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The two-point coherence of an electromagnetic field is represented completely by a 4 × 4 coherency matrix G that
encodes the joint polarization–spatial-field correlations. Here, we describe a systematic sequence of cascaded spa-
tial and polarization projective measurements that are sufficient to tomographically reconstruct G—a task that, to
the best of our knowledge, has not yet been realized. Our approach benefits from the correspondence between this
reconstruction problem in classical optics and that of quantum state tomography for two-photon states in quantum
optics. Identifying G uniquely determines all the measurable correlation characteristics of the field and, thus, lifts
ambiguities that arise from reliance on traditional scalar descriptors, especially when the field’s degrees of freedom
are correlated or classically entangled. © 2014 Optical Society of America
OCIS codes: (030.1640) Coherence; (260.5430) Polarization; (120.3180) Interferometry; (030.6600) Statistical optics.
http://dx.doi.org/10.1364/OL.39.002411

The concepts of partial polarization at a point in an
optical field and partial spatial coherence in a scalar
field are both well understood [1]. Partially coherent
electromagnetic fields, in which both of these aspects
are inextricably linked, have received considerable
attention over the past decade or so [2–5]. It is well-
established that the coherence of an electromagnetic
field [6] (quantified by two-point field correlations) is
represented by a 4 × 4 coherency matrix G [7]. This
matrix is a complete representation of second-order
field correlations (first-order coherence) for any two
points in the field. Therefore, all proposed measures
of vector-field coherence are in fact scalar functions
of the elements of G [3,4]. Furthermore, the importance
of G stems from its predictive power: it determines the
coherence properties after any subsequent linear
manipulation of the field at these two points.
Despite its fundamental importance, the elements of

G have not been directly measured in their entirety,
heretofore, and proposed approaches to achieving this
goal are lacking. Here, we present a systematic measure-
ment methodology to reconstruct G for an electromag-
netic field. Moreover, this approach is applicable to
any two (or more) discrete degrees of freedom (DOFs)
of an optical field. Underpinning this strategy is a
finite set of optical measurements (following appropriate
field transformations and projections) that may be
inverted to yield the complex elements of G. The choice
of the particular measurements to be implemented is
elucidated by highlighting the correspondence between
the problem of identifying the elements of G in classical
optics and identifying the complex elements of the
density matrix associated with two-photon states in
quantum optics—a process typically known as quantum
state tomography [8,9]. In light of this correspondence,
we call the approach described here optical coherency
matrix tomography, applied in the current context
to the particular case of two-point polarization
correlations.
We first consider the polarization DOF at a single

point in a quasi-monochromatic beam, which is

represented by a 2 × 2 Hermitian polarization coherency
matrix:
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The degree of polarization Dp is defined as

Dp � �1∕Sp
0�

����������������������������������������������
�Sp

1�2 � �Sp
2�2 � �Sp

3�2
q

. This representation

contains four real parameters that may be identified ex-
perimentally via the four polarization projections shown
in Fig. 1(a): the total power I0 and that of the H, 45°,
and right-hand circular (RHC) polarization components,
corresponding to I1, I2, and I3, respectively. These
measurements yield the Stokes parameters since
Sp
j � 2Ij − I0, j � 0…3. Note that normalizing the mea-

surements with respect to I0 yields a unity-trace Gp,
which is now in one-to-one correspondence with the den-
sity operator used in quantum optics to describe one-
photon polarization states [10,11], or, more generally,
any two-level quantum system.

Such a formalism may also be used to capture the
two-point spatial correlations in a scalar field. The
corresponding representation of spatial coherence
using two-point correlations at r⃗a and r⃗b is a spatial
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coherency matrix, Gs � �Gaa
Gba

Gab
Gbb

� � �1∕2�P3
m�0 S

s
mσ̂m,

where Gkk0 � hE�r⃗k�E��r⃗k0 �i, Gkk0 � G�
k0k, k; k0 � a; b,

and fSs
mg are two-point spatial Stokes parameters. The

elements of Gs may be obtained experimentally using
the spatial projective measurements shown in Fig. 1(b)
without recourse to recording spatial interference pat-
terns: the total power I0; the power I1 at one position,
e.g., r⃗a (corresponding to the H-polarization measure-
ment above); the power I2 after symmetric mixing of
the field at r⃗a and r⃗b (corresponding to the 45°-polariza-
tion measurement); and I3 obtained similarly to I2 except
for a π∕2 phase shift placed at r⃗b (corresponding to the
RHC-polarization measurement). As with the case of
polarization above, Gs is normalized such that Ss

