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Abstract—A systematic method for the efficient design of narrowband
filters founded on the extraordinary transmission via single fishnet
structures (SFSs) is presented in this paper. Essentially, due to its
strong resonant behavior, this phenomenon is proven suitable for the
implementation of high-Q devices. The new design formulas are derived
through the combination of full-wave numerical simulations and curve
fitting algorithms. Also, adequate mathematical criteria are defined
for the evaluation of the filters’ linear performance, indicating that
the transmitted electromagnetic waves remain practically undistorted
in the frequency band of interest. Then, by exploiting the previously
developed relations, proper correction factors are introduced in the
existing SFS equivalent circuit expressions, which hardly increase the
overall computational complexity. This quantitative modification leads
to an enhanced characterization of SFSs, as key components for diverse
applications. Finally, several limitations as well as possible ways of
extending the featured algorithm to more complicated structures and
higher frequency bands are briefly discussed.

1. INTRODUCTION

Fishnet structures are devised from single or stacked metallic plates
perforated by periodic sub-wavelength hole arrays. Initially, they have
been employed for the realization of low-loss, negative-refractive-index
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materials in the microwave, near-infrared, and optical region [1–
5]. Nonetheless, such structures should not be confused with the
traditional frequency selective surfaces (FSSs), exhaustively studied
since the 1950’s [6, 7]. Basically, their primary difference stems from
the size of the holes, which substantially affects their transmission
spectra [8]. Thus, while in traditional FSSs (hole dimensions
comparable to the wavelength) the transmission is broadband and
the center frequency is low compared to that of the first Wood-
Rayleigh anomaly, in fishnet structures (comprising sub-wavelength
holes) the transmission bandwidth is very narrow and the center
frequency approaches that of the first Wood-Rayleigh anomaly. This
unique and beneficial property opens up the possibility of constructing
high-quality filters by properly designed fishnet arrangements.

It has been long believed that, according to Bethe’s theory [9],
the transmission through a sub-wavelength hole array should be
insignificant. Hence, the sharp transmission peak originally observed at
optical frequencies by Ebbesen et al. [10], given the name extraordinary
transmission (ET), came as a real surprise. During the next decade, a
lot of noteworthy efforts have been conducted to reveal the underlying
physics of this intriguing phenomenon [11, 12]. The most prevalent
interpretation has been derived from the generation of surface plasmons
on metallic surfaces [13–16] due to the plasma-like behavior of metals at
optical frequencies. Yet, experiments showed that the ET phenomenon
occurs also at microwave frequencies [17], where metals act as perfect
conductors and, therefore, cannot support surface plasmons.

In the light of this perspective, diverse effective diffraction models
have been developed to enable thorough electromagnetic computations
for a 2-D array of holes [18–22]. These models highlight the importance
of periodicity, rather than the excitation of surface plasmons, for the
onset of the ET phenomenon. Nevertheless, the concept of surface
plasmons has been later extended to the microwave regime in the
context of spoof plasmons [23, 24], i.e., surface waves with a plasma-like
behavior propagating on the surface of periodically corrugated metals
at the perfect conductor limit.

Apart from this ongoing research, serious attention has been
recently drawn to the extraction of equivalent circuits that model
transmission through fishnet configurations via robust impedance
matching schemes [25–28]. Being relatively simple, such models
facilitate the analysis and design process of diverse practical
components. Besides, in accordance with these equivalent circuits,
the periodicity of the resulting device is not a necessary prerequisite
for the phenomenon to appear, as also experimentally proven in [29].

