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a b s t r a c t

We show that a weak Airy pulse can be used to manipulate the dynamics of an optical soliton when
propagating at a different wavelength. Our results indicate that an Airy wave packet is considerably more
effective in controlling the arrival time of a soliton than a corresponding Gaussian pulse. The nature of
these interactions is systematically explored as a function of the initial parameters used and is illustrated
using pertinent examples.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Controlling light by light using nonlinear interactions has
always been an active area of research, and over the years, several
directions have been pursued to meet this goal [1–3]. One of the
most promising avenues is to make use of cubic nonlinearities in
optical fibers where two co-propagating pulses are known to
interact via cross-phase modulation (XPM) [4]. Many different
approaches exist to exploit this effect for an all-optical control of
optical light pulses [5]. All-optical switching based on XPM has
been discussed in [6]. The logic gates based on XPM in the highly
nonlinear fiber have been reported [7,8]. Intermittent injection of
cw light pulses is used for timing solitons [9]. The evolution of the
signal spectrum and the temporal location of the signal pulse can
be controlled by choosing an appropriate pulse width, initial delay,
amplitude, and walk-off between signal and pump pulses [10,11].
In each of these methods, the ability to command a weak signal
pulse requires the use of a stronger control pulse. To this end,
dispersive wave packets which allow for the manipulation of
solitons at the optical event horizon have been proposed [12].
A dispersive wave packet and a fundamental soliton experience a
strong light-light interaction at the group-velocity horizon in an
optical fiber. However when such a wave packet approaches a high
power soliton by group velocity dispersion, the peak intensity of
the dispersive wave decreases. Naturally, we can utilize a beam
that is resilient to the effects of dispersion, such as an Airy pulse

[13–16]. Because of its non-dispersive characteristic, the intensity
of Airy pulse is larger than dispersive wave when they reach the
signal pulse. This would increase the interaction between the two
wave fronts. So far, these self-accelerating pulses (beams) have
been investigated in linear and nonlinear region [17–19]. Airy–
soliton interactions at the same center wavelength in Kerr media
have been studied [20], but further analysis at different wave-
lengths is lacking.

In this paper, we explore Airy–soliton pulse interactions with
different center wavelengths. We show that an Airy pulse cannot
pass over the soliton at the optical event horizon and will
experience a large frequency/time shift. When compared with a
Gaussian pulse of equivalent power, we conclude that the Airy
pulse induces a greater nonlinear interaction resulting from the
extended amount of XPM. This provides the potential to control
the properties of a strong soliton with another weaker pulse.

2. Model

To begin, we consider two differently colored light pulses propa-
gating in a single-mode fiber. If fiber losses are neglected for simplicity,
the slowly varying envelopes for the signal ψS, and control pulse ψC ,
obey a coupled nonlinear Schrödinger equation [4]:

∂ψS
∂Z þ i

2β″S
∂2ψS

∂T2 ¼ iγS½jψSj2þ2jψC j2�ψS

∂ψC
∂Z þ i

2β″C
∂2ψC

∂T2 �d∂ψC
∂T ¼ iγC ½jψC j2þ2jψSj2�ψC

ð1Þ

The model given in Eq. (1) includes cross- and self- phase
modulation, group velocity dispersion, and pulse walk-off. Here,
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Z ¼ z=Ld is the propagation coordinate normalized to the disper-
sion length, Ld ¼ t20=jβ″sj, T ¼ ðt�Z=vgsÞt�1

0 is the normalized tem-
poral coordinate, d¼ v�1

gs �v�1
gc is a measure of group-velocity

mismatch, β″S and β″C are the GVD coefficients of the signal and
control pulse respectively, and γS ¼ n2ωS=cAef f and γC ¼ n2ωC=cAef f

are the normalized Kerr coefficients with effective area Aef f and
coefficient n2.

For our initial profiles, we simultaneously launch both a
fundamental soliton signal pulse (SP) and an Airy control pulse
(CP). Then we compare the results with the case of utilizing
Gaussian pulse as CP.

ψSðT ; Z ¼ 0Þ ¼ sechðT�TSÞ ð2Þ

ψCðT ; Z ¼ 0Þ ¼ rAiðT�TCÞexpðαðT�TCÞÞexpðiθÞ ð3Þ
where r is the amplitude ratio of the control to signal pulse, TS and
TC are the signal/control time delays, α is a truncation coefficient
and θ is the relative phase of the control pulse. For our simulations,
we model a fluoride glass fiber propagating t0 ¼ 21 fs wave
packets at signal and control pulse frequencies of ωS ¼ 0:6 PHz
and ωC ¼ 1:8 PHz [12]; these particular frequency values ensure
that the control pulse is normally dispersive while the signal
remains in the anomalous regime. The amplitude of the CP is
significantly lower than that of the SP. For this material, the
signal's pertinent coefficients are β″SðωSÞ ¼ �0:229 fs2=μm and
~γS ¼ 0:1 W�1=m (γS ¼ 1=2ðcn0ε0 ~γ SÞ) while the coefficients of CP
are β″C ωCð Þ ¼ 0:08 fs2=μm and ~γC ¼ 0:3 W�1m�1. We note that the
time separation between the Airy and soliton wavefronts are
chosen to be at least 6t0 in order to ensure no initial overlap
between the two pulses.