0 � 1
puts Gs in one-to-one correspondence with density oper-
ators that describe two-level quantum systems. The vis-
ibility of Young’s interferogram produced by the field at
these two points is then simply V � 2jRfGabgj � jSs

2j,
which is clearly not sufficient to retrieve all the param-
eters of Gs. In analogy to Dp, we define a spatial counter-
part of the degree of polarization as the degree of spatial
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quantity has a clear interpretation: it is the maximum
observable visibility from the field at r⃗a and r⃗b after
an arbitrary unitary transformation is implemented. That
is, after inserting relative phases and/or mixing the field
from r⃗a and r⃗b.
We now consider an electromagnetic field, in which

case both the spatial coherence and polarization DOFs
must be considered simultaneously. Coherence at two

points r⃗a and r⃗b is then captured by a 4 × 4 Hermitian
two-point vector coherency matrix [5,7]:
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here Gjk;j0k0 � hEj�r⃗k�E�
j0 �r⃗k0 �i, Gjk;j0k0 � G�

j0k0;jk, j; j
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and k; k0 � a; b. The Hermiticity ofG reduces the number
of real parameters necessary to uniquely specify it to 16.
It is critical to note that it is not possible to reconstructG
from independent polarization and spatial measure-
ments. To observe this fact, first ignore the polarization
DOF. The spatial coherence is then characterized by a
reduced spatial coherency matrix (obtained by carrying
out a partial trace over the polarization DOF in G):
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�
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�
: (3)

The polarization-independent spatial-coherence mea-
sures V and Ds may be determined from G�r�

s . Similarly,
by ignoring the spatial DOF we obtain a reduced polari-
zation coherency matrix for the total field at both r⃗a and
r⃗b (i.e., without spatially resolving the two points):

G�r�
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�
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which may be used to determine Dp. By inspection, it is

clear that G�r�
p and G�r�

s are insufficient to reconstruct G.
The elements of G that are missing from G�r�

p and G�r�
s are

those that account for correlations between polarization
and spatial DOFs. Determining these elements requires
joint polarization–spatial measurements.

In addressing the task of completely reconstructing G,
we take inspiration from an analogous problem in quan-
tum optics, where the polarization of two-photon states
of light is encoded by a 4 × 4 density matrix ρ̂ in the
Hilbert space formed of the direct product of the Hilbert
spaces that characterize the polarization of each photon
[10]. An isomorphism between ρ̂ (for the quantum state)
andG (for the classical field) is established by identifying
the vector spaces for the state of each photon in the
former with the vector spaces representing the DOFs
of the classical beam. That is, we identify mathematically
the polarization of the first photon, for example, in the
two-photon state with the polarization of the classical
field. Then we identify the polarization of the second
photon with the spatial DOF of the classical field.

The measurements necessary to reconstruct ρ̂ for
composite quantum systems were identified by Wootters
[12] (see also Refs. [13,14]). For a quantum system com-
prising two subsystems, the necessary measurements to
reconstruct ρ̂ are the correlation of pairs of projective
measurements, one for each subsystem, chosen from
the sets of measurements that are sufficient to recon-
struct the state of each subsystem. In other words,
the measurements required to completely specify the

