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Supersymmetry-generated complex optical potentials with real spectra
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We show that the formalism of supersymmetry (SUSY), when applied to parity-time (PT ) symmetric optical
potentials, can give rise to refractive index landscapes with altogether nontrivial properties. In particular, we find
that the presence of gain and loss allows for arbitrarily removing bound states from the spectrum of a structure.
This is in stark contrast to the Hermitian case, where the SUSY formalism can only address the fundamental
mode of a potential. Subsequently we investigate isospectral families of complex potentials that exhibit entirely
real spectra, despite the fact that their shapes violate PT symmetry. Finally, the role of SUSY transformations
in the regime of spontaneously broken PT symmetry is investigated.
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I. INTRODUCTION

Supersymmetry (SUSY) was originally conceived within
the framework of quantum field theories and high-energy
physics [1–5]. Since then, aspects of SUSY have been system-
atically employed in many and diverse areas of physics and
mathematics, including nonrelativistic quantum mechanics
[6–12]. In particular, SUSY techniques have been instrumental
in identifying analytically solvable potentials, the investigation
of shape invariance, as well as the development of powerful
approximation methods [12]. In the context of nonrelativistic
quantum mechanics, SUSY is established by factorizing
the Schrödinger equation in order to construct superpartner
Hamiltonians. The potentials corresponding to this pair of
Hamiltonians then share the same eigenvalue spectrum, with
the exception of the ground state. If however this ground
state is present in the spectra of both partner potentials, as
indicated by a vanishing Witten index [6], SUSY is then
said to be broken. Along similar lines, parametric families of
Hamiltonians sharing the exact same eigenvalue spectrum—
including the ground state—can be constructed from a given
potential [9,12]. Quite recently, we have shown that some of
the fascinating applications of SUSY can be explored and
utilized within the field of optics [13]. In particular, it was
demonstrated that supersymmetry can establish perfect phase
matching conditions between a great number of modes, thus
enabling selective mode filtering applications. In addition,
it was shown that optical structures related via SUSY can
exhibit identical reflectivities and transmittivities irrespective
of the angle of incidence—even under strong index contrast
conditions.

On the other hand, in the past decade or so, non-Hermitian
systems have been a subject of intense research [14–16].
Interest in such settings was sparked by the pioneering work
of Bender and Boettcher, who showed that a wide range
of complex Hamiltonians can exhibit entirely real spectra,
provided they are invariant under a simultaneous reversal of
parity and time—i.e. they obey parity-time (PT ) symmetry
[14]. In general, the complex potentials involved in PT -
symmetric Hamiltonians must fulfill the condition V ∗(X) =
V (−X). In the context of quantum mechanics (QM), efforts
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were undertaken to extend the standard intertwining relations
of SUSY-QM to the complex domain of non-Hermitian
Hamiltonians [17–24]. Interestingly, it was found that such
systems might exhibit a zero Witten index, even if SUSY is
unbroken [20]. Furthermore, Darboux transformations have
been utilized for constructing complex potentials that display
real spectra [17].

Recently it was noted that non-Hermitian, and in particular
PT -symmetric, Hamiltonians can be realized in optics [25].
To this end, optical gain and loss can be judiciously incor-
porated in the refractive index distribution of a system as
a means to construct complex optical potentials [26–29]. It
soon became apparent that PT symmetry can enable effects
and behavior that would have been otherwise impossible in
conventional optical structures. These include band merging,
double reflection, breakdown of the left-right symmetry, the
abrupt transition from lasing to absorbing modes, and mode
selection in laser amplifiers, to mention a few [25–44]. Clearly
of interest will be to extend the domain of such complex optical
potentials beyond the constraints of PT symmetry.

In this paper we explore the optical ramifications of
supersymmetry in the context of complex refractive index
landscapes. We show that the SUSY formalism allows for
the construction of partner structures where the fundamental
mode, or any other higher order guided mode, can be removed
at will. Starting from a PT -symmetric configuration, we
then investigate isospectral families of non-Hermitian index
landscapes that share the exact same eigenvalue spectrum.
Through this approach, one can synthesize optical structures
where the guided modes experience zero net gain and loss
despite of the fact that their shape violates PT symmetry.
Finally, refractive index profiles with spontaneously broken
PT symmetry are investigated. In this case it is shown that
removing the resulting pair of complex conjugate modes by
means of SUSY leads to a PT -symmetric waveguide without
a spontaneous symmetry breaking.