Taking into account the prior aspects, it is the aim of this paper to
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efficiently exploit the ET through single fishnet structures (SFSs) for
the development of high-Q filters via a novel inverse-engineering design
method. Therefore, full-wave numerical simulations are conducted and
explicit design formulas for the appropriate geometrical dimensions of
the SFS are successfully retrieved in terms of curve fitting techniques
to fulfill prescribed center frequency and bandwidth criteria. These
formulas are valid for the whole microwave spectrum (1–100 GHz),
where metals can be treated as perfect conductors, and for very high
quality factors (typically Q > 100). Moreover, particular attention is
devoted to prove the linear performance of the filters in order to assure
their suitability for real-world scenarios. Besides, by incorporating the
extracted design relations and matching the simulation results with
their theoretical counterparts, appropriate correction factors for the
established circuit model of the SFS are introduced. This systematic
formulation leads to a more accurate and computationally efficient
modeling of the critical SFS transmission properties. Finally, possible
extensions to more complicated setups, are briefly discussed.

2. CIRCUIT MODEL FOR THE TRANSMISSION
THROUGH AN INFINITE SFS

In this section, the circuit model for a thin SFS with square holes,
introduced in [26], is briefly discussed. So, let us consider the infinite
SFS of Figure 1(a), with unit-cell and hole dimensions a and b,

a

b

(a) (b)

(c)

Figure 1. (a) Infinite SFS with square holes (colored area represents
metal), (b) its unit-cell with the corresponding dimensions, and (c) the
equivalent circuit model derived in [26].
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respectively, as shown in Figure 1(b). Since ET is a resonant
phenomenon, the transmission through the SFS can be computed with
the help of the equivalent LC circuit of Figure 1(c). From a physical
point of view, the capacitive term, C, is related to the electrical energy
of the bellow-cutoff TM modes excited at the discontinuity plane,
while the inductive element, L, is associated with the magnetic energy
of the below-cutoff TE modes, respectively. Then, the transmission
coefficient, T (f), through the SFS is

T (f) = (bC + bL + 1)−1, (1)

with bC , bL the normalized admittances, computed via
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where x1 = a/b, x2 = a/λ0, x3 = λ0/λ, sinc(x) = sin(πx)/(πx),
and the zero subscript refers to the frequency of ET. Furthermore, N ,
M = bx1c, with b·c representing the integer part of a real number,
and yTM, yTE denote the normalized TM, TE modal admittances,
correspondingly. In particular, the latter are obtained through

yTM
n,m(x2, x3) = −j
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, (4)

yTE
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(x2x3)
2 − 1. (5)

Note that the dependence of bC and bL on x2 and x3, although not
explicitly shown in (2) and (3), occurs due to the analogous form
of (4) and (5). Before proceeding with our design algorithm, it is
worth discussing the main assumptions under which the equivalent
circuit of [26] has been developed, as they will be proven useful for the
development and interpretation of the featured procedure.

Firstly, the thickness of the metallic screen is assumed to be
very small compared to the unit cell dimensions, in order to obtain
the desired narrowband performance of the corresponding devices.
Increasing the thickness of the screen allows the propagation of
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evanescent waveguide modes through the holes, leading to a more
complicated behaviour of the structure. In order to account for these
propagation phenomena, the equivalent circuit of Figure 1(c) has to be
properly modified [27]. In that case, two closely-spaced peaks appear
near the Wood-Rayleigh anomaly, yielding a broadband or even a dual-
band performance, which is out of the scope of the present work [30].

Moreover, infinite conductivity for the metallic screen has been
implied. When metallic losses are present, they must be included
into the model of Figure 1(c) through a resistive element in series
with the inductance. Circuit models that capture the appearance of
surface plasmons can also be obtained [31, 32]. However, since such an
approach is not straightforward, we limit our study to frequencies up
to 100 GHz, whereupon metals act as perfect electric conductors.

On the other hand, a normally incident plane wave with its electric
field polarized along the x- or y-axis is presumed for the excitation
of the SFS. Together with the periodic boundary conditions (PBCs)
applied to the unit cell, this excitation is equivalent to the propagation
of a TEM mode in a parallel-plate waveguide with a square diaphragm.
Due to the symmetry of the structure, only even higher-order TM and
TE modes are excited from the diaphragm, with cutoff frequencies

fm,n = c

√(m

a

)2
+

(n

a

)2
. (6)

For frequencies up to the first Wood-Rayleigh anomaly (fWR = c/a),
all the corresponding modes are below cutoff. Such evanescent modes
exhibit a reactive behavior and store electric and magnetic energy,
respectively. The ET phenomenon appears when the electric energy
stored in the TM modes becomes equal to the magnetic energy stored
in the TE ones; hence, it is a resonant phenomenon.

