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The effect of aberrations in the recording beams of a holographic setup is discussed regarding the deterio-
ration of properties of a reflecting volume Bragg grating. Imperfect recording beams result in a spatially
varying grating vector, which causes broadening, asymmetry, and washed out side lobes in the reflection
spectrum as well as a corresponding reduction in peak diffraction efficiency. These effects are more sig-
nificant for gratings with narrower spectral widths. © 2013 Optical Society of America
OCIS codes: (090.2880) Holographic interferometry; (050.7330) Volume gratings; (220.1010)

Aberrations (global).
http://dx.doi.org/10.1364/AO.52.007826

1. Introduction

Reflecting Bragg gratings (RBGs) are used as spec-
trally selective elements in a variety of applications
including spectral beam combining [1,2], mode selec-
tion in lasers [3,4], and spectral filtering [4–7]. For
applications requiring narrow spectral selectivity [8],
or large apertures [9], these gratings must have a
uniform period throughout the thickness of the
recording medium, which may be on the order of
millimeters, two orders of magnitude thicker than
typical film gratings. In addition, this homogeneity
in period must also exist over an aperture of several
millimeters, which is one to two orders of magnitude
larger than typical fibers. It has been shown that
typical recording techniques such as holographic
recording and recording through a phase mask can
create an imperfect grating structure due to aberra-
tions induced by the optics in the system [10,11].
However, to the best of our knowledge no one has
characterized the deterioration in spectral response
of such larger aperture, thick gratings.

In this paper we develop a method for determining
the effects of aberrations on large aperture gratings

recorded in thick media. This method may be used in
any two-beam recording system and can be easily
generalized to systems with three or more beams,
though here we will focus on single-sided two-beam
recording. Previous works have considered the ef-
fects of aberrations in a single recording plane where
the beams perfectly overlap. Such an approach is
valid for thin media (on the order of tens of microm-
eters), but for thick recording media (on the order of
several millimeters) there will be a significant shift
in the positions of the recording beams relative to
each other as they traverse the recording medium.
Therefore, the fringe pattern produced will not be
constant throughout the grating if one or both beams
have a nonuniform wavefront. Such nonuniform
gratings may have a wider spectral width, a shifted
resonant wavelength, or other problems. It is imper-
ative therefore to knowwhat the effects of aberrations
will have on the properties of the RBGs. Here we
consider the spatially dependent change in period
and its effect on the reflection spectra induced by this
imperfect fringe pattern.

2. Theory

Let us consider two aberrated beams that interfere
at a recording medium as shown in Fig. 1. The beams
will create a grating structure with a periodicity
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determined by the standard two-beam interference
equation [12]:

I�x; y; z� � I1 � I2 � 2
���������
I1I2

p
cos��k

⇀

1 − k
⇀

2� · r
⇀�; (1)

where I is the intensity and k
⇀

is the wavevector. In
general, the wavevector for each beam is not a con-
stant in the presence of aberrations. Therefore the
wavevector at any given point must be determined
from the local wavefront. To calculate the beam
wavefront, let us consider one of the aberrated beams
in the shifted coordinate system �x̄; ȳ; z̄�, where the
beam propagates along the z̄ axis as in Fig. 1. (Note
that this coordinate system is beam-specific.) In
order to properly describe the aberrations of this
beam, the aberrations at the z̄ � 0 plane are written
in terms of Zernike polynomials, which allow charac-
terization the aberrations of the recording beamwith
a unique, orthogonal expansion [13–16]. As the
Zernike polynomials are normalized to the radius r
of the aperture of interest, the normalized dimen-
sions are denoted as �x̄0; ȳ0� � �x̄; ȳ�∕r. The electric
field of the beam may then be written as

E�x̄; ȳ;0� � E0�x̄; ȳ;0� exp
�
ik
X
n

Zn�x̄0; ȳ0�
�
; (2)

where Zn is the nth Zernike polynomial in Noll nota-
tion [13]. While this characterization is sufficient for
thin gratings, the beam must be propagated through
the depth of the recording medium for thick gratings.
Therefore the three-dimensional distribution of the
electric field is calculated using the beam propaga-
tion method:

E�x̄; ȳ; z̄� � F−1

�
FfE�x̄; ȳ;0�ge

−�f2x�f2y �z̄
2k

�
eikz̄: (3)

