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Abstract. The modulation transfer function (MTF) is widely used as the
image quality criterion of choice for imaging applications where fine detail
in extended images needs to be specified or evaluated. We present a
parametric analysis of the effect of scattered light upon the MTF of an im-
aging system and illustrate the results for three specific applications: (1) a
visible Newtonian telescope with moderately good optical surfaces which
produce no significant effect upon the MTF, (2) an extreme ultraviolet
Newtonian telescope where scattering effects can dominate both diffrac-
tion effects and aberrations in the resulting image degradation even for
state-of-the-art optical surfaces, and (3) a visible system made up of
three diamond-turned off-axis aspheric mirrors where we use the predicted
MTF to estimate whether post-polishing is required (huge cost and sched-
ule impact) to meet a specific image quality requirement. © 2013 Society of
Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.0E.52.7.073110]
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1 Introduction

The modulation transfer function (MTF) is widely used as
the image quality criterion of choice for imaging applications
where fine detail in extended images needs to be specified or
evaluated.'” This is particularly true for imaging systems
degraded by diffraction effects and geometrical aberrations.
However, there seems to be a dearth of optical engineering
literature concerning the effects of scattered light upon the
MTEF. Exceptions include the medical x-ray imaging commu-
nity involved in projection mammography* and the vision
community where intraocular scattering effects are of
concern.’

In this article, we present a detailed parametric analysis of
the effect of scattered light from residual optical fabrication
errors upon the MTF of an imaging system. After a brief his-
torical background of surface scatter theory, we review the
evolution of a linear systems formulation of surface scatter
theory that characterizes the surface scatter behavior by a
surface transfer function (STF). This STF can merely be
multiplied by the classical optical transfer function (OTF)
characterizing image degradation by diffraction effects and
geometrical aberrations to obtain the composite MTF for sys-
tems also degraded by surface scatter effects. Insight into the
magnitude of image degradation due to surface scatter is then
provided by performing a detailed parametric analysis of
MTF behavior for surfaces with a Gaussian surface power
spectral density (PSD) function. The parameters varied
include the surface-roughness-to-wavelength ratio, surface
correlation width, and incident angle. The resulting paramet-
ric plots provide the optical engineer with insight and under-
standing concerning the relative importance of diffraction
and scattering that is not readily available in the currently
existing literature.
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This analysis is first applied to a Newtonian telescope
with moderately good mirrors operating at visible wave-
lengths. The resulting image degradation due to scattered
light is barely perceptible. We then apply the analysis to the
same Newtonian telescope with state-of-the-art mirror surfa-
ces operating at extreme ultraviolet (EUV) wavelengths
ranging from 300 to 100 A. At the long wavelength end
of this spectral range diffraction effects dominate the scatter
effects; however, at the shortest wavelengths, surface scatter
effects dominate the diffraction. A third application involves
a system made up of three diamond-turned off-axis aspheric
mirrors operating at a wavelength of 600 nm in the visible.
We demonstrate how the predicted MTF can be used to esti-
mate whether post-polishing will be required to meet a spe-
cific image quality requirement.

Finally, we briefly discuss how to use commercially avail-
able state-of-the-art optical analysis software to calculate the
MTF degradation due to stray light from bulk or particulate
scatter provided either measured or assumed bidirectional
reflectance distribution function (BRDF) data is available.

2 Historical Background of Surface Scatter Theory

Scattering effects from microtopographic surface roughness
are merely nonparaxial diffraction phenomena resulting
from random phase variations in the reflected wavefront.
Rayleigh-Rice®® or Beckmann—Kirchhoff’ theories are
commonly used to predict surface scatter effects. Also,
Harvey and Shack (1976) developed a linear systems formu-
lation of surface scatter phenomena in which the scattering
behavior is characterized by a STE.!®!! This treatment pro-
vided insight and understanding not readily gleaned from the
two previous theories. However, smooth surface and/or para-
xial approximations have severely limited the range of appli-
cability in each of the above theoretical treatments.

The Rayleigh—Rice vector perturbation theory agrees well
with experimental wide-angle scatter measurements from
“smooth” (4zo, cos 0;/1 <« 1) surfaces for arbitrary
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incident and scattering angles. However, not all applications
of interest satisfy the smooth surface approximation. The
Beckmann—Kirchhoff scattering theory is valid for rougher
surfaces; but it contains a paraxial (small angle) assumption
that limits its ability to accurately handle wide-angle scatter-
ing and large angles of incidence. The two most widely used
surface scattering theories are thus complementary but not
all-inclusive; i.e., neither of them, nor the combination of
them, adequately describes scattering behavior for moder-
ately rough surfaces with a large incident and scattering
angles.

The original Harvey—Shack (OHS) surface scatter theory
has, essentially, the same limitations as the Beckmann—
Kirchhoff theory. This transfer function characterization of
scattering surfaces was modified in the 1980s to include
grazing-incidence effects in x-ray telescopes; however, it
was still limited to small-angle scattering.'?

In 2004, Elfouhaily and Guerin conducted a critical sur-
vey of approximate scattering wave theories from random
rough surfaces.'® They attempted to classify and characterize
>30 different approximate methods. These were all variants
of the small perturbation method (Rayleigh—Rice), the
Kirchhoff approach, or so-called unified methods which
tried to bridge the gap between the two. This exhaustive sur-
vey included 260 references. They concluded that “there
does not seem to be a universal method that is to be preferred
systematically. All methods present a compromise between
versatility, simplicity, numerical efficiency, accuracy and
robustness.” Their final statement was, “There is still
room for improvement in the development of approximate
scattering methods.”

