
Ermakov–Lewis symmetry in photonic lattices
B. M. Rodríguez-Lara,1,* P. Aleahmad,2 H. M. Moya-Cessa,1 and D. N. Christodoulides2

1Instituto Nacional de Astrofísica, Óptica y Electrónica, Calle Luis Enrique Erro No. 1, Sta. Ma. Tonantzintla, Pue. CP 72840, Mexico
2CREOL/College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA

*Corresponding author: bmlara@inaoep.mx

Received January 29, 2014; revised February 28, 2014; accepted March 3, 2014;
posted March 3, 2014 (Doc. ID 205629); published March 27, 2014

We present a class of waveguide arrays that is the classical analog of a quantum harmonic oscillator, where the mass
and frequency depend on the propagation distance. In these photonic lattices, refractive indices and second-
neighbor couplings define the mass and frequency of the analog quantum oscillator, while first-neighbor couplings
are a free parameter to adjust the model. The quantum model conserves the Ermakov–Lewis invariant, thus the
photonic crystal also possesses this symmetry. © 2014 Optical Society of America
OCIS codes: (050.5298) Photonic crystals; (230.4555) Coupled resonators; (230.7370) Waveguides; (350.5500)

Propagation.
http://dx.doi.org/10.1364/OL.39.002083

Symmetry in classical and quantum mechanics provides
a tool to gain insight from complex systems [1–3]. In their
purest form, abstract invariants are related to physical
conservation laws, as found by Noether [4]. In practice,
the sets of transformations related to symmetry help us
make tractable an otherwise complex-in-appearance
model [1]. Here, we are interested in such an optical sys-
tem: a specific class of photonic lattices [5] composed of
waveguides that interact with their first- and second-
nearest neighbors through evanescent coupling. Further,
the refractive indices and the separation between wave-
guides are functions of the propagation distance. In this
Letter, we will show that such a class of photonic lattices
is the classical analog of a propagation-dependent har-
monic oscillator with an Ermakov–Lewis invariant
(ELI) [6–8]. This relation to the time-dependent harmonic
oscillator makes these photonic crystals suitable candi-
dates for the classical simulation of diverse quantum
problems: e.g., a particle moving in a magnetic field or
under the presence of friction. Finally, we will provide
an analytic propagator for classical light impinging on
these arrays of coupled waveguides through the sym-
metry transformations related to the ELI.
Our photonic lattice is semi-infinite and composed of

individual waveguides whose refractive indices vary lin-
early with their position in the array times a common
function of the propagation distance. The couplings be-
tween first- and second-neighbor waveguides vary by the
square root of a function of the position in the array times
a common function of the propagation distance. There is
one particular function for first neighbors and another
for second neighbors. In short, it is described by the dif-
ferential set

i∂zEn�z� � α0�z�nEn�z�
� α1�z��f n�1En�1�z� � f nEn−1�z��
� α2�z��gn�2En�2�z� � gnEn−2�z�� � 0; (1)

with f n � ����
n

p
, gn �

������������������
n�n − 1�

p
, and E

−jnj�z� � 0, where
the field amplitude at the nth waveguide is En�z�, the
common z-dependent refractive index is given by
α0�z�, and the first- and second-neighbor coupling func-
tions by α1�z� and α2�z�, respectively. The corresponding

array of waveguides would not necessarily be one dimen-
sional, in order to fulfill the relations for first- and
second-neighbor couplings. If we define a state vector,
jψ�z�i � P∞

j�0 Ej�z�jji, via the field amplitudes at the
jth waveguides Ej , the differential set can be written
as a Schrödinger-like equation,

i∂zjψ�z�i � Ĥjψ�z�i; (2)

in terms of creation (annihilation) operators â† (â):

Ĥ � −�α0�z�n̂� α1�z��â� â†� � α2�z��â2 � â†2��: (3)

The action of the bosonic creation (annihilation) and the
number of operators are given by â†jni � �������������

n� 1
p jn� 1i

(âjni � ����
n

p jni) and n̂jni � njni, in that order. At this
point we can move to a normalized canonical position
and momentum, â � �1∕

���
2

p
��q̂� ip̂� and â† �

�1∕
���
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p
��q̂ − ip̂�, to rewrite the Hamiltonian as
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(4)

where the z-dependent mass and frequency are

M�z� � 1
α0�z� − 2α2�z�

; (5)

Ω2�z� � α20�z� − 4α22�z�: (6)