Finally, the size of the holes, b, is assumed to be small compared to
the resonance wavelength (b ¿ λ0) and, consequently, to the unit cell
dimension, a, for the frequencies of interest (small-hole approximation).
However, this is not a strict limitation and it can be relaxed up to
b < a/2, without significantly affecting the accuracy of (1). In fact,
this is the reason why only the first bx1c modes from (4) and (5) need
to be taken into account in the modal analysis, as proven in [26].

3. FORMULATION OF THE PROPOSED ALGORITHM

As already stated in Section 1, the purpose of this paper is two-fold;
to derive explicit formulas for the geometric parameters of an SFS
which satisfy certain design criteria and to provide suitable correction
factors for the expressions of the transmission coefficient of the previous
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section. These two distinct goals are achieved by the algorithmic steps
described in the flowcharts of Figures 2(a) and 2(b), correspondingly.

Specifically, Figure 2(a) illustrates the design procedure presented
in Section 4. Initially, simulations with various unit cell and hole
dimensions are conducted in order to acquire a relevant number of
transmission data sets. Next, the center frequency, f0, and half-
power bandwidth, BW , (hereafter designated as “design parameters”
or “design criteria”) are extracted from the respective transmission

Numerical simulations for
various geometric dimensions

Extraction of design parameters
from the transmission curves

Functional relations between
dimensions and design criteria

Comparison of initial design
criteria with simulation results

Desired accuracy
reached

Yes

No

Equivalent circuit
of the structure

Geometric dimensions satisfying
prescribed design criteria

Simulation results and comparison
with initial design criteria

Correction of the expression
for the transmission coefficient

Desired accuracy
reached

Analytical derivation of
the transmission coefficient

Yes

No

(a)

(b)

End

End

Figure 2. Flowcharts describing (a) the design method of Section 4
and (b) the circuit-model enhancement procedure of Section 5.
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curves. From the analysis of the simulation results, functional relations
between the design criteria and geometric parameters of the structure
are obtained via the appropriate curve fitting algorithms. These
relations are, in fact, the desired formulas for the design of narrowband,
SFS-based filters. Finally, the output dimensions are utilized in
numerical simulations and the properties of the resulting transmission
curves are compared with the initial design criteria to verify the
accuracy of the algorithm. If its relative error is not satisfactory, further
iterations of the process in Figure 2(a) can be performed, by taking
into account a larger number of initial transmission data sets, so as to
ensure a better convergence of the curve fitting approaches.

On the other hand, Figure 2(b) presents the main stages for the
enhancement of the equivalent circuit approach [26], as developed in
Section 5. Herein, starting from the analytical expression for the
transmission coefficient of the SFS equivalent circuit and imposing
prescribed design criteria, non-linear systems of equations are formed
and solved either numerically or graphically. The obtained geometric
parameters are directly employed for our simulations. Lastly, through
the systematic deviation between theoretical and numerical outcomes,
the design formulas of the previous algorithm [Figure 2(a)], and
robust interpolation schemes, we obtain improved expressions for
the normalized modal admittances. Again, the accuracy of the final
relations can be further increased by repeating the algorithm for a
larger number of initial design parameter values, thus escalating the
convergence of the interpolation functions.

It should be stressed that our technique is quite general and can
also be applied to more complicated arrangements, as for example the
multiple fishnet structure (MFS) [27]. In this case, multiple resonances
appear due to the interaction of neighboring SFSs, providing a desired
behavior for the construction of multiband frequency selective filters.