In 1998, an empirical modification of the Beckmann—
Kirchhoff surface scatter theory was developed that appeared
to satisfactorily combine the advantages of both the
Rayleigh-Rice and the Beckmann—Kirchhoff theories
without the disadvantages of either.'* However, because it
was empirically developed rather than theoretically derived,
this work was not published in the archival literature
until 2007."5 During this time interval, the modified
Beckmann—Kirchhoff surface scatter model was evaluated,
implemented, and referenced by researchers in the computer
vision and computer animation fields who are less interested
in rigorously solving the surface scatter problem than merely
having a surface scatter model that results in the rendering of
realistic surfaces, textures, objects, and scenes under a wide
variety of illumination conditions.'¢*

A new linear systems formulation of nonparaxial scalar
diffraction theory”?® applied to surface scatter phenomena
eventually resulted in a generalized Harvey—Shack (GHS)
surface scatter theory that produces accurate results for
rougher surfaces than the Rayleigh—Rice theory and for
larger incident and scattered angles than the classical
Beckmann—Kirchhoff theory.?”-**

3 Transfer Function Characterization of Scattering
Surfaces

The well-known linear systems formulation of image forma-
tion is illustrated schematically in Fig. 1. The irradiance dis-
tribution in the image of a point source, or point spread
function (PSF), of the imaging system is given by the
squared modulus of the Fourier transform of the complex
pupil function. From the autocorrelation theorem of Fourier
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Fig. 1 Schematic diagram of the linear systems formulation of image
formation theory.

transform theory, the PSF is also given by the Fourier trans-
form of the autocorrelation of the complex pupil function.
The OTF is defined as the (normalized) autocorrelation of
the complex pupil function. The OTF and the PSF thus con-
stitute a Fourier transform pair. A variety of commonly used
image quality criteria are also added to the diagram, indicat-
ing from which function they are most readily obtained.

The imaging system must be isoplanatic (or shift invari-
ant) if a given OTF is going to completely characterize the
system. If any field-dependent aberrations are present, a sep-
arate OTF is required for each field angle.

Figure 2 schematically illustrates the statistical surface
characteristics in a very reminiscent manner of the diagram
in Fig. 1. Note that the surface autocovariance (ACV) func-
tion and the surface PSD function constitute a Fourier trans-
form pair.

One can now formulate a linear systems theory of surface
scatter phenomena by deriving an analytic expression for a
STF in much the same way that the OTF was derived in
image formation theory.!%?7%%

3.1 OHS Surface Scatter Theory

In the OHS surface scatter theory, paraxial assumptions were
made that resulted in the following simple expression for the
STF.'*!!

H(%,9) = exp{—(476,)*[1 - C,(%.5)/o3]}. e))

where o, is the rms surface roughness and C,(X,y) is the
surface ACV function. The scattered light distribution, called
an angle spread function (ASF) in analogy with the PSF of

4
j> os
—
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Spatial Frequency Spectrum Surface Power Spectrum

Autocovariance Function

Fig. 2 Schematic diagram of the statistical surface characteristics.
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imaging systems, is given by the Fourier transform of
this STF.
The STF can also be written in the form

H(%5) = A+ BG(%.5) 2)
where

A = exp|—(475,)?]. 3)
and

B =1 — exp|—(4n5,)?] )

are the fraction of the total reflected radiant power contained
in the specular and the scattered components, respectively,
and

_exp[(4)°Cy(%.5)] - 1

G(x.3) = exp (4z6,)> —1 ©)

From Eq. (2), we see that the STF can be written as the
sum of two separate components. The ASF can therefore be
expressed as the sum of the Fourier transforms of the two
components making up the STF:

ASF(a,p) = F{H(x.3)} = Ad(a. p) + S(a. §). ©)
where the scattering function, S(a, ), is given by
S(a.p) = BFIG(X.Y)]. ©)

Note that a scaled coordinate system has been used in
which the spatial variables are normalized by the wavelength
of the light (x = x/A, = y/4, etc.). The reciprocal variables
a and f are thus the direction cosines of the propagation vec-
tors of the angular spectrum of plane waves discussed by
Goodman,” Gaskill,”” and Ratcliff.”’ These direction
cosines a, f, and y are related to the angular variables 6
and ¢ in conventional spherical coordinates by the following
expressions’?:

a=sin @ cos ¢, f =sin @ sin ¢, y = cos 6. ®)

It is only in this direction cosine space that diffraction
(and surface scatter) phenomena exhibit shift-invariant
behavior with changes in incident angle, and the radiometric
quantity that exhibits this behavior is the diffracted (or scat-
tered) radiance, not intensity or irradiance.’>

Figure 3 graphically illustrates the form of this STF and
its associated ASF. The STF is made up of a constant A plus a
bell-shaped component of height B. These two components
transform into a delta function and a scattering function,
respectively. The scattering surface therefore reflects an inci-
dent beam of light as a specularly reflected beam (the delta
function) of diminished intensity surrounded by a halo of
scattered light. From the central ordinate theorem of
Fourier transform theory, the volume under the scattering
function is equal to B, but A+ B =1, hence B is equal
to a quantity widely referred to as the total integrated scatter
(TIS).