II. SUSY IN PT -SYMMETRIC OPTICAL POTENTIALS

Let us first consider how the notion of supersymmetry
can be applied in complex optical potentials. As previously
shown [13], the SUSY formalism can be generally used
in arbitrary one-dimensional refractive index landscapes. In
fact, this is the case even under high-contrast conditions
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where the degeneracy between TE and TM waves is broken
and necessitates the use of the Helmholtz equation [13,45].
Here, for brevity, we limit our scope to one-dimensional
weakly guiding settings. In this regime, the beam dynamics
can be described within the paraxial approximation. In our
system, n(x) = n0 + �n(x) describes the refractive index
distribution in the transverse coordinate x, where the index
modulation �n(x) is assumed to be weak compared to the
background index n0, |�n(x)| � n0. Under these conditions
one finds that the slowly varying envelope U of the electric
field component E(x,z) = U (x,z)eik0n0z satisfies the following
evolution equation:

i
∂U

∂Z
+ ∂2U

∂X2
+ V (X)U = 0. (1)

Here the normalized transverse and longitudinal coordinates
are, respectively, given by X = x/x0 and Z = z/(2k0n0x

2
0 ),

where x0 is an arbitrary length scale, and k0 = 2π/λ0 is the
wave number corresponding to the free space wavelength
λ0. The optical potential V (x) is directly proportional to the
refractive index variation,

V = 2k2
0n0x

2
0�n(x), (2)

and in general is complex, V = VR + VI , where the real part
VR(X) is the outcome of an index modulation, while the
imaginary part VI (X) indicates the presence of gain or loss.

Looking for stationary (modal) solutions of the
form U (X,Z) = ψ(X)eiμZ , we then obtain the following
Schrödinger eigenvalue problem:

Hψ = −μψ, (3)

where the operator H = −d2/dX2 − V (X) represents the
Hamiltonian of the optical configuration and μ the respective
eigenvalue. We now assume that a given potential V (1) supports
at least one guided optical mode ψ

(1)
1 (X) with a corresponding

eigenvalue μ
(1)
1 . Following the approach detailed in [12], one

can then factorize the Hamiltonian as H (1) + μ
(1)
1 = BA with

A = + d

dX
+ W, (4a)

B = − d

dX
+ W. (4b)

Note that, whereas in Hermitian systems described by a real-
valued superpotential W (X) the two operators A,B form a
Hermitian-conjugate pair, this is no longer true in the general
case of a complex W (B �= A†).

Defining a partner Hamiltonian as H (2) + μ
(1)
1 = AB, one

quickly finds that the optical potentials of the original and the
partner system can both be generated from the superpotential
and its first derivative:

V (1,2)(X) = μ
(1)
1 − W 2 ± W ′. (5)

It readily follows that the two optical potentials V (1,2) then
share a common set of eigenvalues [12]:

μ(1)
m = μ

(2)
m−1, m > 1. (6)

The only exception is the fundamental mode of V (1),
which lacks a counterpart in V (2). Note that this SUSY mode
partnership is not limited to the discrete sets of bound states,

but rather extends to the continua of radiation modes of both
structures. The operators A and B also provide a link between
the wave functions of the two potentials:

ψ (2)
m = Aψ

(1)
m+1, (7a)

ψ
(1)
m+1 = Bψ (2)

m . (7b)

In order to derive an expression for the superpotential, we
make use of the fact that A should annihilate the fundamental
mode of the first potential; Aψ

(1)
1 = 0. Therefore, by using

Eq. (4a), W can be written as a logarithmic derivative of the
fundamental mode’s wave function:

W = − d

dX
ln

(
ψ

(1)
1

)
. (8)

Similarly, the partner potential V (2) can be expressed in terms
of V (1) and ψ

(1)
1 as follows:

V (2) = V (1) + 2
d2

dX2
ln

(
ψ

(1)
1

)
. (9)

