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Supersymmetric mode converters
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Originally developed in the context of quantum field theory, the concept of supersymmetry

can be used to systematically design a new class of optical structures. In this work, we

demonstrate how key features arising from optical supersymmetry can be exploited to control

the flow of light for mode-division multiplexing applications. Superpartner configurations are

experimentally realized in coupled optical networks, and the corresponding light dynamics in

such systems are directly observed. We show that supersymmetry can be judiciously used to

remove the fundamental mode of a multimode optical structure while establishing global

phase-matching conditions for the remaining set of modes. Along these lines, supersymmetry

may serve as a promising platform for versatile optical components with desirable properties

and functionalities.
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T
he ever-increasing demand for high-capacity optical
transmission systems1 has led to remarkable advances in
encoding information on a given channel. Wavelength

division, polarization and angular momentum multiplexing,
multilevel modulation and coherent detection are among the
techniques used today in exploiting the various degrees of
freedom offered by electromagnetic waves2,3. At the same time,
however, such schemes tend to impose more stringent
requirements on the signal-to-noise ratio. Although an increase
in the overall transmitted power may improve performance,
channel nonlinearities are ultimately expected to be the
limiting factor. Mode-division multiplexing (MDM)4–8

holds great promise in substantially increasing the capacity of
optical links9, while at the same time keeping nonlinearities in
check. MDM makes use of the individual modes in an optical
waveguide and hence utilizes the available spatial degrees of
freedom. One of the outstanding challenges in MDM
arrangements is to devise appropriate procedures for selectively
populating and extracting specific modes in an integrated
manner. As we will see, supersymmetry (SUSY) can provide a
particularly elegant way to address this issue that is both
readily scalable and compatible with existing multiplexing
techniques.

The conceptual framework of SUSY emerged in the context of
quantum field theory as a means to unify the mathematical
treatment of bosons and fermions10–12. To this end, certain
algebraical transformations (see Methods) are employed to
construct two different operators that exhibit almost identical
eigenvalue spectra. While evidence for supersymmetric
behaviour in any physical setting, whether natural or artificial,
has so far remained elusive, its fundamental ideas can in

principle be adopted in other areas of physics13. In its optical
manifestation, SUSY can potentially establish close relationships
between seemingly different dielectric structures14. For example,
two refractive index profiles interrelated via supersymmetric
transformations share identical scattering characteristics15 and
therefore can become virtually indistinguishable to an external
observer, even in the presence of losses16,17. In the context of
guided wave optics, supersymmetric partner waveguides are
characterized by perfect global phase-matching conditions: With
the exception of the fundamental mode, each guided mode of
the original multimode waveguide has a counterpart in the
partner arrangement with exactly the same propagation
constant, or effective index (see Fig. 1a,b). The refractive index
distribution of the superpartner waveguide can be found
through a systematic deformation of the original structure (see
Supplementary Figs 1 and 2). Yet, to this date, no experimental
observation of supersymmetric optical behaviour has been
reported.

In this article, we demonstrate that the perfect phase-
matching conditions afforded by SUSY can be effectively
used for multiplexing/demultiplexing the modal content
of highly multimoded systems. This is accomplished by
introducing superpartner structures capable of directing
different modes from, or to, specific output ports (Fig. 1c).
A hierarchical ladder arrangement of such superpartners,
that can simultaneously interrogate the entire modal content
of a system is experimentally realized. In this respect,
MDM based on optical SUSY (SUSY-MDM) can be performed,
in a scalable manner, simultaneously for a great number of
modes, without the need for any additional beam-shaping
components.
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Figure 1 | Supersymmetric optical structures and their application for mode division multiplexing (MDM). (a) A multimode optical waveguide

supporting four guided states. The three modes of the superpartner (b) are perfectly phase-matched to the higher modes of the original structure. The

profiles of the supersymmetry (SUSY) mode pairs in those two waveguides are related via SUSY transformations. Note that the fundamental mode in (a)

has no counterpart in the superpartner structure. For more details, see Methods and Supplementary Fig. 1. (c) Supersymmetric MDM. A hierarchical

sequence of multiple superpartner structures incorporates the functionalities of successive mode converters and beam combiners into a single

multiplexing/demultiplexing component (SUSY mux/demux). All input and output ports of this schematic arrangement operate in their respective