The ASF and the corresponding scattering function are
scattered radiance functions, which are consistent with the
fact that the BRDF was defined by Nicodemus in 1970 as
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Fig. 3 lllustration of the surface transfer function (STF) and the angle
spread function of a scattering surface.

the reflected (or scattered) radiance divided by the incident
irradiance:®

dL(es’ (psvgi’ (pl>

BRDF = f(es’ q’svois (:01) = dE(g (ﬂ)

€))

Although there was no explicit smooth surface approxi-
mation in this OHS surface scatter theory, the derivation of
Eq. (1) did suffer from the same paraxial limitations as the
classical Beckmann—Kirchhoff theory. However, for a broad
class of scattering surfaces, including optical surfaces
polished with conventional techniques on ordinary glassy
amorphous materials, the ASF exhibits near shift-invariant
behavior in direction cosine space with respect to the inci-
dent angle.'! This led to a modest following among the radio-
metric community of BRDF curves plotted in the Harvey-
Shack f — p, format. Breault made an extensive use of
this format in building a catalog of BRDF data from various
materials and surfaces for use in his APART baffle design
program.36 Today the ASAP, FRED, Trace-Pro, and
ZEMAX codes all use some form of the Harvey-Shack
BRDF model.””*

Also, if one does make the smooth surface approximation,
the quantity G(X, y) reduces to the normalized surface ACV
function, C,(X,9)/0?, and the scattering function becomes
proportional to the surface PSD function as predicted by
the classical Rayleigh-Rice theory.®™

3.2 Modified Harvey-Shack Surface Scatter Theory

The above transfer function characterization of scattering
surfaces was modified in the 1980s to include grazing inci-
dence effects in X-ray telescopes, and “mid” spatial fre-
quency surface errors that span the gap between “figure”
and “finish” errors.!” This allowed an understanding of
image degradation due to scattering effects from residual
optical fabrication errors on NASA’s Chandra Observatory
and NOAA’s Solar X-ray Imager.*!"*?

Krywonos has shown that the STF for an arbitrary inci-
dent angle (assuming small angle scattering) can be
expressed as’’?

H(%,3:7;) = exp{=(4myi6:a)*[1 = Cs(%.9)/05]}.  (10)

This can again be written in the form

HS()ACv)A}’}/t) :A(}/l)—"_B(yl)G('%’}A}?yl)’ (11)
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where
A(Yl) = exp[_(4ﬁyi&rel)2]’ B(]/l) =1- exp[_(477'7/1‘8rel)2]7
(12)
and
R exp|[(4ny;)?C,(%,9)] -1
Gl gy — SPLATPCE ) 03

eXp [(4”}'i&rel)2] -1

In Eq. (10), we have used the relevant surface roughness,
0rl, Since spatial frequencies lying outside of the band-lim-
ited portion of the surface PSD do not contribute to the scat-
tered radiation.”® The surface ACV function is divided by the
total, or intrinsic, rms roughness, o, as its purpose is to nor-
malize the height of the surface ACV function to unity.

A wavefront incident on the scattering surface at an angle
0, is equivalent to introducing a linear phase variation across
the pupil. Assuming the plane of incidence to be the y-z
plane, this will cause a shift of the scattering function in
direction cosine space of f—f,, where f =sin # and
P, = sin ,. The ASF is therefore given by the Fourier trans-
form of the STF in Eq. (10), or Eq. (11), multiplied by the
linear phase variation:

ASF(a.f—Pfosyi) =F{H,(X.3:7:)exp(—i2n3p,) }
=A(r:)0(a.f—p,)+S(a.fp—Poiri). (14)

where

S(a.p = PBoivi) = B(r)) F{G(%, 3iv;) exp(=i2z$p,)} and
Bo — Pi. (15)

This is again the sum of a delta function at the location of
the specular direction surrounded by a scattering function, S,
where the fraction of the total reflected power in the specular
beam is given by A(y;), and the fraction of total reflected
power in the scattering function (TIS) is given by B(y;).
Hence, A(y;) + B(y;) =1, and the ASF again has unit
volume.

If any portion of the scattering function S in Eq. (15) falls
outside of the unit circle in direction cosine space, it will
need to be truncated and renormalized as dictated by
Parseval’s theorem (also assures conservation of energy).
This is accomplished in the same manner as was done for
diffraction in Sec. 2 of Ref. 25. The renormalization con-
stant, K, for the scattering function is given by

1 Vi—a? -1
K(yi) —B(h)</_1 /ﬁ_mS(a,ﬂ—ﬂ();Vi)dadﬂ) .
(16)

and only differs from unity for large incident and scattered
angles where the scattering radiance distribution function
extends beyond the unit circle in direction cosine space
(i.e., only if evanescent waves are produced).25 The renor-
malized ASF is thus given by

ASF'(a, f = Posvi) = K(ri) F{H (X, 33 7:) exp(=i27f,3) }.
a7

Recall that the ASF is a radiance function of unit volume.
We can convert the ASF to radiant intensity by multiplying it

Optical Engineering

073110-4

by the total reflected radiant power and the Lambert’s cosine
function

I(a’ﬁ _ﬁo;yi) = RPiASF/(avﬂ _ﬂo;}/i) Cos 63- (]8)

Clearly, the surface scatter process is no longer strictly
shift invariant with respect to incident angle as reported in
Refs. 10 and 11 since Eq. (10) can be interpreted as a one-
parameter family of STFs; i.e., a different STF is required for
each incident angle. This is analogous to imaging in the pres-
ence of field-dependent aberrations, where a different OTF is
required for each field angle.

