnik for Bragg diffraction [16]
and was ever used in [1,15,17]. For grating strength
S smaller than π=2, the two Eqs. (3) are solved sepa-
rately in sequence, and are iterated until the solu-
tions of A and B converge [15]. This simple
iteration method was initially for solving the two
beam propagation equations for the two counterpro-
pagating laser beams in a laser gain medium [19,20].
However, when applied for analyzing a VBG with S
larger than π=2, this simple iteration method does
not converge. To overcome this convergence difficulty
when S is larger than π=2, it is proposed in [15] to
divide the VBG into two parts with equal thickness
and the iteration is performed in both of these two
parts. When dividing the VBG into two equal parts,
the converged solution of the two Eqs. (3) can be ob-
tained quickly for S as large as about 3 [15].
However, when S is larger than π, this two-part

division method does not converge anymore. To

overcome this difficulty, a four-part division method
is proposed that is essentially a nest of the two-part
division presented in [15]. Shown in Fig. 1 is the
schematic of this four-part division. The VBG is di-
vided into four parts with the same thickness along
the z axis. The slow amplitude of the laser beams are
labeled A1 and B1 in part 1, A2 and B2 in part 2, A3
and B3 in part 3, and A4 and B4 in part 4. The itera-
tion procedure is as follows:

1. Perform the iteration for part 1 and part 2 in
the same way as the iteration for the two-part divi-
sion as described in [15]; stop the calculation when
the solutions in part 1 and part 2 converge to the de-
sired accuracy. Save this version of A1,B1,A2, andB2.

2. Perform the iteration for part 3 and part 4 in
the same way as the iteration for the two-part divi-
sion, as described in [15]; stop the calculation when
the solutions in part 3 and part 4 converge to the de-
sired accuracy. Save this version of A3,B3,A4, andB4.

3. Repeat steps 1 and 2 in sequence until the so-
lutions of A1, B1, A2, B2, A3, B3, A4, and B4 all
converge.

The following boundary conditions have to be used
when performing these iterations:

A1ðz¼ 0Þ ¼Ainput; B2

�
z¼L0

2

�
¼B3

�
z¼L0

2

�
;

A3

�
z¼L0

2

�
¼A2

�
z¼L0

2

�
; B4ðz¼L0Þ ¼ 0; ð4Þ

where z ¼ L0=2 corresponds to the interface between
part 2 and part 3.

Using this four-part division and the iteration
method described above, the converged solution of
Eqs. (3) can be obtained quickly for S as large as
about 4, and the numerically calculated result agrees
very well with the analytical solution for an ideal
VBG without distortion [16].

In addition, the VBG can be further divided into
eight equal parts if S gets even larger and the
iteration can be further extended to obtain the con-
verged solution.

Fig. 1. Schematic of the four-part division of a VBG.
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3. Reformulation for Distorted VBG

When applied in a high-power laser system, the VBG
may not be an ideal one; instead, there may be some
spatially varying distortions in the background index
and the grating period. The background index varia-
tion could also have significant effects in fiber phase
gratings [21]. With these distortions, the index distri-
bution in the VBG can be written as

n ¼ n0 þΔn · cos½ð~q0 þΔ~qÞ ·~rþ φ� þΔnT ; ð5Þ

where Δ~q represents the grating period distortion
and jΔ~qj ≪ j~q0j, ΔnT is the background index
change, and ΔnT ≪ n0.
In [15], a formulation is presented to include the

grating period distortion and the background index
distortion that might be induced by the nonuniform
temperature distribution. Here, the formulation in
[15] is reformulated so that the grating period
change, background index change, and wavelength
shift are each expressed in the governing paraxial
wave equations separately and explicitly.
A normally incident linearly polarized laser beam

is considered, which means that it is propagating
along the z axis. Start with the following scalar wave
equation:

∇2Eþ ðk0 þΔkÞ2εrE ¼ 0; ð6Þ

whereΔk is due to the deviation of the wavelength of
the input laser beam and

E ¼ A · e−ik0n0~eA·~r þ B · e−ik0n0~eB·~r: ð7Þ

Here, n0, the background index without distortion, is
used as the reference index in the beam propagation
method formulation and the slowly varying envelope
approximation is valid since all the typical distor-
tions are essentially small perturbations. A is the
slow amplitude of the input laser beam, B is the slow
amplitude of the reflected laser beam,~eA is the unit
vector in the direction of propagation of the input
beam, and~eB is the unit vector in the direction of pro-
pagation of the reflected beam. Since normal inci-
dence is considered, ~eA is in the positive z direction
and ~eB is in the negative z direction.
The input laser beam satisfies the Bragg condition

for Δk ¼ 0, ΔnT ¼ 0, and Δ~q ¼ 0 when the VBG is
not distorted and the laser wavelength is not shifted.
Therefore,

k0n0~eA þ~q0 ¼ k0n0~eB; ð8Þ

where~q0 is the grating vector when the grating is not
distorted. Inserting Eqs. (5) and (7) into Eq. (6) re-
sults in