4. DEVELOPMENT OF THE DESIGN METHODOLOGY

In this section, we extract simple design formulas for the realization
of narrowband filters by exploiting the ET phenomenon through an
SFS. To this end, according to (1)–(5), parameters x1 and x2 must
be uniquely determined for any given f0 and BW (or, equivalently,
Q = f0/BW ). For these design criteria we impose the limitations
f0 ∈ [1, 100]GHz and Q > 100, since our principal objective is the
design of extremely narrowband microwave devices. In what follows,
log Q is used instead of Q, so as to cover the largest possible dynamic
range of the quality factor. Also, since the ET phenomenon occurs for
frequencies very close to the first Wood-Rayleigh anomaly, we employ
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the normalized parameter log(1 − x2) = log(1 − a/λ0) instead of x2

to better distinguish between the different values as x2 → 1. Such
choices will be proven particularly instructive in Section 5, where our
improvements to the theoretical formulas of (1)–(5) are introduced.
Subsequently, our interest focuses on the development of consistent
design formulas for the two more typical choices of hole shapes, namely
the square (Subsection 4.1) and circular (Subsection 4.2) holes.

The first step of our derivation consists of taking into account
numerical simulation results obtained via the Ansys HFSSTM

commercial computational package. The simulation model of the SFS,
shown in Figure 3 for square holes, consists of a single unit-cell, where
PBCs are applied along the x = ±a/2 and y = ±a/2 planes, to
account for the infinite periodicity of the structure. The excitation of
a normally incident plane wave for the calculation of the transmission
through the structure is provided by two wave ports, placed opposite
to it along the z-direction. The reference planes of the respective ports
were considered to coincide with the two faces of the SFS. In all the
simulations, the entire computational domain has been discretized in
around 10.000 tetrahedra on average, as a result of an appropriate
adaptive meshing procedure.

4.1. Square Holes

For this specific case, we first conduct simulations for different x1 =
a/b ratios, assuming a constant unit-cell size of a = 30mm while
varying the hole size b. The results of this study are summarized

Periodic boundary

conditions (PBCs)

Wave  port

Wave  port

Periodic boundary

conditions (PBCs)

Figure 3. Simulation model for the SFS of Figure 1(b).
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in Table 1. Obviously, as x1 increases, log Q increases too, while the
wavelength at the frequency of the transmission peak, λ0, approaches
a, i.e., x2 = a/λ0 → 1. This is in agreement with several recognized
reference studies on SFSs [18, 30], according to which as x1 rises,
the transmission peak tends toward the frequency of the first Wood-
Rayleigh anomaly (fWR = c/a), whereas the bandwidth of the
transmission curve becomes narrower. Note that this behavior can
be qualitatively predicted from the LC circuit, since for very small
holes the corresponding inductance, L, is also small, the capacitance,
C, takes large values and the bandwidth of such resonators is known
to be very narrow [25]. In other words, due to the fast variation of
C over frequency, a small shift of the frequency around the resonance
moves the circuit away from its resonance condition.

Table 1. Simulated log Q and log(1− x2) for various x1 values, with
a = 30 mm.

x1 log Q log(1− x2)

3.4 2.4 −1.66
3.8 2.7 −1.82
4.3 3.1 −2.00
4.8 3.5 −2.15
5.3 3.9 −2.28
6.0 4.3 −2.45
6.8 4.7 −2.67
7.5 5.0 −2.78

After these observations, the quantitative analysis of the data
provided in Table 1 via curve fitting algorithms, leads to the function
that associates x1 with Q, namely,

x1 = 1.687e0.2971 log Q ⇒ x1 = 1.687Q0.129, (7)
whose root mean square error (RMSE) is 4.8%. On the contrary, the
relation between x2 and Q is given by