3.3 GHS Surface Scatter Theory

The modified version of the Harvey—Shack theory was
shown to be a significant improvement over the OHS theory
in Ref. 28, especially for large incident angles. However, the
restriction of small scattering angles is still very limiting.
Furthermore, the OHS and MHS scattering theories were
restricted to mirror surfaces and did not include the more
general situation of scattering from a random rough surface
between two media with arbitrary refractive indices.*
Again Krywonos has shown that the following two-
parameter family of STFs is required to characterize the scat-
tering process for arbitrary incident and scattering angles:*®

H,(%,357:,75) = exp{~[2761 (n17,Fn27,))?
X [1 = Cy(%.5)/07]}. (19)
This general expression for the STF may be used to model
either reflective or transmissive surface scatter; however, the
discussion in this article will be restricted to applications of
scattering from mirror surfaces, i.e., n, = —n;. If the mirror

is immersed in air (or vacuum), n; = 1 and Eq. (19) can be
written as

Hy(%,3571,75) = exp{=[2701(y; +7,))?
X [1 = C(%,9)/037]}- (20)
Once again, the STF can be written in the form

Hs()%ﬁ 5}; Vis 7/3) = A(}/iv ya) + B(]/,‘, }/s)G()AC’S};yi’ 73‘)7 (21)

A(yi7s) = exp{=[22(y; + 7,)6wl]’}, (22)
where
B(?’iv }/S) =1- exp{_[zﬂ(yi + 7’&)8-&1]2}’ (23)

0'2 A A
exp ety r)PHC,G) | -1

exXp [Zﬂ(yi + }’s)a-rel]2 -1

G(x.3:70.75) = (24)

The ASF can thus still be written as the sum of a shifted &
function (specularly reflected beam) and an associated scat-
tering function S(a, f — f,):

ASF(as»ﬁs;yi»}/s) = [A(}/“ Ys)é(a’ﬂ _ﬁo)
+ S(a, ﬂ; Vi 7&‘)]|a:a'v,ﬂ:ﬁv7 (25)
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where

S(a. s 7isvs) = B(rinvs) FAG(X, 3571, v5) exp(—i2zf,3) }.
(26)

When numerical solutions of Eq. (26) are required, the
parameters y, and y; have to be specified before performing
the Fourier transform. Calculating the scattering distribution
over the entire observation space for a given angle of inci-
dence will therefore require a different STF and Fourier
transform calculation for every scattering angle.

4 System MTF in the Presence of Surface Scatter

The linear systems formulation of surface scatter phenomena
discussed in Sec. 3 not only provides insight and understand-
ing concerning a topic often perceived as being nonintuitive
and complicated but also suggests that the image degradation
due to the combined effects of diffraction, aberrations, and
scattered light can be obtained by merely multiplying the
STF by the classical MTF characterizing the image degrada-
tion due to diffraction and aberrations. However, there has
been legitimate skepticism concerning the accuracy of this
simple solution.** A few comments are thus in order to jus-
tify this simple cascading of transfer functions.

From linear systems theory, we learned that that the trans-
fer functions characterizing various subsystems (or physical
processes) can merely be multiplied to obtain the system
transfer function if and only if the subsystems (or individual
physical processes) are independent and uncorrelated. From
the convolution theorem of Fourier transform theory, multi-
plying transfer functions is equivalent to convolving impulse
responses (PSFs in optical imaging applications).

Boreman discusses several MTF contributors in addition
to diffraction and aberrations: detector MTF, motion MTF,
vibration MTF, turbulence MTF, aerosol MTF, etc.” He
then discussed cascading (multiplying) MTFs in consider-
able detail, giving examples where cascading MTFs will pro-
vide accurate results as well as examples where cascading
MTFs give completely inaccurate results.

It always comes back to whether the various errors (or
image degradation mechanisms) are independent and uncor-
related. An additional example is the image degradation due
to residual design errors and alignment errors in a telescope.
Can we merely convolve the degraded PSF due to the
residual design errors with the degraded PSF due to the mis-
alignment errors? Definitely not if the error in both cases is
coma. Because they are not uncorrelated. The coma due to
residual design errors can actually balance, or partially can-
cel, the coma due to alignment errors.

Our experience with regard to image degradation due to
diffraction, geometrical aberrations, and surface scatter due
to residual optical fabrication errors has been “yes” the aerial
image of a point source in the focal plane of the telescope is
accurately given by the aperture diffraction PSF convolved
by the geometrical PSF convolved by the surface scatter
PSE.* However, since the phase variations induced upon
the reflected wavefront by surface roughness are very similar
in nature to classical wavefront aberrations, one needs to
apply some caution regarding where one draws the line on
the surface PSD function between the low spatial frequency
figure errors that produce classical aberrations and the high
spatial frequency surface roughness that produces scattered
light. It is rather arbitrary, but probably safe, to consider this
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dividing line such that wavefront errors lower than the 22nd,
or the 36th, Zernike polynomial is included in the low spatial
frequency figure errors (deterministic) and to include the
higher Zernike terms with the (statistical) mid or high spatial
frequency surface roughness that produces scattered light.

Finally, in a recent publication by Choi and Harvey,*® it
has been shown that, for multielement imaging systems
degraded by both surface scatter and aberrations, the
composite PSF is obtained in explicit analytic form in
terms of convolutions of the geometrical PSF and scaled
BRDFs of the individual surfaces of the imaging system. The
approximations and assumptions in this formulation are dis-
cussed, and the result is compared to the irradiance distribu-
tion obtained using commercial software for the case of a
two-mirror telescope operating at EUV wavelength. The
two results are virtually identical.