3. Results

We consider the case that the CP slowly passes the signal
soliton (SP) with carrier frequencies ωC and ωS, respectively. The
SP propagates in anomalous dispersion regime that the optical
fiber can support the fundamental soliton. The SP and CP launch
with no initial overlap. The CP propagates in normal dispersion
regime, that the dispersive pulse can approach the soliton by
group-velocity dispersion. We choice the Gaussian pulse as the
represent of the dispersive wave packet. The pulse widths are the
same and are normalized to 1. Fig. 1 show the temporal evolutions
for the two cases of the Gaussian pulse (CP) interaction with the
signal soliton (the left column) and the Airy pulse (CP) interaction
with the signal soliton (the right column). The pertinent coeffi-
cients of SP and CP are normalized to the value of the signal one.
The normalized nonlinearities are γS ¼ 1, γC ¼ 3, and the normal-
ized GVD parameters are β″S ¼ �1, β″C ¼ 0:35. The amplitude of CP
is lower than SP, that the amplitude ratio r is 0.36. The control
pulse is injected prior to the soliton into the fiber with a delay of
20t0. The group velocity of the CP is slightly smaller than the group
velocity of soliton, the walk-off d is �1.

Fig. 1(a) shows the propagation of Gaussian pulse and the
fundamental soliton in the reference frame moving with the
soliton. The Gaussian pulse approaches the soliton because of
group-velocity dispersion. When the two pulses begin to overlap,
XPM builds up. XPM induces frequency shift of their central
frequencies [12,21] and preventing the pulses from crossing each
other. The soliton behave as an impenetrable barrier. The weak CP
is reflected at the leading edge of the strong soliton.

In the case of Airy–soliton interaction, as shown in Fig. 1(b), the
evolution of pulses is similar like the case of Gaussian–soliton
interaction. The peak intensity of Airy pulse is the same as
Gaussian pulse. The truncation coefficient α of Airy pulse is 0.25,
that the total energy of Airy pulse is lower than Gaussian. The Airy

pulse reaches the soliton and then reflects. But because of the
dispersion-free and acceleration characters of the Airy pulse, it
expands slower than Gaussian pulse [13] and most of its power is
concentrated in the main lobe. The Airy pulse maintains its shape
and accelerates to soliton. When the control pulse reaches the
soliton, the peak power of the Airy pulse is higher than Gaussian
pulse. Because the XPM term in Eq. (1) is related to the intensity of
control pulse, so the interaction between Airy pulse and soliton is
stronger than Gaussian pulse co-propagate with soliton. The most
of the intensity of Airy pulse is reflected, and it affects the soliton
pulse strongly. The time shift of soliton interact with Airy is larger
than soliton interact with Gaussian, which is shown in Fig. 1(c).
This enabling switching of a strong soliton pulse with a lower
energy CP.

Fig. 1. Evolution of CP and SP: (a) Propagation of weak Gaussian pulse and soliton.
(b) Propagation of weak Airy pulse and soliton. (c) Time shift of soliton.
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The output spectra of CP and SP are both affected by the
reflection process. The soliton frequency is shifted toward the blue,
and the central frequency of the CP has a large frequency shift to
red. We can see from Fig. 2(c), the frequency shift of the SP is
larger when it co-propagates with Airy pulse than with the
Gaussian pulse. The CP and SP are both experienced larger shift
in the case of Airy–soliton interaction.

The results shown in Fig. 3(a) and (b) correspond to another
case that the group velocity for control and signal pulses is
assumed to be the same. In this case the carrier frequency of CP
is about 1.65 PHz. They are launched without initial time delay so
that they overlap initially and continue to do so during their

passage through the fiber. While the control pulse is Gaussian
pulse, the CP splits into two pulses which are symmetric with
respect to the SP. These two pulses influence the SP the same. The
soliton keep its straight direction through propagation as shown
in Fig. 3(a). If the control pulse is Airy pulse, because of the
asymmetric of the energy, the main lobe of the Airy pulse splits,
but they are no longer symmetric with respect to the soliton. The
soliton resist the most energy of Airy pulse to pass through it and
the soliton shifts to the leading side of Airy pulse. Fig. 3(b) shows
the evolution of Airy pulse interaction with soliton with no initial
time delay. The time shifts of solitons are contrasted in Fig. 3(c).
It is clearly that the soliton shift at the beginning when it interacts
with Airy pulse, but there is no time shift of soliton in the case of
Gaussian–soliton interaction. They behave differently.

Fig. 2. (a) frequency shift of Airy pulse; (b) frequency shift of Gaussian pulse; (c)
frequency shift of soliton: (A) original spectra of soliton; (B) after collision with
Gaussian pulse; (C) after collision with Airy pulse.