We now apply this formalism when V (1) isPT symmetric, i.e.,
V (1)(−X) = [V (1)(X)]

∗
. At this point we also assume that the

PT symmetry of V (1) is not broken. Under these conditions,
the eigenvalue spectrum is real valued, i.e., Im(μ(1)

m ) = 0,
and the individual modes inherit the potential’s symmetry:
ψ (1)

m (−X) = [ψ (1)
m (X)]

∗
. Following Eq. (8), one then con-

cludes that the superpotential should be anti-PT -symmetric:
W ∗(X) = −W (−X). On the other hand, Eq. (9) clearly shows
that V (2) again respects the condition of PT symmetry. Since
SUSY dictates that its spectrum is also real valued, it follows
that PT symmetry is unbroken in the partner potential.

Figure 1 illustrates the implications of supersymmetry
when for example a PT -symmetric multimode waveguide is
considered, that has the refractive index profile

�n(1)(x) = δ

(
1 + iγ tanh

(
x

wIλ0

))
exp

[
−

(
x

wRλ0

)8
]
.

(10)

Here, the index elevation is δ = 4.2 × 10−3, the imaginary
(gain-loss) contrast is γ = 0.1, and wR = 2.5, wI = 0.6 are
geometry parameters. This waveguide supports a total of four
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FIG. 1. (Color online) (a) Refractive index profile (real part: light
gray; imaginary part: dark gray area) of a PT -symmetric multimode
waveguide supporting a total of four bound states [shown are absolute
values |ψ (1)

m | at the vertical positions corresponding to their respective
eigenvalues Re(μ(1)

m )]. (b) Corresponding SUSY partner and its
three modes. (c) Eigenvalue spectra of the two structures Re(μ(1,2)

m )
are shown as full circles, whereas empty circles denote Im(μ(1,2)

m ).
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guided modes at a wavelength of λ0 = 1 μm. The figure shows
the real and imaginary parts of the refractive index profile as
well as the absolute value |ψ (1)

m | of the modal distributions
[Fig. 1(a)]. The corresponding superpartner waveguide and
its three guided modes are depicted in Fig. 1(b), and the
eigenvalue spectra of both structures are compared in Fig. 1(c).
Note that none of the PT -symmetric modes exhibit any nodes
in their intensity profile.

III. REMOVAL OF HIGHER ORDER MODES

In Hermitian systems, all modes except for the fundamental
state exhibit nodes where the absolute value of the wave func-
tion vanishes. Given that the superpotential W as constructed
from Eq. (8) relies on the logarithmic derivative of an eigen-
function ψ (1)

m , in this case one can only use the nodeless ground
state ψ

(1)
1 . In contrast, the zeros of the real and imaginary parts

of modes associated with non-Hermitian systems do not occur
at the same positions. This peculiar behavior now allows one
to use any higher order mode ψ (1)

m0
(m0 > 1) [see Fig. 2(a)] in

constructing a SUSY partner, i.e., by removing the eigenvalue
μ(1)

m0
from the spectrum. In other words,

V (1,2)(X) = μ(1)
m0

− W 2 ± W ′, (11a)

W = − d

dX
ln

(
ψ (1)

m0

)
, (11b)

V (2) = V (1) + 2
d2

dX2
ln

(
ψ (1)

m0

)
. (11c)

The relations between eigenvalues and wave functions for
these two structures then can be written as

μ(1)
m = μ(2)

m ; ψ (2)
m = Aψ (1)

m ; ψ (1)
m = Bψ (2)

m , m < m0,

(12a)

μ(1)
m = μ

(2)
m−1; ψ (2)

m = Aψ
(1)
m+1; ψ

(1)
m+1 = Bψ (2)

m , m > m0.