We thus proceed by stating with some confidence that the
product of the STF with the classical MTF of an imaging
system will comprise the system MTF in the presence of sur-
face scatter. Assuming an imaging system with a circular
aperture (D =50 mm, f =200 mm) operating at A=
0.5 um, the diffraction-limited MTF is given by:*’

(D*/2){cos”!(r/D) = (r/D)[1 = (r/D)*|'*} 7

MTF =
xD?/4

27

and has a cut-off spatial frequency &, = D/Af = 500 mm™!
as shown in Fig. 4.

Assume also that there is a single reflecting surface with a
Gaussian ACV function that produces a TIS = 0.2 (corre-
sponds to an rms roughness of o = 188 A)

A

ACV,p(7) = C,(3.5) = azGauss{é}
7\ 2 (28)
= ¢? exp |:—7Z’ (A> } ,
[
£ =2.0 mm.

For smooth surfaces, the STF is given by

STF = A + BG(%.5) A + BC,(%.5) /o> (29)

0.9
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04 \\
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Fig. 4 Diffraction-limited modulation transfer function (MTF) of imag-
ing system with a circular aperture.
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~

STF~ 0.8 + 0.2Gauss{§}

r=pif

p\2
=0.8+0.2 eXp{_ﬂ<f//1f) } (30)

and illustrated graphically in Fig. 5. We have increased the
surface correlation width substantially beyond what it would
typically be to enable seeing the nature of the STF at small
spatial frequencies.

The system transfer function is given by the product of the
classical MTF and the STF

H(X,9)sys = MTF x STF. (31)

As illustrated in Fig. 6, the system transfer function, as
degraded by wide-angle scatter from high spatial frequency
microroughness, drops very quickly (at a spatial frequency of
about Z/Af) to a value of 1-TIS, then continues diminished
proportionately from the classical MTF by that amount
H(X,9)sys = (1 = TIS)MTF  for & > £/Af. (32)

The classical definition of TIS is that fraction of the total
reflected radiant power that is scattered out of the specularly
reflected beam. Following Davies*® and Bennett and
Porteus,*’ the TIS due to surface scatter from a single mod-
erately rough surface is given by the following analytical
expression

TIS = 1 — exp[—(4x cos 0,6,1/2)?]. (33)

The above definition of TIS and its paraxial smooth sur-
face approximation

TIS ~ (476, /1)* (34)

has been discussed extensively in the literature, most recently
in Ref. 34. We want to emphasize that the approximate
expression in Eq. (34) can only be used for very smooth sur-
faces. Figure 7 illustrates that the error in Eq. (34) increases
exponentially if the rms roughness of the surface exceeds a
value of approximately o, = 0.034.

Note also that the above expressions for TIS involve the
band-limited relative roughness mentioned earlier in
Secs. 3.2 and 3.3. This relative roughness and how to

1
09 |
08 |
0.7
06 |
0.5 |
04 |
0.3
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0.1

0

STF

£/ 2f =20.0mm™
K

0 100 200 300 400 500
Spatial Frequency (mm™")

Fig. 5 STF for above example.

Optical Engineering

073110-6

S - = MTF

N = Composite TF
0.8 S

0.7
0.6
0.5
04

/7

0.3

System Transfer Function

02 LIAf ~

0.1

/

0 50 100 150 200 250 300 350 400 450 500
Spatial Frequency (mm-') D/Af

Fig. 6 lllustration of the effect of surface scatter upon the MTF of an
imaging system.

calculate it from metrology data are also discussed in detail
in Ref. 34.

5 Parametric Analysis of MTF Behavior for
Gaussian Surface PSDs

Since approximations and assumptions were made in the
above analysis, we will now provide a parametric analysis
of the effect of scatter upon the MTF for surfaces with
Gaussian surface PSDs. This parametric analysis will pro-
vide insight concerning when one can use the smooth-sur-
face approximation of the OHS surface scatter theory and
when one must progress to the MHS or the GHS theory.

5.1 Variations in Surface Roughness (and TIS)

Keeping the same optical design parameters (D = 50 mm,
f =200 mm), and a Gaussian surface ACV function, we
will now calculate, and illustrate graphically, variations in
STF behavior as we increase the surface roughness (and
therefore the amount of light scattered). We have increased
the surface ACV length, # = 8.0 mm, to enable us to more
easily see the differences on our parametric plots.

Figure 8 illustrates the STF predicted by the OHS theory
Egs. (1-5) and the smooth-surface approximation to the
OHS theory in which G(%,3) = C,(%,3)/c? for increasing

2
=+=TISsmooth
—=—TIS

TIS

-
o

2

,= (4rcosb o, /)

smootlr

|

B=TIS = 1-exp[~(47 cos 6, &

el

12)°]

rel

Total Integrated Scatter

N\

0 T 0.05 0.1 0.15 0.2
sigmal/lambda

Fig. 7 lllustration of the growth of total integrated scatter (TIS) with

increasing surface roughness for normal incidence. Note the expo-
nentially increasing error in Eq. (34) when ¢, > 0.024.
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Fig. 8 Variations in STF behavior with increasing surface roughness.

values of surface roughness that results in values of TIS rang-
ing from 0.016 to 0.80. Note that for normal incidence and a
Gaussian surface PSD, the smooth-surface approximation to
the OHS expression for the STF does not introduce a signifi-
cant error until TIS > 0.2 and then only for spatial frequen-
cies E< Z/Af.