Fig. 3. (a) Evolution of Gaussian pulse and soliton. (b) Evolution of Airy pulse and
soliton. (c) Time shift of soliton.
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The frequency gap of the CP and SP influences the time and the
frequency shift of the soliton (Fig. 4). The yellow line A plot the
time and the frequency shift of the soliton when CP and SP at same
carrier frequency as the CP prior to SP about 10t0. The time and the
frequency shifts of the soliton are very small, like the results in
[20]. If the carrier frequency gap of the CP and SP increased, the
group velocity, the GVD and nonlinearity coefficients are changed.
The red line C plot the time and the frequency shift of the soliton
when the carrier frequency of soliton fixed and the carrier
frequency of Airy pulse increase to 2 PHz. The velocity of CP is
slower than SP and the group velocity mismatch gets larger. Unlike
the Airy pulse reflect from the soliton as seen in Fig. 4(c), the Airy
pulse splits (Fig. 4(d)). They are no longer locked after they meet
each other and the interaction length decreased. This reduces the
XPM interaction of the two pulses. The time and frequency shifts
of the soliton are smaller than the case which the carrier
frequency of CP is 1.8 PHz but much larger than the case of CP
and SP at same carrier frequency.

We next track the characteristics change of SP. Solitons experi-
ence time position change during the collision and permanent
frequency changes which map to time position alterations by
group velocity dispersion [20]. Fig. 5(a) shows the time shift of
soliton with different truncation coefficient. If the truncation
coefficient is small (a⪡1), the CP displays all characteristics like
the ideal Airy pulse [14]. With same peak intensity, it needs larger
energy than Gaussian pulse to generate the Airy pulse with very
small truncation coefficient. Because of its larger total energy, the
peak intensity of Airy is higher when it interacts with soliton. So
the Airy pulse with small truncation coefficient affects the soliton
more, and more power of the Airy pulse pass through the soliton.
If the truncation coefficient gets larger than 0.2 (a40:2), the Airy
tail decays rapidly and the total energy of Airy pulse is lower than
the Gaussian pulse of the same peak intensity, but most of the
energy of Airy pulse are concentrated in the main lobe and it freely

Fig. 4. (a) Time shift of soliton (b) frequency shift of soliton (A) CP and SP at same carrier frequency; (B) ωS ¼ 0:6 PHz and ωC ¼ 1:8 PHz; (C) ωS ¼ 0:6 PHz and
ωC ¼ 2 PHz(c) propagation of Airy pulse at 1.8 PHz; (c) propagation of Airy pulse at 2 PHz.

Fig. 5. (a) Soliton time shifts for different truncation coefficient; (b) soliton time
shifts with respect to Airy's initial amplitude for different initial relative phase.
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accelerates to the soliton. When it reaches the soliton, the peak
intensity of Airy is also higher than Gaussian pulse and affects the
soliton more. In this case, it enables manipulating a strong soliton
by a lower energy Airy pulse.

We plot the soliton time shift for different Airy pulse's
amplitude ratio and relative phase between Airy and soliton
(Fig. 5(b). The stronger intensity of Airy induces the larger time
shift of soliton. But the time shift of soliton is weakly depend on
the relative phase. The time shift of solitons can be modulated by
parameters of Airy pulse.

The soliton peak power behavior is analyzed along the propa-
gation range (Fig. 6). The intensity of the soliton experiences
oscillation after collision with Airy pulse. These oscillations are
dependent on the colliding Airy pulse truncation coefficient. In the
absence of the Raman Effect, the oscillation of soliton intensity can
then be understood as an energy transfer between the pulses
during collision. The largest energy transfer between the pulses is
at the primary collision point where the interaction is most strong.
As the CP is reflected by strong SP, both pulses thus drift apart with
larger group velocities than before. With continuous interaction
with the Airy pulse, the intensity of the SP still oscillates but its
amplitude slowly decreases. Like the time position changes which
analyzed above, the soliton peak power behavior is influenced by
Airy pulse's parameters.

4. Conclusion

We investigate the interaction between an Airy pulse and a
soliton pulse at different center frequencies. The results reveal that
the Airy pulse is better than Gaussian pulse to control the soliton.

The Airy pulse can maintain its shape and accelerate to soliton.
With the same peak power, the Airy pulse shifts the time position
of soliton pulse more than Gaussian pulse do. If the truncation
coefficient a40:2, the total energy of Airy pulse is lower than
Gaussian pulse with same peak intensity. In this condition, the
Airy CP still affects the soliton more than Gaussian CP. This implies
we can use a weak Airy control pulse to control the properties of a
strong signal soliton pulse. If Airy pulse and soliton propagate with
no initial time delay, they interact at the beginning and the soliton
get time position shift. The soliton experienced time position and
intensity changes as we change the Airy's parameter. The different
influence of Airy's amplitude ratio, the truncation coefficient and
the relative phase are discussed.
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