fundamental modes. The individual channels are marked in colours so as to trace the flow of information.
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Results
Supersymmetric optical structures. In what follows, we
demonstrate supersymmetric mode conversion in multicore
photonic lattice systems. To implement these structures, we
employ the femtosecond laser writing technique to inscribe arrays
with appropriate index profiles in fused silica (see Methods and
Supplementary Fig. 3). From an experimental perspective, the
physical platform presented here has a unique advantage over
other realizations. The evolution dynamics in such lattices can be
observed by means of waveguide fluorescence microscopy18,
hence allowing one to directly evaluate their response. In
principle, however, our results are general and other fabrication
approaches could likewise be pursued. In all possible settings,
light dynamics are dictated by the refractive index distribution.
For the photonic lattices employed in this study, coupled-mode
theory provides an effective approach in describing light
evolution19. In this context, light propagation can be
discretized20–22, and as a result, the corresponding state vector
A obeys the following evolution equation along the longitudinal
coordinate z:

� i
d

dz
A ¼ HA: ð1Þ

Here, A¼ (a1,y,aN)T, where ak describes the complex
modal field amplitude in the kth channel, N is the number
of lattice sites involved and the N�N matrix H is the
Hamiltonian of the system whose elements are given by
Hm;n ¼ ðdm� 1;nþ dmþ 1;nÞCnþ dm;nbn. In the latter expression,
bn denotes the propagation constant of channel n, and Cn

represents the coupling strength between adjacent lattice sites.
Note that our fabrication method provides full control over these
elements23. The eigenvalue problem HA ¼lA associated with
equation (1) can in turn be used to construct a superpartner
lattice (see Methods and Supplementary Fig. 2). As an example,
Fig. 2a shows the refractive index profile of a fundamental lattice
involving six identical sites, while Fig. 2b depicts its discrete
representation. Similarly, Fig. 2c,d illustrates the corresponding
superpartner index landscape and the associated array, consisting
of five sites as a result of unbroken SUSY. Note that the
superpartner shares a common set of propagation constants
(eigenvalues) with the original structure, with the exception of
that of the fundamental mode (Fig. 2e). To factorize the discrete
operators involved, we use Cholesky’s method as well as the so-
called QR decomposition—the discrete counterparts to the
continuous supersymmetric transformations.

To elucidate the fundamental principle behind optical SUSY,
let us first consider the simplest possible case where a structure
supports only two bound modes (Fig. 2f). In general, light
injected into this waveguide will populate both of these states, and
as a result the ensuing interference leads to a periodic
propagation pattern. An experimental observation of such a
bimodal beating is shown in Fig. 2h. By applying a super-
symmetric transformation, one can then establish a partner
refractive index profile. For this particular case it turns out that
the resulting structure is single-moded (that is, supports only the
ground state), and is exactly phase-matched to the second mode
of the original waveguide (Fig. 2g). Naturally, light injected into
the superpartner here displays stationary evolution, as shown in
Fig. 2i.

The hierarchical SUSY ladder. The fact that SUSY can establish
global phase-matching conditions among the bound states of two
different partner potentials brings about the possibility of suc-
cessively isolating and extracting these modes—a key capability
in MDM schemes. This property can in turn be exploited to
control light transport in a hierarchical ‘ladder’ of iteratively

generated superpartners. In other words, the number of modes
supported by each ‘step’ in this ladder is sequentially reduced,
until only a single bound state (or waveguide channel) remains.
Such a ladder is schematically depicted in Fig. 3a. In this example,
starting from a fundamental multimode structure supporting six
states, a progression of five partner structures is obtained, each of
which is supersymmetric with respect to its immediate pre-
decessor. As a result, the sets of eigenvalues corresponding to the
individual step of the ladder are perfectly aligned. For instance,
the third mode of the fundamental structure can exchange energy
with its counterparts in the second and third step, while it is
prohibited from interacting with others. Notably, coupling
between the superpartners breaks the degeneracy around these
eigenvalues, giving rise to multiplets (or bands) of collective
ladder states as illustrated in Fig. 3a. Along these lines, SUSY
ladders can in principle allow one to simultaneously multiplex a
massive number of modes with a single operation. Note that
supersymmetric phase-matching is robust even in the presence of
a partner waveguide. Numerical simulations (see Supplementary
Discussion and Supplementary Fig. 4) of a continuous six-moded
waveguide with a step-like index profile and its superpartner
show that the ensuing crosstalk between non-phase-matched
modes remains below 20 dB, in spite of the fact that the index
profiles partially overlap. With a more generous spacing, or by
excluding the mode pair closest to the cut-off, conversion fide-
lities of 35 dB are readily achievable and modes can be effectively
transformed across the entire ladder (see Supplementary Fig. 5).