∇2½A · e−ik0n0~eA·~r þ B · e−ik0n0~eB·~r�
þ ðk0 þΔkÞ2ðn0 þΔnTÞ2
· ½A · e−ik0n0~eA·~r þ B · e−ik0n0~eB·~r�
þ ðk0 þΔkÞ2ðn0 þΔnTÞΔn

· ½A · e−iðk0n0~eAþ~q0þΔ~qÞ·~r−iφ þ A · e−iðk0n0~eA−~q0−Δ~qÞ·~rþiφ

þ B · e−iðk0n0~eBþ~q0þΔ~qÞ·~r−iφ þ B · e−iðk0n0~eB−~q0−Δ~qÞ·~rþiφ�
¼ 0: ð9Þ

Since jΔ~qj ≪ j~q0j, the terms far from satisfying the
Bragg condition can be neglected. Therefore, Eq. (9)
becomes

∇2½A · e−ik0n0~eA·~r þ B · e−ik0n0~eB·~r�
þ ðk0 þΔkÞ2ðn0 þΔnTÞ2
· ½A · e−ik0n0~eA·~r þ B · e−ik0n0~eB·~r�
þ ðk0 þΔkÞ2ðn0 þΔnTÞΔn

· ½A · e−iðk0n0~eAþ~q0þΔ~qÞ·~r−iφ þ B · e−iðk0n0~eB−~q0−Δ~qÞ·~rþiφ�
¼ 0: ð10Þ

Applying Eq. (8) in Eq. (10) results in

∇2½A · e−ik0n0~eA·~r þ B · e−ik0n0~eB·~r�
þ ðk0 þΔkÞ2ðn0 þΔnTÞ2
· ½A · e−ik0n0~eA·~r þ B · e−ik0n0~eB·~r�
þ ðk0 þΔkÞ2ðn0 þΔnTÞΔn

· ½A · e−iðk0n0~eBþΔ~qÞ·~r−iφ þ B · e−iðk0n0~eA−Δ~qÞ·~rþiφ�
¼ 0: ð11Þ

Considering normal incidence and applying the
slowly varying envelope approximation to Eq. (11),
the following paraxial wave equations were obtained:

2ik0n0
∂A
∂z

¼ ðk0þΔkÞ2ðn0þΔnTÞΔn ·B · e−iΔqzþiφ

þ½ðk0þΔkÞ2ðn0þΔnTÞ2 −k20n
2
0�Aþ ∂2A

∂x2
þ ∂2A

∂y2
;

−2ik0n0
∂B
∂z

¼ ðk0þΔkÞ2ðn0þΔnTÞΔn ·A · eiΔqz−iφ

þ½ðk0þΔkÞ2ðn0þΔnTÞ2 −k20n
2
0�Bþ∂2B

∂x2
þ ∂2B

∂y2
: ð12Þ

Here, Δq ¼ jΔ~qj. Again, for a typical VBG used in
high-power laser systems, the diffraction terms are
negligible, which are the last two terms on the
right-hand side in the two Eqs. (12). As a result,
Eqs. (12) become
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2ik0n0
∂A
∂z

¼ ðk0 þΔkÞ2ðn0 þΔnTÞΔn · B · e−iΔqzþiφ

þ ½ðk0 þΔkÞ2ðn0 þΔnTÞ2 − k20n
2
0�A;

−2ik0n0
∂B
∂z

¼ ðk0 þΔkÞ2ðn0 þΔnTÞΔn · A · eiΔqz−iφ

þ ½ðk0 þΔkÞ2ðn0 þΔnTÞ2 − k20n
2
0�B:

ð13Þ
The diffraction terms may not be negligible in fiber
phase gratings, and then, Eqs. (12) instead of
Eqs. (13) have to be solved if scalar formulation is
good enough. Since we are dealing with VBG here,
Eqs. (13) will be used as the governing equations,
which will be solved by the fourth-order Runge–
Kutta method and the iteration method discussed
in Section 2.
In Eqs. (13), the grating period distortionΔq, back-

ground index distortion ΔnT , and Δk induced by the
laser wavelength shift are expressed separately and
explicitly. In addition,Δq andΔnT could vary with x,
y, and z.