log (1− x2) = −0.432 log Q− 0.662 ⇒ x2 = 1− 0.218Q−0.432, (8)
with RMSE = 0.0783%. It becomes apparent that (7) and (8) are the
desired design formulas, since the geometric dimensions a = x2λ0 =
x2c/f0 and b = a/x1 of the SFS can be directly obtained from them in
terms of the design criteria (f0 and Q)†.
† Note that, while the normalized variables x1 and x2 can be promptly extracted from Q
through (7) and (8), the exact geometric dimensions a and b can be specified only for a
given value of f0, thus further justifying the use of normalized variables.
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To verify the preceding formulas, several practical cases are
carefully explored. To this end, the proper geometric dimensions,
corresponding to a prescribed f0 = 30 GHz center frequency and
various log Q design values, are calculated through these expressions.
Then, f0 and log Q are, also, retrieved from numerical simulations by
means of the already computed a and b values, in order to compare
them with the initial design specifications. The results of this technique
for six different log Q values, summarized in Table 2, reveal an almost
excellent agreement between the desired and simulated parameters.

Table 2. Relative error of the simulated log Q and f0 for the design
frequency of f0 = 30 GHz and a, b values derived from (7) and (8).

Design a b Simul. Relative Simul. Relative
log Q (mm) (mm) log Q error (%) f0 (GHz) error (%)

2 9.702 3.175 1.87 6.50 30.03 0.08
3 9.890 2.405 2.81 6.33 29.90 0.33
4 9.959 1.800 4.12 3.00 30.01 0.03
5 9.985 1.340 5.00 0.00 29.99 0.03
6 9.994 1.000 6.15 2.50 29.99 0.04
7 9.998 0.741 7.15 2.14 29.99 0.04

Having satisfactorily validated the accuracy and efficiency of (7)
and (8), our analysis concentrates on the linearity of the examined
fishnet structure. In fact, the certification of this property is a key
issue in the design of high-end filters, since nonlinearities can seriously
distort the transmitted signal. For this purpose, the simulated
amplitude and phase of the SFS transmission coefficient for f0 =
30GHz and log Q = {3, 4, 5, 6}, with a and b obtained via (7) and (8),
are depicted in Figures 4(a)–4(d). Since we are mostly interested in
the frequency region associated to the half power bandwidth of the
transmission through the SFS, adequate linearity criteria should be
provided. To quantify possible deviations from linearity, the arithmetic
mean and standard deviation of the simulated transmission phase data
from a perfectly linear function are extracted through the application
of a linear regression to it. Results are shown in Table 3 for every
case in Figures 4(a)–4(d). Evidently, both the arithmetic mean and
standard deviation remain very small and, hence, the SFS structure
exhibits an almost linear behavior in the region under investigation.
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(a) (b)

(c) (d)

Figure 4. Simulated amplitude (blue solid line) and phase (red
dashed line) of the transmission coefficient with f0 = 30 GHz and
(a) log Q = 3, (b) log Q = 4, (c) log Q = 5, and (d) log Q = 6, for
a, b values obtained from (7) and (8).

Table 3. Arithmetic mean and standard deviation for the discrepancy
between the simulated transmission phase of Figures 4(a)–4(d) and the
ideal linear phase function.

log Q Arithmetic mean Standard deviation

3 3.42 · 10−6 1.703
4 0.018 1.844
5 1.38 · 10−5 1.838
6 0.037 1.876
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Table 4. Simulated log Q and log(1− x2) for various x1 values, with
a = 30 mm.

x1 log Q log(1− x2)
7 3.08 −1.90
8 3.29 −2.06
9 3.64 −2.22
10 3.96 −2.35
11 4.22 −2.46
12 4.52 −2.58
13 4.70 −2.65
14 5.00 −2.71

4.2. Circular Holes

Proceeding to circular holes, a similar approach can be followed, with
the only difference that parameter x1 is, now, defined as x1 = a/r,
where r is the radius of the hole. Hence, in the SFS simulation model of
Figure 3, square holes are substituted with circular ones, while the rest
of the configuration remains the same. Several numerical simulations
are conducted by keeping the unit cell size a = 30mm constant and
varying r. The outcomes of this process, given in Table 4, reveal a
behavior identical to the case of square holes. Again, by applying
curve fitting strategies, we obtain the respective design formulas

x1 = 0.2415 (log Q)2 + 1.627 log Q− 0.1501, (9)