(12b)

Figure 2 illustrates the removal of the eigenvalue associated
with the second mode from the spectrum of the multimode
waveguide discussed in Fig. 2(a). Again the SUSY partner
potential [Fig. 2(b)] supports three modes, which are now
matched to the eigenvalues of the first, third, and fourth modes
of the original structure. Note that the partner waveguide has
been most strongly altered in regions where the removed state
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FIG. 2. (Color online) (a) Refractive index profile of a PT -
symmetric multimode waveguide supporting a total of four bound
states, as in Fig. 1. (b) Corresponding SUSY partner where the second
mode has been removed from the original waveguide. (c) Eigenvalue
spectra of the two structures.

had an intensity minimum. There, the second derivative of
the wave function’s absolute value is maximal, resulting in a
pronounced feature in the SUSY partner. In the Hermitian limit
Im(�n(1)) → 0, this feature is transformed into a singularity.

IV. REAL SPECTRA WITHOUT PT SYMMETRY

In this section we explore the possibility of synthesizing
complex potentials, based on SUSY transformations, that
support entirely real spectra despite the fact that they violate
the necessary condition forPT symmetry. In the framework of
nonrelativistic SUSY quantum mechanics, it is known that one
can establish whole families of isospectral potentials that share
the spectrum of a given “parent” potential. Here we will show
that this approach can be adapted so as to construct optical
systems that happen to be isospectral to a PT -symmetric
structure.

Consider again a PT -symmetric potential supporting at
least one guided mode in a complex index profile that satisfies
the condition V (1)(−X) = [V (1)(X)]

∗
. According to Eq. (11a),

the superpotential W satisfies the well-known Riccati equation
V (2)(X) = μ(1)

m0
− W 2 − W ′. A general solution of this equa-

tion W̃ can be written in terms of the particular solution W

found in Eq. (11b) as [46] W̃ = W + 1/v, where v satisfies
the first order equation v′ = 1 + 2Wv. By using W , as given
in Eq. (11b), the solution of this latter equation can be written
as v(X) = [ψ (1)

m0
(X)]−2{C + ∫ X

−∞ [ψ (1)
m0

(X′)]2
dX′}, where C is

an arbitrary complex constant of integration. This results in
the following parametric family of superpotentials:

W̃ = W + d

dX
ln

{
C +

∫ X

−∞

[
ψ (1)

m0
(X′)

]2
dX′

}
, (13)

and the corresponding isospectral family of complex optical
potentials

Ṽ (1) = V (1) + 2
d2

dX2
ln

{
C +

∫ X

−∞

[
ψ (1)

m0
(X′)

]2
dX′

}
. (14)

In order to avoid singular behavior, the parameter C

must be appropriately chosen such that the quantity C +∫ X

−∞[ψ (1)
m0

(X′)]2
dX′ is never zero for any −∞ < X < +∞.

Note that all the members Ṽ (1) of this family form a valid
SUSY pair with the same V (2) and are isospectral to V (1).
Equation (14) indicates that in general the members of
the isospectral family constructed from the original PT -
symmetric potential do not exhibit a PT -symmetric form, i.e.,
Ṽ (1)(−X) �= [Ṽ (1)(X)]

∗
[see Figs. 3(a)–3(c)]. Nevertheless, as

long as PT symmetry is not spontaneously broken in the
parent potential V (1), the spectra of all the members of this
family will be entirely real valued [Fig. 3(d)]. A closer look
at the shape of the respective optical eigenmodes reveals the
mechanism behind this unexpected behavior. Even though the
gain-loss is no longer antisymmetrically distributed across
the waveguide’s profile [Fig. 3(f)], the real part is deformed
[Fig. 3(e)] such that the redistributed mode profiles can
maintain a neutral imaginary overlap. To formally justify this
intuitive explanation, consider again the eigenvalue equation
and its complex conjugate associated with this problem:
d2

dX2 ψ̃
(1)
m + Ṽ (1)ψ̃ (1)

m = μmψ̃ (1)
m , d2

dX2 (ψ̃ (1)
m )

∗ + (Ṽ (1))
∗
(ψ̃ (1)

m )
∗ =

μ∗
m(ψ̃ (1)

m )
∗
. After multiplying these equations by (ψ̃ (1)

m )
∗

and
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FIG. 3. (Color online) (a) Refractive index profile of a PT -
symmetric multimode waveguide supporting a total of four bound
states. For C → ∞, the parametric family converges toward this
parent potential. (b), (c) As C → 0, the potentials and their guided
modes become visibly distorted. (d) Regardless, all members of the
family share the exact same eigenvalue spectrum. (e), (f) Profiles
of the real and imaginary components of the complex potential
associated with this isospectral family after continuously varying
10−3 < C < 103.