Common image quality criteria might be to specify the
maximum allowable degradation due to scatter in the value
of the MTF at a specific spatial frequency or to specify the
maximum allowable decrease in spatial frequency (due to
scatter) at which a specified modulation is maintained.
Figure 9 illustrates the composite MTF due to both scatter
and diffraction indicating that for a TIS = 0.2, there is an
18% decrease in the modulation at a spatial frequency
equal to one-half the cut-off spatial frequency and a 24%
decrease in the spatial frequency at which a modulation
of 0.5 is maintained.

5.2 Variations in Surface ACV Width

We have observed a 20% drop in the MTF caused by surface
roughness (o = 188 A) sufficient to produce TIS = 0.2. The
rate at which the MTF drops is determined by the width of
the Gaussian surface ACV function. Figure 10 illustrates this
variation in MTF behavior with surface ACV width. Note
that / does not significantly affect the MTF except at the
very short spatial frequencies.

1.0
0.9 [T~ — - Diff-Lim MTF
~. —— |=2mm
N
0.8 '~ —— l=4mm
\'\. —— |=6mm
0.7 ~ —— |=8mm
0.6 hi. — I=10mm
0.5 e
“
0.4 e
0.3 S
0.2 ~
0.1 N
0.0

0 50 100 150 200 250 300 350 400 450 500

Fig. 10 Variations in MTF behavior with increasing surface correla-
tion width.

5.3 Variations in Incident Angle

The modified Harvey—Shack (MHS) surface scatter theory
includes the effect of incident angle upon the STF.
Figure 11 graphically illustrates the difference in the STF
predicted by the OHS theory in which the single STF
expressed by Eq. (2) characterizes the scattering process, and
the MHS theory which requires a separate STF for each inci-
dent angle as expressed in Eq. (10). Parametric plots are pre-
sented for several increasingly large incident angles.

Again we have used the same optical design parameters
(D =50 mm, f =200 mm), and a Gaussian surface ACV
function with # = 2.0 mm and ¢ = 188 A which produces
TIS = 0.2 at normal incidence. Figure 11 shows the STF
curves where the angle of incidence upon the scattering sur-
face varies from 0 to 20, 30, 40, 50, and 60 deg. Note that the
STF predicted by the OHS and the MHS theories are iden-
tical at normal incidence. However, as the angle of incidence
increases from 0 to 60 deg, the STF increases from 0.8 to
almost 0.95. This is a substantial reduction in image degra-
dation. This becomes intuitive when we note that the TIS is
reduced from 20% to almost 5% as the angle of incidence is
increased. Figure 12 illustrates the corresponding system
MTF behavior with increasing incident angle.

In addition to providing insight into the effect of surface
scatter upon the MTF, the above parametric curves also
assure us that if one is using the simple OHS theory, a
worst-case prediction will be obtained.
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Fig.9 Variations in MTF behavior with increasing surface roughness.
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Fig. 11 Variations in STF behavior with increasing incident angle.
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Fig. 12 Variations in composite MTF behavior with increasing inci-
dent angle.

6 Applications Providing Insight into the MTF
Behavior Degraded by Surface Scatter

At visible and infrared wavelengths, image degradation due
to light scattered from conventionally polished optical surfa-
ces is minimal. However, as the operating wavelength
decreases, diffraction effects diminish and image degradation
due to surface scatter from residual optical fabrication errors
increases dramatically. Also, even at visible wavelengths,
significant degradation of the MTF can occur for multiele-
ment systems fabricated by unconventional optical fabrica-
tion processes, such as diamond-turned metal surfaces. We
will thus calculate and illustrate the results for three specific
applications: (i) a visible Newtonian telescope with moder-
ately good optical surfaces, (ii) the same Newtonian tele-
scope with state-of-the-art optical surfaces operating at
EUV wavelengths, and (iii) a visible (4 = 0.6 ym) system
made up of three diamond-turned off-axis aspheric mirrors
where we use the predicted MTF to estimate whether
post-polishing will be required to meet a specific image qual-
ity requirement.

6.1 Surface Scatter Effects upon the MTF of a
Visible Newtonian Telescope

Figure 13 shows the effect of a central obscuration upon the
normalized diffraction-limited MTF of a two-mirror tele-
scope.?’ Note that there is a substantial decrease in the modu-
lation at the mid spatial frequencies and a slight increase in
the modulation at the high spatial frequencies for annual
apertures, with these effects being more pronounced for
higher obscuration ratios.

Let the telescope diameter, D, focal length, f, and obscu-
ration ratio, &, of the telescope be given by

D =50mm, f=500mm and &=0.25. 35)

The cut-off spatial frequency in the MTF of an annular
aperture is given by £, = D /Af. Figure 14 illustrates the dif-
fraction-limited MTF of our Newtonian telescope with an
obscuration ratio of 0.25 for wavelengths of 7000, 6000,
5000, and 4000 A in the visible spectrum. Since the
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Fig. 13 Effect of the central obscuration upon the diffraction-limited
MTF of an annular aperture.

Newtonian telescope provides a perfect geometrical image
on-axis, we have no image degradation due to aberrations.

We will assume that the primary mirror has a Gaussian
surface ACV function with an rms roughness, oy, and a cor-
relation width, Z, given by

o, =30 A, /=1.0 mm (36)

and ignore any scattering due to the small plane folding sec-
ondary mirror.