As the local phase incursion φ of the electric field at
a given z̄-plane is related to the wavefront by
φ � k�z̄�W�, the wavefront at a given z̄-plane
may be calculated by

W�x̄; ȳ; z̄� � 1
k
arctan

�
Im�E�x̄; ȳ; z̄��
Re�E�x̄; ȳ; z̄��

�
− z̄: (4)

The local wavevector is then given by the gradient of
the wavefront:
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In order to calculate the wavevector in the grating-
centered coordinate system, we must convert the
local wavevector from the beam-centered coordinate
system to the original �x; y; z� coordinate system by
rotating by the half angle of interference θ:

k
⇀

g�x̄; ȳ; z̄� �
 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

!
k
⇀
�x̄; ȳ; z̄�: (6)

Finally, the position of the local wavevector along
the wavefront in the �x; y; z� coordinate system is
given by converting the �x̄; ȳ; z̄� coordinates to
�x; y; z� coordinates, giving

k
⇀

g�x cos θ − z sin θ; y;−x sin θ� z cos θ�

� k
⇀

g�x̄; ȳ; z̄�: (7)

In situations where the intensity distribution of a
recording beam is altered due to aberrations such as
strong defocus, the fact that a particular wavefront in
the �x̄; ȳ; z̄� coordinate system does not cross a given
z-plane all at once must be considered. To take this
into account, it is necessary in general to propagate
the beam until all of the local wavevectors are known
at a given plane. However, this is an atypical case
and the aberrations in a typical recording beam
are expected to be small enough that the beam
should still behave similar to a plane wave. There-
fore the amount of spatial deviation of the wavefront
after propagating a few millimeters is expected to be
negligible and a local wavevector will therefore
travel parallel to the tilt angle of the recording beam.
In this case the wavevector at the z � 0 plane can be
written as

k
⇀

g�x; y;0� � k
⇀

g�x̄∕ cos θeff ;x; ȳ∕ sin θeff ;y; 0�; (8)

and the wavevector at an arbitrary z-plane can be
written as

k
⇀

g�x; y; z� � k
⇀

g�x� z tan θeff ;x; y� z cot θeff ;y; 0�:
(9)

Here the effective angles are given by

Fig. 1. Geometry of a grating recorded by two-beam interference
where the nominal half angle of interference is θ. This grating acts
as a reflecting grating for a probe beam incident in the plane
orthogonal to the recording plane. All angles are angles inside
the medium.
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θeff ;x � arctan
�
k
⇀

g;x�0; 0; 0�
k
⇀

g;z�0; 0; 0�

�

θeff ;y � arccos
�
k
⇀

g;y�0; 0; 0�
k

�
; (10)

where it should be noted that θeff ;y is given using the
standard notation for spherical coordinates. The
effective angles take into account the half angle of
rotation as well as any alterations to the half angle
caused by tilt. The resulting grating recorded by
these local wavevectors will have a local period as
well as local tilt, as illustrated in Fig. 2.

If the probe beam were incident on the same face
as the recording beams, the grating would act as a
transmitting grating, with a local grating vector of

K
⇀

TBG�x; y; z� � k
⇀

g;1�x; y; z� − k
⇀

g;2�x; y; z�: (11)

However, to use the grating as a reflecting grating, the
probe beam must be incident from a perpendicular
plane as shown in Fig. 1, which requires an additional
90° rotation:

K
⇀

RBG �
0
@ 0 0 −1
0 1 0
1 0 0

1
AK⇀TBG (12)

for a probe beam incident along the x axis. The local
grating tilt is then tan ϕx � Kx∕Kz and cos ϕy �
Ky∕K .

To determine the reflection spectrum of the grating
for a probe beam propagating along the x axis we
may first determine the reflection spectrum at a
single point and then integrate all spectra over the
grating aperture (defined as the y–z plane for the
probe beam):

R�λ� �
RR

R�y; z; λ�Ip�y; z; λ�dydzRR
Ip�y; z; λ�dydz

: (13)

Here R is the reflectance and Ip is the intensity of the
probe beam being reflected by the volume grating.
However, because the grating has a spatially depen-
dent period and inclination factor, we utilize the
coupled-wave theory transfer matrix technique [17]
to calculate the reflection at a given wavelength.