Note that we have the restriction α0�z� ≠ 2α2�z�, between
the z-dependent refractive index and second-neighbor
couplings, in order to work with a well-behaved mass
function. In this form, a displacement and overall phase
help us to simplify the dynamics:

jψ�z�i � e−i
R

φ�z�dze−i�u�z�p̂�M�z� _u�z�q̂�jξ�z�i; (7)

with φ�z� � �α0�z� �M�z� _u2�z� �M�z�Ω2�z�u2�z��∕2
and the auxiliary function u�z� such that it fulfills
ü�z� � _M�z� _u�z�∕M�z� � Ω2�z�u�

���
2

p
α1�z�∕M�z� � 0,
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where we have used the shorthand notation _u�z� �
∂zu�z�. This is a good point to stop and note that the
first-coupling neighbor α1�z� influences the propagation
in our photonic lattices, only through its role in defining
the auxiliary function, u�z�. Thus, we can rewrite Eq. (2)
as a harmonic oscillator, where the mass and frequency
depend on the propagation distance,

i∂tjξ�t�i �
�

1
2m�t� p̂

2 � 1
2
m�t�ω2�t�q̂2

�
jξ�t�i; (8)

and we have made the variable change t � −z, leading to
m�t� � M�−t� and ω�t� � Ω�−t�, for the sake of simplic-
ity. Such a quantum model shows an ELI [7–12]:

Î � 1
2

��
q̂

ρ�t�

�
2
� �ρ�t�p̂ −m�t�_ρ�t�q̂�2

�
; (9)

where the new auxiliary function fulfills the Ermakov
equation [6]:

ρ̈�t� � _m�t�
m�t� _ρ�t� � ω2�t�ρ�t� � 1

m2�t�ρ3�t� : (10)

The ELI possesses a related set of symmetry transforma-
tions [12,13]:

jξ�t�i � ei
m�t�_ρ�t�
2ρ�t� q̂2e−i

ln ρ�t�
2 �p̂ q̂�q̂ p̂�jζ�t�i; (11)

which are equivalent to the displacement: the first expo-
nential in the right-hand side (rhs) term; and squeezing
operations: the second exponential in the rhs term. This
squeezed and displaced basis diagonalizes our system:

i∂tjζ�t�i �
1

2m�t�ρ2�t� �p̂
2 � q̂2�jζ�t�i; (12)

� 1

m�t�ρ2�t�

�
â†â� 1

2

�
jζ�t�i: (13)

It is straightforward to solve this Schrödinger-like equa-
tion, as all dependence on the propagation has been
factorized to a common term. Thus, the analytic propa-
gator for any given initial state is

jζ�t�i � e
−i
R

1
m�t�ρ2�t�dt�â†â�1

2�jζ�0�i; (14)

where the state vector jζ�0�i holds the information from
the initial field amplitudes that impinge upon the wave-
guide array. These transformations and evolution in the
new frame of reference are enough to provide an impulse
function in the original frame. Notice that light impinging
on just the jth waveguide, in the original frame of refer-
ence, will be equivalent to having the initial wave func-
tion, �1∕

��������
2jj!

p
��1∕π�1∕4e−q2∕2Hj�q�, whereHn�x� is the nth

Hermite polynomial [14]. Thus, a beam of light impinging
on just the first waveguide of the array is equivalent to an
initial Gaussian wave function in dimensionless canoni-
cal space, Ψ0�q� � e−q

2∕2∕π1∕4. This has to be taken into
account when going to or from the transformed frame.

Further, as our photonic lattice with first- and second-
neighbor coupling is equivalent to a z-dependent
harmonic oscillator, Eq. (4), it can be used to simulate
a charged particle moving nonrelativistically in the pres-
ence of a magnetic field [7,9], if the parameters are ad-
justed such that the mass is constant, m�t� � m, and
the frequency is proportional to the amplitude of the
magnetic field, ω�t� � B�t�∕2. It can also be used to sim-
ulate quantum oscillators in the presence of friction, if
the mass is written asm�t� � m∕F�t� [15]. Setting F�t� �
e−γt with constants γ, and ω�t�, leads to the Caldirola–
Kanai Hamiltonian [16,17]. Analytical closed forms for
the auxiliary function ρ�t� can be obtained for a variety
of driving frequencies: e.g., ω�t� � c leads to
ρ2�t� � ω�t�−1, ω�t� � ct−1 gives ρ2�t� � t�c2 − 1∕4�−1∕2,
and ω�t� � ctk yields ρ2�t� � π�k� 1�t�J��k�1�∕2�2
�k� 1c2tk�1� � Y ��k�1�∕2�2�k� 1c2tk�1��∕2. In all cases, c
is a constant [8,10]. Of course, each case provides its
own set of design challenges in order to bring the
photonic analogs to the laboratory.