whose root mean square error (RMSE) is 4.8%, and

log (1− x2) = −0.4196 log Q−0.6688 ⇒ x2 = 1−0.214Q−0.4196, (10)

with RMSE 3.3%. These expressions are also verified for an assortment
of design examples, corresponding to a prescribed f0 = 30GHz center
frequency and various log Q values, as indicated in Table 5. Likewise,
a very good agreement between simulation results and design criteria
can be promptly detected, especially for smaller hole dimensions.
Moreover, the amplitude and phase of the transmission coefficient
for the first four cases of Table 5 are presented in Figures 5(a)–5(d).
Finally, the linear performance of these filters may be quantitatively
certified as in the previous section (not shown here).

After carefully comparing the results for the square and circular
holes, it is deduced that the behaviour of the corresponding filters
is very similar. In fact, this observation suggests that the shape of
the hole does not significantly affect the underlying physics of the ET
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Table 5. Relative error of the simulated log Q and f0 for the design
frequency of f0 = 30 GHz and a, r values derived from (9) and (10).

Design a b Simul. Relative Simul. Relative
log Q (mm) (mm) log Q error (%) f0 (GHz) error (%)

3 9.88 1.43 2.72 9.33 29.90 0.33
4 9.96 0.97 4.10 2.50 30.02 0.07
5 9.98 0.71 5.00 0.00 29.99 0.03
6 9.99 0.55 5.79 3.50 29.99 0.03
7 10.0 0.43 6.81 3.17 59.99 0.03

(a) (b)

(c) (d)

Figure 5. Simulated amplitude (blue solid line) and phase (red
dashed line) of the transmission coefficient with f0 = 30 GHz and
(a) log Q = 3, (b) log Q = 4, (c) log Q = 5, and (d) log Q = 6, for
a, r values obtained from (9) and (10).
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and (−2.73, 4.8), respectively.

phenomenon. The featured approach can also be applied for holes with
different geometrical shapes, like an ellipse or a rectangle. However,
due to the lack of the four-fold rotational symmetry of the unit cell in
those cases, two different polarizations of the incident radiation have
to be studied separately [25].

5. ENHANCEMENT OF THE SFS CIRCUIT MODEL
EXPRESSIONS

In this section, we take avail of numerical simulations and the
previously extracted design formulas to attain appropriate correction
factors for the expressions of the equivalent circuit model reported
in [26]. Consequently, following from (1)–(5), for any given (f0, BW )
pair, a system of two non-linear analytical equations with two unknown
variables, x1 and x2, can be formed as

T (f0) = 1 ⇒ F (x1, x2) = bC(x1, x2) + bL(x1, x2) = 0, (11)
T (f0 + BW/2) = 1/

√
2 ⇒

G(x1, x2) = bC(x1, x2) + bL(x1, x2)− (
√

2− 1) = 0. (12)
The above system may be solved either numerically or, preferably,
graphically, i.e., by plotting the non-linear F (x1, x2) = 0 and
G(x1, x2) = 0 equations and detecting their intersection point‡. In this
‡ It should be stated that, since (11) and (12) correspond to specific frequencies f0 and
f0 + BW/2, the normalized admittances, bC and bL, depend only on variables x1 and x2,
as derived from (2) and (3).
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Table 6. Theoretical x1 and log(1 − x2) for various log Q values, as
extracted from the graphical solution of (11) and (12).

log Q x1 log(1− x2)

2.5 3.4 −1.71
3.0 3.8 −2.05
3.5 4.3 −2.40
4.0 4.8 −2.73
4.5 5.3 −3.05
5.0 6.0 −3.30
5.5 6.8 −3.70
6.0 7.5 −4.00