Mode conversion and isolation. To observe this behaviour, we
implemented a SUSY ladder in fused silica glass. In our
arrangement, the fundamental structure supports six modes,
similar to the schematic representation in Fig. 3a. The coupling
between successive superpartners is achieved by placing them in
close proximity to one another, allowing for evanescent energy
transfer. The fundamental state in each respective step is excited
by launching a Gaussian beam perpendicular to the input facet.
Figure 3b–g shows the experimentally observed propagation
dynamics arising from such excitations. Indeed, light injected in
the ground state of the fundamental array remains localized, and
is completely isolated from the rest of the ladder (Fig. 3b). In
contrast, wave packets originating from the ground state of any
higher layer can freely traverse the ladder and are directed
towards the fundamental partner.

On the other hand, higher-order excitations of the funda-
mental system (for example, in the kth state, k41) can be
transported across the ladder, up to the corresponding step c¼ k.
This is confirmed by experimental results, shown in Fig. 4a–c,
where the input beam was appropriately tilted so as to selectively
populate mixtures of the three lowest states. Note that, in all
cases, the output patterns clearly reflect the mode transformation
that takes place in the SUSY ladder. The conversion becomes
apparent from the node-free distribution in the respective highest
accessible steps. Our results indicate that such specifically
designed supersymmetric arrangements could be useful for
efficiently probing, manipulating and interrogating the modal
content of a given input field distribution. This is enabled by the
fact that in such a setup the modes can be spatially separated via
global phase-matching conditions as afforded by SUSY—even in
highly multimoded systems. In essence, the proposed ladder
arrangement incorporates the functionalities of a set of mode
converters and successive beam combiners into a single multi-
plexing component (see Fig. 1c). This operation is fully reversible,
that is, the same element can be employed to demultiplex the
superposition of modes after transmission. We would also like to
emphasize that, even though the experimental results presented
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here are of qualitative nature and were obtained in discrete one-
dimensional settings, the fundamental principle of SUSY-MDM is
equally applicable to continuous arrangements and can even be
extended to optical fibres, where whole subsets of modes may be
selectively manipulated according to their specific optical angular
momenta14. Along these lines, detailed simulations of
supersymmetric mode conversion in continuous refractive index
landscapes, and its robustness with respect to dispersion, are
provided in the Supplementary Discussion (see also

Supplementary Figs 6 and 7). Moreover, in discrete
configurations, one can directly access any subset of modes
through higher-order superpartners by means of discrete
factorization methods.

It is worth noting that other avenues for manipulating modes
have been recently proposed. These include for example ‘photonic
lanterns’ that can efficiently transfer light from highly multi-
moded waveguides to a large number of identical single-mode
channels24, as well as individually phase-matched single-mode
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Figure 2 | Supersymmetry (SUSY) in photonic lattices. (a) Continuous refractive index profile and (b) discrete representation of an array arrangement of

evenly spaced, identical waveguides and (c,d) its superpartner structure. (e) Bound modes of these two systems. Their vertical positions indicate the

corresponding eigenvalues; the discrete modes are shown as shaded envelopes. Light dynamics in SUSY structures: The supersymmetric transformation

of a two-moded structure (f) yields a single-mode partner (g). Experimentally observed propagation of a Gaussian beam normally injected into a defect

domain within a uniform photonic lattice. (h) The emerging periodic beating pattern indicates that the structure supports two bound modes.

(i) Propagation of the same initial wave packet in the corresponding superpartner potential. Here only a single bound state exists and the evolution

becomes stationary as soon as the diffractive background has dissipated. In (h,i), the distributions of the propagation constants b and coupling coefficients

C across the lattices are indicated by grey and blue bars, respectively.
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cores25 and adiabatic transitions between dissimilar fibre
geometries26. What sets our strategy apart from these
approaches is the fact that it is readily scalable to large
numbers of modes, which can be simultaneously phase-
matched in a compact structure.