Even this rather relaxed rms roughness specification of
30 A on the surface of the primary mirror results in a
value of >0.99 for the constant plateau of the STF for all
wavelengths >4000 A as illustrated in Fig. 15. The value
of the TIS is also tabulated in Fig. 15 for four wavelengths
spanning the visible spectrum.

Multiplying the diffraction-limited MTF illustrated in
Fig. 14 by the STF shown in Fig. 15 shows that the degra-
dation of the composite MTF due to surface scatter is barely
perceptible even for the shortest visible wavelength as shown
in Fig. 16.
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Fig. 14 Effect of wavelength upon the cut-off spatial frequency of the
diffraction-limited MTF.
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Fig. 15 lllustration of the STF at four visible wavelengths. The corre-
sponding TIS values are also tabulated for the four wavelengths.

6.2 Surface Scatter Effects upon the MTF of an EUV
Newtonian Telescope

At EUV wavelengths, surface scatter effects can dominate
both diffraction effects and geometrical aberrations. The
NOAA Solar Ultra Violet Imager (SUVI) program for study-
ing space weather effects due to geomagnetic storms on the
surface of the sun is an example where surface scatter effects
are of prime importance.’’""

Using the same Newtonian telescope as in the previous
example, Fig. 17 illustrates the diffraction-limited MTF
for wavelengths of 300, 250, 200, 170, 130, and 100 A in
the EUV spectrum. Note the extremely large cut-off spatial
frequencies which scale inversely with the wavelength. Since
the Newtonian telescope provides a perfect geometrical
image on-axis, we are still ignoring image degradation due
to aberrations.

Tightening the rms roughness specification to 8 A and
maintaining the 1.0-mm correlation length on the primary
mirror of the Newtonian telescope results in a STF at the
six different EUV wavelengths as shown in Fig. 18. Note
that the TIS varies from just over 10% at the longest wave-
length of 300 A to almost 64% at the shortest wavelength of
100 A. We are again ignoring any scattering due to the small
plane folding secondary mirror.

Finally, we obtain the composite MTF of the EUV
Newtonian telescope by multiplying the MTFs and the
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Fig. 16 lllustration of the negligible effect of surface scatter upon the
MTF at visible wavelengths.
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Fig. 17 Effect of wavelength upon the cut-off spatial frequency of the
diffraction-limited MTF.

STFs shown in Figs. 17 and 18. A slight reduction of the
8 A rms roughness to 7.85 A ensures that the modulation
at a spatial frequency of 2000 mm~" will be at least 0.25
for all wavelengths between 300 and 100 A. These
composite MTFs are shown in Fig. 19.

Plotting the modulation versus wavelength at a spatial fre-
quency of 2000 mm~!, as shown in Fig. 20, provides insight
concerning the relative importance of diffraction and scatter-
ing over the EUV spectral range of interest. Note in Fig. 20
that at a spatial frequency of 2000 mm~! surface scatter lim-
its the modulation at the low end of the EUV spectrum and
diffraction limits the modulation at the high end of the EUV
spectrum, with the intermediate wavelengths exhibiting the
highest modulation.

6.3 Surface Scatter Effects upon the MTF for a
Three-Element Diamond-Turned System

Suppose we need to establish optical fabrication tolerances
for four reflective mirrors making up a 4x a focal, unob-
scured subsystem which will meet the following MTF
requirements at a wavelength of 6000 A:

Modulation > 0.60 at 40.0 cycles/mrad. 37)
1.0 ‘
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Fig. 18 lllustration of STF caused by an 8-A rms surface roughness
on the primary mirror. Note that almost 64% of the extreme ultraviolet
(EUV) radiation is scattered out of the image core for the shortest
wavelength.
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Fig. 19 lllustration of the composite MTF of a Newtonian telescope
caused by surface scatter and diffraction for six different wavelengths
in the EUV spectrum (¢ = 0.25 and ¢ = 7.85 A).
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Fig. 20 At a spatial frequency of 2000 mm-', surface scatter limits
the value of the MTF at the short wavelengths, diffraction limits the
value at long wavelengths, and the highest performance is achieved
in the middle of the EUV spectrum.

The first element of the subsystem is a folding flat (object-
plane scanning element) that will be left out of the following
analysis for convenience. This is justified based upon the
negligible degradation to the MTF due to surface scatter
of state-of-the art mirrors at visible wavelengths shown in
the Sec. 6.1. The entrance pupil lies in front of an off-
axis paraboloidal primary mirror. An off-axis hyperboloidal
secondary mirror then produces an internal focus. The light
is then collected and collimated by an off-axis paraboloidal
tertiary mirror. All three of these mirrors are off-axis seg-
ments of conic surfaces of revolution with a common axis
of rotation. The entrance pupil has a diameter of 86.0 mm,

Casel: o, =200 , 7, =1.00mm Case2: o, =200
o,=20 , ¢,=0.01 mm
For all three (3) mirrors
Case3: o, =200 , 7, =1.00mm Case4: o0, =200
o,=60 , ¢, =0.01 mm

For all three (3) mirrors

Figure 21 indicates that in order to meet the requirement
expressed in Eq. (37), the diamond-turned surfaces would
have to be post-polished to a microroughness of o, <40 A;
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Fig. 21 lllustration of the sensitivity of the MTF of a three-element
system of diamond-turned aspheres to the residual rms microrough-
ness (1 = 6000 A).

and the exit pupil has a diameter of 21.5 mm, giving the afo-
cal system a magnification of 1/4.