4. Validations

To validate the iteration of the beam propagation
method and the reformulation for the distorted
VBGs, several example calculations were conducted.
First, the normal reflection of a plane wave by an

ideal VBG was analyzed. The wavelength satisfying
the Bragg condition is λ ¼ 1:064 μm, n0 ¼ 1:5, Δn ≅

4:52 × 10−4, L0 ≅ 2:623mm, and φ ¼ 0. For this
VBG the grating strength S ¼ ðk0Δn=2ÞL0 ≅ 3:5.
Shown in Fig. 2 is the calculated intensity reflection
versus deviation from the Bragg wavelength, to-
gether with the analytic calculation using coupled-
wave theory [16]. From Fig. 2, it can be seen that
the results obtained by the iteration of the beam pro-
pagation method described here agree very well with
the coupled-wave theory.
In the second example calculation, the normal re-

flection of a plane wave was analyzed by the same
VBG, except that a z-dependent background index
change was added, which can be written as ΔnT ¼
ð5 × 10−4Þ · ð2z=L0 − 1Þ2. Shown in Fig. 3 is the calcu-
lated intensity reflection versus deviation from λ ¼
1:064 μm, together with the calculation using the ma-
trix method described in [17]. It can be seen that the
calculation using the iteration of beam propagation
method agrees very well with the calculation using
the method described in [17].

5. Modeling a VBG with Generic z-Dependent
Distortion

To get some sense of how the distortion in a VBG
could change its performance, a VBG with a z-
dependent grating period distortion is considered.
As pointed out in [2], in a VBG sustaining a high-
power laser, the temperature could vary in the z di-
rection in addition to varying in the x and y direc-
tions. Therefore, the distortion of the VBG could

also vary in the z direction in addition to the x
and y directions.

Note that the example calculation presented in
this section is only for getting some sense of how
the distortion in a VBG could change its perfor-
mance. Even though the distortions are only assump-
tions, we hope that the calculation may provide some
insight on the effects of distortions in VBGs sustain-
ing high-power lasers.

The normal reflection of a TEM00 Gaussian beam
by the distorted VBG is considered. The Gaussian
beam radius at the entrance surface w0 ¼ 3:5mm
and its intensity pattern is expressed as I ¼
I0 · expð−2r2=w2

0Þ, its laser wavelength is λ ¼
1:064 μm, the grating strength is S ≅ 1:85 when
the VBG is not distorted, background refractive in-
dex n0 ¼ 1:5, Δn ≅ 2:389 × 10−4, the thickness of

Fig. 2. Calculated intensity reflection (stars) versus deviation
from the Bragg wavelength, together with the analytic calculation
(open circles) using coupled-wave theory [16].

Fig. 3. Calculated intensity reflection (stars) versus deviation
from λ ¼ 1:064 μm, together with the calculation using the matrix
method described in [17] (solid curve).
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the grating L0 ≅ 2:623mm when not distorted,
and the normally incident laser beam is assumed
to satisfy the Bragg condition when the grating is
not distorted.
It is assumed that the distortion is asymmetric in

the z direction, as shown in the schematic in Fig. 4.
The distortion close to the input surface is signifi-
cant, while there is almost no distortion close to the
other surface. A generic shape of the grating thick-
ness distortion is assumed, which is expressed as

Lðx; yÞ ¼ L0 þΔL · e
− r2

w2
0 ; ð14Þ

where ΔL ¼ 0:6 μm is the thickness change in the
center where r ¼ 0 and w0 is the same as the Gaus-
sian beam radius. The grating period distortion is as-
sumed to be

Δqðx; y; zÞ ¼ −f · q0 · e
− r2

w2
0 · e−

4z
L0 ; ð15Þ

where q0 ¼ 2π=Λ0, with Λ0 as the grating period of
the ideal VBG when the VBG is not distorted, and
f is a dimensionless small positive number. The sur-
face deformation is included in the calculation in a
similar way as in [15].
Shown in Fig. 5 is the plot of the calculated power

reflection as a function of f . It can be seen that the
power reflection is significantly reduced for
f ∼ 0:002.

6. Conclusion

An extension of the iteration of the beam propagation
method is proposed, which makes it possible to ana-
lyze VBGs with extremely large grating strength. A
reformulation of the paraxial wave equations is pre-
sented for the laser propagation in a distorted VBG.
In this reformulation, distortions such as grating
period distortion, background index change, and la-
ser wavelength shift, are expressed explicitly and se-

parately. These methods have been validated to be
very accurate and efficient. A VBG with generic z-
dependent distortion has been analyzed, which may
provide some reasonable insight on the performance
change induced by distortions in VBGs sustaining
high power laser beams.
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