Coupled-wave theory dictates that the fields of
forward and backward propagating waves in a uni-
form grating can be written as follows:

�
E��0�
E

−

�0�
�
� T

�
E��t�
E

−

�t�
�
: (14)

Here E� and E
−

are the forward and backward
propagating waves, respectively, and T is a transfer
matrix with elements

T11 � �cosh�γt� � iΔk sinh�γt�∕γ� exp�ikBraggt�
T12 � −κt sinh�γt� exp�−i�kBraggt� ζ��∕�γt�
T21 � −κt sinh�γt� exp�i�kBraggt� ζ��∕�γt�
T22 � �cosh�γt� − iΔk sinh�γt�∕γ� exp�−ikBraggt�: (15)

Here Δk � kp − kBragg is the difference between the
propagation constant of the probe beam and the
propagation constant for a wave satisfying the Bragg
condition, ζ is the grating phase factor, κ � πδn∕λ is
the coupling coefficient between the forward and
backward-propagating waves (assuming TE polari-
zation), γ2 � κ2 − �Δk�2, and δn is the refractive index
modulation [17,18].

In order to determine the kBragg term, the general
case of grating tilt must be considered in which there
is a y component to the grating tilt as well as an x
component. It is therefore necessary to generalize
Kogelnik’s coupled-wave equations to cases where
the grating vector does not lie in the x–z plane. Using
[18] as a template and assuming that the y compo-
nent of the grating and probe beam vectors are non-
zero, we find that the Bragg condition becomes

K � 2kBragg�sin θy sin ϕy cos�ϕx − θx� � cos θy cos ϕy�;
(16)

where θx and ϕx are the angles of the probe beam and
grating vectors, respectively, relative to the x axis (as
the x axis is the axis for which the probe beam nomi-
nally propagates along), and θy and ϕy are the angles
of the probe beam and grating vectors, respectively,
relative to the y axis. Note that in this formulation
we use the standard spherical coordinate definitions
for the angles, so a grating vector that lies in the x–z
plane has an inclination angle of ϕy � π∕2, reducing
Eq. (16) to the Bragg condition described byKogelnik.

Note also that each of the terms in Eq. (15) is as-
sumed to be constant. To allow for a varying period

Fig. 2. One-dimensional illustration of a grating recorded by two
beams incident at local angles θeff ;x. The local wavevector in the
aberrated wavefront creates a local grating period and a local tilt
angle ϕx
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and grating tilt we will assume the slowly varying
envelope approximation, permitting us to divide the
grating into N segments and write T as

T �
YN
i�1

Ti; (17)

where Ti is a function of a local (constant) κi, Δki, ti
and ζi. In order to match the phases between the
segments, ζi must satisfy the relationship ζi � ζi−1 �
2ti−1π∕Λi−1 [17]. The reflectance at a given point is
then given by

R�y; z; λ� �
����T21

T11

����2: (18)

Inserting Eq. (18) into Eq. (13) provides the reflection
spectrum for a probe beam incident upon the front
facet of a grating.

3. Modeling

Because of the spatially varying nature of the
grating, one may reasonably conclude that several
factors will influence the reflection spectrum, includ-
ing the thickness and refractive index modulation of
the grating, the position of the probe beam along the
grating face, and the size of the probe beam. The com-
bination of grating and beam parameters provides a
plethora of possible deteriorated profiles. To demon-
strate the influence of these effects we simulate two
gratings representing different applications for
lasers emitting in the vicinity of 1064 nm. The first
one is a high efficiency, relatively thin grating
(Grating A), useful in applications such as spectral
beam combining, and the second one is a thick gra-
ting with moderate diffraction efficiency (Grating B),
which may be used in applications requiring narrow
spectral widths. A recording medium that is capable
of recording such large-aperture, thick gratings is
photo-thermo-refractive glass, which has been dem-
onstrated in a variety of applications [19]. This glass
is transparent in the visible and NIR range and
photosensitive in the near UV region. One of the
most common recording wavelengths for this glass
is the emission wavelength 325 nm, the emission
wavelength of a He–Cd laser.

Grating A is designed such that it ideally has a
1064 nm resonant wavelength with δn � 200 ppm
and t � 5.5 mm. From Eqs. (13) to (18) this should
give a peak diffraction efficiency of 99.4% and a
spectral width of 178 pm (FWHM). Grating B is
designed for the same resonant wavelength, with
δn � 20 ppm, and t � 20 mm, corresponding to a dif-
fraction efficiency of 68.5% and a spectral width of
24 pm. To account for beam size and position, a
3 mm diameter Gaussian probe beam at normal
incidence is used for modeling. Two locations along
the grating aperture are examined: the center of the
grating where the effects of aberrations are expected
to be minimal and halfway between the grating edge

and center along the y axis. For 25 mm diameter
recording beams interfering through a 6 mm deep
recording medium (z-axis dimension), the probe
locations correspond to y � 0 and y � 6.25 mm with
z � 0 in the y − z plane.