Fig. 1. (a) Projective measurements to reconstruct Gp. PBS,
polarizing beam splitter; HWP, half-wave plate to rotate polari-
zation by 45°; QWP, quarter-wave plate that transforms H to
RHC polarization. The empty box corresponds to measuring
the total power. (b) projective measurements to reconstruct
Gs at r⃗a and r⃗b. BC, symmetric beam combiner; PS, a π∕2 phase
shifter; D, detector. All components in (b) are polarization
insensitive. (c) Sixteen projective measurements to reconstruct
G for a vector field at r⃗a and r⃗b constructed by cascading
measurements from (a) and (b).
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subsystems are, surprisingly, sufficient to specify the
complete system—so long as they are carried out jointly.
Therefore, in the case of a two-photon polarization
state, each photon is directed to the four polarization
analyzers used in Fig. 1(a) [8,9]. In the two-photon meas-
urement scheme (Fig. 2) 16 measurements are obtained
by pairing polarization measurements implemented in
the paths of photons traveling to the right (P1) and
left (P2).
The isomorphism between ρ̂ and G guarantees that an

analogous measurement strategy is sufficient to uniquely
reconstruct G for the classical beam. The required mea-
surements to reconstruct G correspond to cascading
pairs of 4 × 4 � 16 projections, one for each DOF of the
classical beam. These (real) tomographic measurements
that span both DOFs may then be inverted to obtain
the complex elements of G. An arrangement where
spatial measurements follow polarization projections is
shown in Fig. 1(c). The order of the projective measure-
ments may also be reversed where polarization measure-
ments follow spatial projections. To the best of our
knowledge and despite the fundamental importance of
G, the experimental scheme we have described here
for tomographically reconstructing G has not been
realized to date.
We relate the real measurements Ijk to the complex

elements ofG by first defining a new set of Stokes param-
eters, G � �1∕4�P3

l;m�0 Slmσ̂
p
l ⊗ σ̂sm (⊗ is the direct

product). The elements of G are then given explicitly
as shown in Eq. (5). In this formulation the (real)
multi-DOF Stokes parameters Slm are determined by
the measurements following the relationship Slm �
4Ilm − 2Il0 − 2I0m � I00, l, m � 0…3. Therefore, once
the multi-DOF Stokes parameters Slm are obtained, they
may be substituted into

G � 1
4
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thereby completing the inversion of the measurements
and tomographic reconstruction of G. Thus, there is
no need to carry out separate polarization measurements
at r⃗a or r⃗b. Note that if G is normalized to unit trace
(S00 � 1), then complete coherence is achieved when
TrfG2g � 1, and complete spatial and polarization inco-
herence occur when TrfG2g � 1∕4.

Reconstructing G uniquely defines the coherence
state of the field at any two points, thereby lifting ambi-
guities that arise from the use of only a few scalar param-
eters, especially when the DOFs are correlated. To
highlight this crucial feature of G, we describe below
six examples of fields where we compare V , Ds, or
Dp—extracted from traditional measurements—to the in-
formation extracted from the reconstructed G. We
present a pictorial depiction of the coherency matrices

Fig. 2. Setup for measuring the two-photon polarization den-
sity matrix ρ̂ through projective measurements on photons P1
and P2 emitted from a two-photon source S. Cjk is the proba-
bility of coincidence detection after polarization projections j
and k (shown here is the particular measurement C12 out of
16 potential measurements). See Fig. 1 for a definition of the
components.

Fig. 3. (a)–(f) Pictorial depictions of the real part of the coher-
ency matrices G for the fields described in the text; the imagi-
nary parts of the elements of G in all these cases are zero. The
labels correspond to the indices of the elements of G in Eq. (2).
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in Fig. 3 that appropriates the methodology common in
quantum state tomography.

(1) G1 corresponds to a spatially coherent, horizon-
tally polarized field with equal amplitudes at r⃗a and r⃗b,
in which case V � Ds � Dp � 1 [Fig. 3(a)]. Here, it is
clear that G1 separates into a direct product of the coher-
ency matrices for the uncoupled DOFs: G1 �
�10 0

0�p ⊗ �1∕2��11 1
1�s. This indicates that the two DOFs

are independent [as is also clear in Fig. 3(a)] and, since
TrfG2g � 1, each is fully coherent.
(2) The importance of reconstructing G becomes

apparent when examining fields in which the spatial
and polarization DOFs are correlated, or classically en-
tangled. ConsiderG2 that corresponds to a coherent field
with orthogonal polarizations at r⃗a and r⃗b [Fig. 3(b)].
Although there is no randomness, the usual indicators
of coherence applied to each DOF reveal an apparent
complete lack of coherence: V � Ds � Dp � 0. This is
in contradistinction to the fact that TrfG2