Noll and Glenn®* have shown that optically polished glass
samples exhibit two scales of roughness and that each scale
can reasonably be characterized by an exponential ACV
function

ACV = o3 exp(=r/t),) + o2, exp(=r/C), (38)

where r = /x> + y? is the radial shift parameter, o, is the
high spatial frequency rms microroughness, ¢, is the high
spatial frequency autocovariance length, o, is the midspatial
frequency rms roughness and ¢, is the mid spatial frequency
autocovariance length.

Excellent agreement with experimental results has previ-
ously been obtained using this model for several different
applications. >’

Our approach is now to proceed to perform parametric
performance predictions as a function of the four surface
parameters indicated in the above equation for the surface
ACV function. Following the approach outlined in Sec. 4
for a single mirror, we will simplify things by assuming
that all three mirrors have the same ACV function and will
merely multiply the three individual mirror STFSs to approxi-
mate the three-element STF. This will allow us to estimate
the optical fabrication tolerances necessary to satisfy the
image quality requirement.

As an example, the MTF will first be calculated for four
separate cases where only the high spatial frequency micro-
roughness is varied. The other three surface parameters will
be held constant, i.e.,

, €, =1.00 mm
, ¢, =0.01 mm
, €, =100mm’ (39)
, ¢, =0.01 mm

however, if the requirement could be reduced to a modula-
tion >0.50 at 40.0 cycles/mrad, then post-polishing would
not be required provided the diamond-turned surfaces had an

July 2013/Vol. 52(7)

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 07/29/2013 Terms of Use: http://spiedl.org/terms



Harvey: Parametric analysis of the effect of scattered light upon the modulation transfer function

rms microroughness of 6, < 80 A;. Since post-polishing is a
labor-intensive and time-consuming process, this would save
considerable cost and schedule for the program. Similar sen-
sitivity analyses could be done for the other three optical sur-
face parameters.

7 Effect of (Nonsurface) Scatter upon the Optical
System MTF

Thus far in this article, we have been using surface scatter
theory to predict the STF from optical surface metrology
data. For particulate scatter effects due to contaminated or
dirty optical surfaces, a theoretical, or empirical, approach
to characterizing the scatter behavior and predicting the bidi-
rectional scatter distribution function (BSDF) can be
employed. However, there are a multitude of painted, coated,
processed, or natural surfaces and materials used as structural
elements or baffles in optical systems that produce stray light
by various (unknown) subsurface or bulk scattering mecha-
nisms. There is also stray light or scattering effects from
background elements in the scene being imaged for a
given application.

For such materials, one must have at least limited mea-
sured BSDF data, or an empirical BSDF model in order
to predict the optical performance of an imaging system.
With these BSDF data or models provided as input, there
are extensive optical analysis software packages such as
FRED, ASAP, or TracePro’’~ that are capable of predicting
the irradiance distribution in the focal plane of very complex
optical systems imaging very complex scenes, under virtu-
ally arbitrary illumination conditions. If the MTF is desired
as the image quality criterion for a complex system with stray
light sources other than surface scatter from well character-
ized surfaces, the following procedure would be required.

Point source illumination can be used to predict the irra-
diance distribution in the focal plane. This PSF can then be
Fourier transformed to obtain the OTF as illustrated sche-
matically in Fig. 1. The modulus of this OTF is the desired
MTFE.

8 Summary

We first reviewed the historical background of surface scatter
theory and then discussed the evolution of a linear systems
formulation of surface scatter theory that characterizes the
surface scatter process with a STF. The classical MTF of
an imaging system can merely be multiplied by this STF
to obtain the composite MTF as degraded by diffraction,
geometrical aberrations, and surface scatter effects. We
then presented a parametric analysis of the effect of scattered
light upon the MTF as the rms surface roughness, surface
correlation length, and the incident angle was varied. The
resulting parametric plots provided insight and understand-
ing not readily available in the existing literature. We then
modeled the degradation of the MTF due to surface scatter
from residual optical fabrication errors for three specific
examples: (1) the MTF of a Newtonian telescope was
shown to be negligibly degraded when illuminated by visible
light if the rms surface roughness of the primary mirror is
<30 A; (2) the MTF of a Newtonian telescope with a
state-of-the-art primary mirror (o, < 8 A) was then modeled
at six EUV wavelengths and shown to be severely degraded
by surface scatter (TIS > 0.6) at the shorter wavelengths
while diffraction dominated scatter effects at the larger
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EUYV wavelengths; (3) finally, a three-element system of dia-
mond-turned off-axis aspheres illuminated by visible light at
a wavelength of 600 nm was evaluated and the predicted
MTF was used to determine whether post-polishing would
be required to meet a specific image quality requirement.

9 Conclusions

Scattered light from residual optical fabrication errors does
indeed degrade the MTF of imaging systems and is easily
calculated from surface metrology data such as the surface
ACYV function. However, the effect is negligible for moder-
ately good optical surfaces operating at visible wavelengths.
The ratio of rms surface roughness to wavelength, /4, is the
main driver in the effect of scattered light upon the MTF of
an imaging system; hence, surface scatter effects can domi-
nate both the diffraction effects and the geometrical aberra-
tions in the degradation of short wavelength EUV imaging
systems. Particularly valuable in many practical optical engi-
neering applications is using the degradation of the MTF due
to scattered light to determine whether post-polishing of dia-
mond-turned optics is necessary in order to satisfy specific
image quality requirements. There is a huge program sav-
ings, in terms of both cost and schedule, for many advanced
optical systems if post-polishing can be shown to be
unnecessary.
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