To observe the effects of one wave (peak-to-valley)
of a given aberration we have calculated the transfer
matrix by dividing Grating A into 100 segments
along the x axis and Grating B into 500 segments
so that each segment is approximately 50 μm.
To minimize the effects of any possible grating
chirp, Grating A was analyzed over the region x �
−2.75 mm to x � 2.75 mm and Grating B was
analyzed over the region x � −10 mm to x � 10 mm.
Figures 3(a) and 3(b) show the effects of one wave of a
given aberration at the recording wavelength of
325 nm on the reflectance spectrum at 1064 nm for
Grating A and Figs. 3(c) and 3(d) show the effects for
Grating B in the presence of the first several terms of
the wavefront expansion (where the terms are de-
fined as in [13]). In Figs. 3(a) and 3(c), the probe beam
was centered on the grating and in Figs. 3(b) and 3(d)
the probe beam was halfway between the center and
edge of the grating along the y axis.

A comparison of these figures shows four commonly
occurring effects: a shift in resonant wavelength,
side lobes becoming at least partially washed out, a
reduction of peak diffraction efficiency, and spectral
broadening. Defocus and spherical aberrations show
similar behavior for both gratings simulated, with
the resonant wavelength being unaffected but the side
lobes becoming washed out and the peak diffraction
efficiency being reduced, with Grating B showing a
far more pronounced reduction than Grating A. This
difference in peak diffraction efficiency reduction
between the two gratings can be attributed to the dif-
ference in the initial spectral widths of the gratings.
Because Grating A has a wide initial spectral width,
small deviations in the reflectance spectra at individ-
ual points are masked, whereas in Grating B these
deviations constitute a significant shift relative to
the spectral acceptance of the grating and therefore
have a more noticeable effect in the integrated spec-
trum, resulting in reduced peak diffraction efficiency
and spectral broadening.

45° astigmatism shows behavior similar to defocus
and spherical when the probe beam is centered on
the grating, but when it is moved off-center there
is a change in resonant wavelength as well. This shift
in resonant wavelength is identical for both gratings,
but since Grating B has a narrower spectral accep-
tance, the shifted spectrum falls almost entirely out-
side of the desired spectral region, whereas there is
still a region of overlap in Grating A. Coma x likewise
displays a shifted resonant wavelength, even when
the probe beam is centered on the grating, and in
addition the spectra are asymmetrical, similar to
chirped gratings [20]. The effects of coma x are most
noticeable, however, in Grating B, where spectral
broadening has completely deformed the reflectance
spectrum.
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As mentioned previously, the degradation in spec-
tral profiles is a combination of local differences in
resonant wavelength as well as the local differences
in grating tilt at individual points, which, when inte-
grated into the full spectrum, result in the above
effects. We would like to stress here that both the
differences in grating tilt and resonant wavelength
must be considered in order to properly characterize
the deteriorated spectra. If for instance the devia-
tions in local grating tilt are ignored, the deterio-
rated spectra will still show spectral broadening, a
shift of resonant wavelength, etc., but the overall
profile will be significantly different from the profiles
calculated by taking both effects into account [21].
Thus in order to properly characterize the effects of
aberrations on the reflectance spectra of a volume
Bragg grating, the above methodology should be used.

4. Conclusions

We have developed a numerical method to character-
ize the effects of aberrations in a holographic recording
system on RBGs, which can be used in any recording
geometry and for any combination of aberrations and
grating parameters. Aberrations in recording beams
can have potentially significant adverse effects on

properties of thick RBGs due to the spatial depend-
ence of the overlapped wavefronts. This results local
deviations in the grating vector, causing effects such
as a spatially varying resonant wavelength, which
is problematic for spectral filtering, and washed out
sides lobes of the reflection spectrum, which reduces
the combining efficiency of spectral beam combining
using dense channel spacing. Asymmetrical spectra,
spectral broadening, and a reduction in peak diffrac-
tion efficiency may also be present, though the wider
the initial spectral width, the less noticeable these
effects will be.
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