Discussion
In summary, we have experimentally investigated light transport
in supersymmetric optical structures. Apart from providing a
physical setting where the unusual ramifications of SUSY can be
directly explored and investigated, optics offers the opportunity to
exploit some of its intriguing features. Our results demonstrate
that superpartner potentials can be effectively employed to
manipulate the modal content of an optical field. In particular,
hierarchical ladders of supersymmetric partners provide a
versatile method for mode discrimination and MDM across
technological platforms. The inherent scalability of SUSY-MDM
becomes even more apparent in highly multimoded environ-
ments. This is owing to the fact that mode transformation is
naturally carried out at the physical layer, thus overcoming the
need for separate mode converters or beam combiners (as
schematically shown in Fig. 1c). Along these same lines,
additional degrees of freedom16 could be used in addressing
other design goals. SUSY phase-matching can be employed to
facilitate high-fidelity mode conversion over a broad spectral
range, for example, throughout the telecommunication-relevant
C-band (see Supplementary Fig. 6), and is therefore fully
compatible with established wavelength-division multiplexing
schemes. Similar strategies may also provide a new avenue in
realizing orthogonal mode converters, and self-aligning universal
beam couplers27,28. Finally, notions from SUSY can in principle
be utilized to synthesize artificial optical structures that exhibit
properties not found in nature, thus supplementing already
existing approaches in optical metamaterials based on
transformation optics29–32.

Methods
Mathematical framework. SUSY endows two otherwise unrelated operators, Oð1Þ
and Oð2Þ, with almost identical eigenvalue spectra10,13,33. In general, such a
relationship exists between these two entities, provided that Oð1Þ can be

decomposed in terms of another operator, A, and its Hermitian adjoint, Ay , in the

following manner: Oð1Þ ¼ AyA. In this respect, the superpartner Oð2Þ can be

introduced via Oð2Þ ¼ AAy , and as a result the eigenvalue problems Oð1;2ÞY ð1;2Þ ¼
L ð1;2ÞYð1;2Þ share a common set of eigenvalues L 1ð Þ

j ¼ L 2ð Þ
j . In all cases, the

eigenfunctions Y 1;2ð Þ
j corresponding to these spectra are linked by the intervening

SUSY operators A; Ay . Importantly, unbroken SUSY also demands that the

ground state of the first operator must be annihilated by AY 1ð Þ
1 ¼ 0. Indeed, what

sets such a pair of superpartners apart from other systems obeying more
conventional symmetries is the fact that the ground state of Oð1Þ is exempt from
this interrelation, and is therefore absent from the spectrum of Oð2Þ (see Fig. 1a,b).

Factorization of the continuous Hamiltonian. Under paraxial conditions, the
evolution of light in one-dimensional settings is governed by the wave equation

i
@

@Z
þ @2

@X2
þV Xð Þ

� �
c ¼ 0; ð2Þ

where X¼ x/x0 and Z ¼ z=2k0n0x2
0 are the transverse and longitudinal coordinates

normalized with respect to an arbitrary transverse length scale x0 and the vacuum
wave number k0. The optical potential V ¼ 2k2

0n0�DnðxÞ is then determined by the
refractive index profile n(x)¼ n0þDn(x). A SUSY partner potential can be found
by factorizing the operator H¼ q2/qX2þV in the eigenvalue problem Hc¼ mc by
means of the superpotential method14 (see Supplementary Fig. 1). Along these
lines, the superpotential W¼ � q/qX(lnc1(X)) is obtained as logarithmic
derivative of the fundamental mode cð1Þ1 ðXÞ of the original structure Dn(1). The
corresponding SUSY partner index distribution is then given by
Dn(2)¼Dn(1)� 2qW/qX.

As is shown in Supplementary Fig. 2a,b for the case of six identical single-mode
channels, the superpartner of a photonic lattice in turn represents a lattice with one

less waveguide, although its structure may feature index depressions and in general
can no longer be decomposed into identical unit cells.

Factorization of the discrete Hamiltonian. In the tight binding approximation,
the evolution of guided light in a photonic lattice is described by equation (1). The
respective eigenvalue problem can then be written in the form Ha¼ la, where the
discrete Hamiltonian H is a Hermitian operator composed of the propagation
constants bn and the coupling coefficients Cn,nþ 1¼Cn,n� 1�Cn. Cholesky’s algo-

rithm (see for example, ref. 34) allows for the decomposition Hð1Þ ¼ H� l ¼
AyA of positive-definite operators into a Hermitian adjoint pair Ay; A. The

partner HamiltonianHð2Þ ¼ AAy again formally represents a photonic lattice with
N waveguides and an equal number of bound modes. Nevertheless, SUSY is
unbroken in the sense that the Nth waveguide is completely detached