Let us consider a simple example by setting a harmonic
oscillator with constant mass and frequency,
M�z� � Ω�z� � 1. This case is related to an array with
parameters α0�z� � 1, α1�z� � 1, and α2�z� � 0; i.e., there
are only first-neighbor couplings in the photonic lattice.
This realization of our lattice is equivalent up to a con-
stant with the Glauber–Fock oscillator lattice, which al-
lows for Bloch-like revivals, and has been produced
experimentally [18]. Figure 1 shows the propagation of
light intensity in such a lattice, for an initial field imping-
ing on just the j � 10waveguide. Increasing the constant-
driving frequency in the quantum model is equivalent to
including second-neighbor couplings in the optical
model. As the quantum models are the same, the dynam-
ics of light propagating through the new waveguide array
are similar to that of the Glauber–Fock oscillator lattice;
e.g., the spatial frequency of the Bloch-like revivals be-
comes higher in the lattice, including second-neighbor
couplings, compared to just the first-neighbor couplings.
For example, Fig. 2 shows propagation in our lattice with
parameters, α0�z� � 5∕2, α1�z� � 1, and α2�z� � 3∕4,
which are related to the oscillator parameters, M�z� �
1 and Ω�z� � 2.

Fig. 1. Light intensity propagation for a beam impinging on
the j � 10 waveguide of a lattice with parameters, α0�z� �
α1�z� � 1, and α2�z� � 0; this is equivalent to an oscillator with
constant mass and frequency, M�z� � Ω�z� � 1.
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We can also study an example bridging the two arrays
of waveguides discussed above, by considering a driving
frequency, Ω�z� � �3� tanh ε�z − zs��∕2, which is the
equivalent of a smooth, well-behaved step function,
where the parameter ε controls the steepness of the
jump, and zs is the switching position, as shown in
Fig. 3(a). Thus, for propagation distances z < zs we

expect coherent oscillations related to the Glauber–Fock
oscillator lattice with a given spatial frequency; and then,
after switching to distance zs, we expect oscillations
related to the higher spatial frequency of a Glauber–
Fock oscillator, including second-neighbor couplings.
Figure 3(b) shows the numerical propagation of such a
system. This case admits an approximate auxiliary func-
tion, ρ2�t� � 1� 1∕ω2�t� � �1 − 1∕ω2�t�� cos R

t
ts
2ω�ζ�dζ

[19,20]. As mentioned before, this is equivalent to a
Glauber–Fock oscillator lattice that smoothly transitions
from just first-neighbor couplings to first- and second-
neighbor couplings. In numerical simulations carried
out with lattices consisting of 500 waveguides, the
light intensity at the last waveguide was never larger
than 10−6.

In short, we have shown that certain nontrivial arrays
of photonic waveguides, where refractive indices, as well
as first- and second-neighbor couplings, depend on the
propagation distance, and can classically simulate the dy-
namics of a quantum harmonic oscillator with non-con-
stant mass and frequency. The quantum system shows an
ELI that defines the underlying symmetry of the photonic
crystal and is related to diverse quantum mechanical
problems: e.g., a charged particle in the presence of a
magnetic field and driving/friction in quantum oscillators.
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Fig. 2. Light intensity propagation for a beam impinging on the
j � 10 waveguide of a lattice with parameters α0�z� � 5∕2,
α1�z� � 1, and α2�z� � 3∕4; this is equivalent to an oscillator
with constant mass and frequency, M�z� � 1 and Ω�z� � 2.

Fig. 3. (a) Profile of the driving frequency, Ω�z�. (b) Light in-
tensity propagation for a beam impinging on the j � 10 wave-
guide of a lattice with parameters α0�z� � �M2�z�Ω�z�2 � 1�∕
�2M�z��, α1�z� � 1, and α2�z� � �M2�z�Ω�z�2 − 1�∕�4M�z��; with
harmonic oscillator parameters M�z� � 1 and Ω�z� � �3�
tanh 20�z − 12.5��∕2.
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