framework, Figures 6(a) and 6(b) depict the solutions for log Q = 3 and
log Q = 4, while the results concerning various log Q are summarized
in Table 6. A careful inspection of Tables 6 and Table 1, exhibits a
systematic quantitative divergence between their values. Particularly,
the transmission peaks acquired from the circuit model of Figure 1(c)
are narrower and occur at higher frequencies than their simulated
counterparts. This deviation can be accredited to the limited number
of high-order modes of (4) and (5), considered from the equivalent
circuit model, as an upshot of the small-hole approximation. Therefore,
it would be useful to improve the theoretical formulas of Section 2,
by employing the outcomes of the previous section, without the need
to take into account a larger number of higher-order modes in the
approximation of the equivalent circuit. For the sake of clarity, we will
refer to the variables of Table 6 with subscript T (theoretical) and to
those of Table 1 with subscript S (simulation). Comparing the values
of log(1− x2), namely the third column of both tables, and through a
linear interpolation scheme, the following formula is obtained

log (1− x2)T = 1.996 log (1− x2)S + 1.583 ⇒
(x2)T = 1− 38.28 [1− (x2)S ]1.996 , (13)

with RMSE = 0.0264%. However, it is readily deduced that (13) in its
present form is not practical, since (x2)S is not known in advance. To
overcome this difficulty, (7) and (8) are combined to yield

(x2)S = 1− 1.34 (x1)
−3.34 , (14)

with a corresponding RMSE = 0.03%. Thus, substituting (14)
into (13) and plugging the outcome into (4)–(5), the enhanced relations
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Figure 7. Transmission coefficient for (a) x1 = 4, (b) x1 = 5,
(c) x1 = 6, and (d) x1 = 7. Black dashed lines correspond to simulation
results, blue solid lines refer to the proposed formulas (15) and (16),
while red dash-dotted lines to the relations of [26].

for the normalized modal admittances yTM and yTE are derived

yTM
n,m = −j





√√√√
n + m

(x3)
2
[
1− 68.655 (x1)

−1.666
]2 − 1





−1

, (15)

yTE
n,m = j

√√√√
n + m

(x3)
2
[
1− 68.655 (x1)

−1.666
]2 − 1. (16)

To prove the validity of the featured framework, Figures 7(a)–
7(d) show the transmission coefficient for x1 = {4, 5, 6, 7}, evaluated
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via numerical simulations, the relations of [26], and our improved
theoretical formulas. As observed, the corrections introduced in (15)
and (16) attain a considerable reduction of the frequency shift between
the theoretically predicted and the simulated transmission coefficient.
Actually, this enhanced approximation can be proven very convenient
for the systematic study of SFSs and their profitable application in
the design of competent narrowband filters, since it offers an advanced
description of the transmission through the structure, without the need
of conducting excessive numerical computations. Nevertheless, even
these improved formulas are unable to fully capture the exact position
of the resonance. This may be attributed to the fact that only a simple
linear interpolation scheme based on a few simulation results has been
used to extract (13). Such an approximation becomes even better if
higher-order polynomials are incorporated instead of this simple linear
approximation or by performing additional iterations of the algorithm,
as explained in the discussion of Figure 2(b).

6. CONCLUSION

A consistent technique, which successfully exploits the ET phenomenon
through single fishnet structures (SFSs) for the effective design
of narrowband filters, has been introduced in this paper. The
proposed inverse-engineering formulation develops accurate relations
that provide the necessary SFS dimensions to achieve a given
transmission frequency and half power bandwidth. Thus, the geometric
traits of the desired structures are acquired with notably low error
levels compared to simulation outcomes. Moreover, by plotting the
phase of the transmission coefficient for diverse cases, it has been
proven that the SFS does not create significant non-linearities around
its operational frequencies. This is a key benefit, since it improves the
overall signal integrity of the resulting high-Q filters and circumvents
the need for other expensive treatments. On the other hand, to further
enhance the efficiency of the existing SFS theoretical circuit model,
appropriate correction factors have been derived. In this way, the
error in the prediction of the transmission coefficient is considerably
reduced, leading to the more robust and reliable characterization of the
structure, without increasing the total algorithmic complexity. Finally,
it is stressed that the featured methodology can be extended to higher
frequencies or even to a broader class of devices, which support the ET
phenomenon, given the existence or possible derivation of an equivalent
circuit for their theoretical description.
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