2g � 1, which
confirms the global coherence of the field. Such an am-
biguity is resolved by noting from Fig. 3(b) thatG2 cannot
be factorized into a direct product of polarization and
spatial coherency matrices, as is the case for G1 above.
Therefore, the apparent lack of coherence is due to the
classical entanglement between the two DOFs and not
due to intrinsic randomness or fluctuations [5].
(3) G3 shown in Fig. 3(c) corresponds to a spatially

coherent field with randomized polarization: V � Ds �
1 and Dp � 0. Here, G3 � �10 0

1�p ⊗ �1∕2��11 1
1�s; i.e., the

two DOFs are independent and the former lacks coher-
ence. Both features are observed clearly in Fig. 3(c).
(4) Consider the previous case of G3, with the role of

the two DOFs reversed. In this scenario, G4 corresponds
to a horizontally polarized field that is spatially incoher-
ent: V � Ds � 0 and Dp � 1 [Fig. 3(d)]. Here,
G4 �

�
1
0

0
0

�
p ⊗ �1∕2��10 0

1

�
s; i.e., the two DOFs are inde-

pendent and the latter lacks coherence. Both features
are clear in Fig. 3(d), albeit with the role of polarization
and space reversed with respect to Fig. 3(c).
(5) G5 corresponds to an unpolarized, spatially inco-

herent field—a maximum entropy state of the electro-
magnetic field [Fig. 3(e)]. In this case the field globally
lacks any coherence TrfG2

5g � �1∕4�, and, similarly, the
reduced coherency matrices each reveal a lack of coher-
ence (V � Ds � Dp � 0). By examining G as shown in
Fig. 3(e), it is clear that G5 � �1∕4�σ̂p0 ⊗ σ̂s0, correspond-
ing to intrinsic randomness in all DOFs of the field.
(6) G6 corresponds to a partially coherent, partially

polarized field with correlated DOFs [Fig. 3(f)]. This state
arises if the polarization is randomized at one of the
two points from an initially coherent polarized field.
The coherence measures obtained from the reduced
coherency matrices are V � Dp � Ds � �1∕2�. The ap-
parent lack of coherence here has two sources. First,
incoherence stemming from intrinsic randomness, which
is revealed by noting that TrfG2g � �5∕8� < 1. Second,
since G6 cannot be factorized into a direct product of
reduced matrices, a fraction of the apparent incoherence
is due to the correlation, or classical entanglement,
between the DOFs.

Reconstruction of the 4 × 4 coherency matrix G there-
fore enables the identification of the origin of lack of
coherence as determined from Ds and Dp. The lack of
spatial coherence in G4, polarization coherence in G3,
and both spatial and polarization coherence in G5 are
all due to intrinsic randomness in the DOFs. On the other
hand, in G2 the apparent absence of polarization and
spatial coherence is due to coupling between the DOFs.
Relying solely on separate polarization and spatial mea-
sures leads to ambiguities, which are lifted after recon-
structing G, since G provides a complete description of
the field at two points. Furthermore, other parameters
(such as the recently proposed Bell’s measure [5]) may
also be calculated from G and used as descriptors. More-
over, reconstructing G for a beam before and after trans-
mission through a system that couples different DOFs, as
in a photonic crystal or anisotropic scatterers, will help
elucidate the system’s characteristics.

In conclusion, we have demonstrated that the
necessary measurements for characterizing the joint
polarization-spatial coherence properties of an electro-
magnetic field are cascades of the projective measure-
ments needed for each DOF separately. The principle
of this method may be extended to other DOFs (such
as optical orbital angular momentum or other spatial
modes,) by using appropriate projective measurements
[15,16]. This result hinges on the fact that the vector
space describing the properties of an electromagnetic
field having multiple DOFs[5,17] is the direct product
of the vector spaces corresponding to each DOF. Conse-
quently, multi-DOF classical beams of light may be
placed in one-to-one correspondence with states of multi-
partite quantum systems, and quantum state tomographic
strategies may thus be employed in the classical setting.
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