C 2ð Þ
N � 1;N ¼ C 2ð Þ

N;N � 1 ¼ 0
� �

. It can be discarded without influence on the spectrum

or mode shapes of the remaining system of N� 1 channels, thereby removing the
counterpart of the original lattice’s fundamental mode from the superpartner’s
spectrum. Higher-order partner Hamiltonians can be synthesized by iteratively

eliminating the modes of a given structure: H ‘þ 1ð Þ � l ‘ð Þ
1 ¼ A ‘ð Þ A ‘ð Þ

� �y
where

H ‘ð Þ � l ‘ð Þ
1 ¼ A ‘ð Þ

� �y
A ‘ð Þ. The bands comprised of the collective states in a weakly

coupled sequence of such systems exclusively span the layers that support the
corresponding eigenvalue (see Fig. 3a).

A generalized manipulation of the eigenvalue spectrum can be achieved by
means of the so-called QR factorization, which expresses the Hamiltonian as
product of an orthogonal matrix Q and an upper triangular matrix R (see for
example, ref. 34). This asymmetric approach allows for the direct removal of any
eigenvalue lk by factorizing Hð1Þ ¼ H� lk ¼ QR to obtain Hð2Þ ¼ RQ. Note
that in continuous one-dimensional settings, complex-valued potentials are
required to address states other than the fundamental mode16,17. In contrast, the
QR formalism allows one to accomplish this task without resorting to non-
Hermitian configurations involving the interplay between gain and loss.

Experimental techniques and parameters. Pulses from a Titanium:Sapphire
amplifier system (Coherent Inc. Mira/RegA, wavelength 800 nm, pulse length
200 fs, repetition rate 100 kHz) were focused through a microscope objective (� 25,
NA¼ 0.35) to inscribe35 the waveguide arrangements used in our experiments (see
Supplementary Fig. 3a). The 100-mm long fused silica sample (Corning Inc.) was
translated by means of a high-precision positioning system (Aerotech Inc.). To
cover a wide range of effective refractive indices and nearest-neighbour couplings,
we exploited the characteristic evolution behaviour of light in detuned directional
couplers36 (Supplementary Fig. 3b) to calibrate the dependence of detuning and
coupling coefficient on the inscription parameters writing velocity and waveguide
separation37. In a directional coupler, that is, a pair of coupled waveguides, light
undergoes sinusoidal oscillations between the two channels. In the perfectly tuned
case, a complete transfer is observed after the coupling length LC¼ p/2C. As the
detuning Db between the channels increases, the exchanged fraction of light
decreases, resulting in a decreased intensity beating contrast
K�(max(I1)�min(I1))/max(I1). At the same time, the oscillation becomes more
rapid and the beating period LB decreases according to

Db
C
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1
K
� 1

r
and

LB

LC
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Db=Cð Þ2 þ 1

s
: ð3Þ

The desired parameters Db and C can therefore be calculated directly from the
observed quantities LB and K according to

C ¼ p
2LB
�
ffiffiffiffi
K
p

and Db ¼ p
2LB
�
ffiffiffiffiffiffiffiffiffiffiffiffi
1�K
p

: ð4Þ

The calibration graphs thus obtained are shown in Supplementary Fig. 3c. For
our experiments, we chose a value of C0¼ 0.65 cm� 1, corresponding to a spacing
of 15.5 mm, to implement the SUSY ladder arrangement. A writing velocity of
100 mm min� 1 was chosen as baseline corresponding to zero detuning. This
allowed us to design an experimental configuration (Supplementary Fig. 3c) to
observe the desired propagation dynamics over the sample length of 100 mm.

In addition to recording the output distribution at the sample’s end facet (see
inset in Supplementary Fig. 3a), we employed waveguide fluorescence micro-
scopy18 to directly observe the propagation of light through the structures. At a
probe wavelength of 633 nm (Helium:Neon laser), this technique makes use of
certain colour centres formed during the inscription process to linearly convert a
small fraction of the guided light into isotropic fluorescence. The images thus
obtained were post-processed to extract the intensities in the individual channels, a
necessary step to facilitate a quantitative comparison between SUSY partner lattices
despite their different waveguide positions. Moreover, plots of the mode intensities
improve the visibility of the propagation dynamics (see Supplementary Fig. 3e).
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