ψ̃ (1)
m , respectively, their difference yields:

(
ψ̃ (1)

m

)∗ d2

dX2
ψ̃ (1)

m − ψ̃ (1)
m

d2

dX2

(
ψ̃ (1)

m

)∗

+ [Ṽ (1) − (Ṽ (1))
∗
]
∣∣ψ̃ (1)

m

∣∣2 = (μm − μ∗
m)

∣∣ψ̃ (1)
m

∣∣2
. (15)

Given that the first term represents a total differential, and that
the eigenvalue is real (μ∗

m = μm), we therefore find

d

dX

((
ψ̃ (1)

m

)∗ d

dX
ψ̃ (1)

m − ψ̃ (1)
m

d

dX

(
ψ̃ (1)

m

)∗
)

+ i2
∣∣ψ̃ (1)

m

∣∣2
Ṽ

(1)
I = 0. (16)

Taking also into account that bound states decay exponentially
outside the guiding region and vanish at infinity, integration
over the entire X axis yields∫ +∞

−∞
Ṽ

(1)
I

∣∣ψ̃ (1)
m

∣∣2
dX = 0. (17)

In other words, the overlap integral between the imaginary
part of the refractive index profile and the modal intensity
always vanishes in such settings. Moreover, a direct inte-
gration over the imaginary part of the potential shows that
a transformation according to Eq. (14) does not introduce
any changes to the overall gain-loss of the system. Consid-
ering that the imaginary part of the PT -symmetric parent
potential V (1) itself is antisymmetric and that 2Im( d

dX
ln{C +∫ X

−∞ [ψ̃ (1)
m0

(X′)]2
dX′})+∞

−∞ = 0, one also finds∫ +∞

−∞
Ṽ

(1)
I dX = 0. (18)
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FIG. 4. (Color online) (a) Refractive index profile of a multimode
waveguide supporting a total of four bound states. Here, the imaginary
contrast was increased to γ = 0.2 to induce a spontaneous PT -
symmetry breaking in the two lowest modes. Sequentially removing
(b) the lossy and (c) the amplified modes by means of SUSY restores
PT symmetry in (d) the resulting structure.

V. SUSY IN STRUCTURES WITH SPONTANEOUSLY
BROKEN PT SYMMETRY

In this section we investigate SUSY in systems with
spontaneously broken PT symmetry. When the contrast
between gain and loss exceeds a certain threshold, a given real
refractive index profile can no longer maintain the symmetry
of the bound states. For the waveguide profile of Eq. (10), an
imaginary contrast of γ = 0.2 places the system well inside
this broken-symmetry regime [see Fig. 4(a)]. As it is expected
for this type of complex potential [44], the eigenvalues of the
lowest two modes are transformed into a complex conjugate
pair with identical real values Re(μ(1)

1 ) = Re(μ(1)
2 ) and oppo-

site imaginary parts Im(μ(1)
1 ) = −Im(μ(1)

2 ). The corresponding
states reside predominantly in the gain (loss) region. Note that
the remaining higher order modes retain their PT symmetry,
and therefore continue to exhibit real spectra.

Following the formalism outlined above, SUSY now allows
one to remove any of the modes with broken PT symmetry
[Fig. 4(b)]. As in the case of unbroken PT symmetry, SUSY
preserves the remaining set of eigenvalues. In our example,
we construct W from the lossy mode [Im(μ(1)

1 ) > 0], and
hence the partner waveguide supports two neutral modes as
well as the remaining mode that in this case experiences
amplification. Alternatively, one could have maintained the
lossy mode of the system by removing the one subjected to
gain [Im(μ(1)

2 ) < 0] instead. If both broken-symmetry modes
are removed via sequential SUSY transformations Eqs. (8)
and (9), the resulting complex potential V (3) again exhibits an
entirely real spectrum and the PT symmetry of the original
structure V (1) is restored [Fig. 4(c)]. The resulting waveguide
remains perfectly phase matched to the two neutral modes of
the original system [Fig. 4(d)].

VI. CONCLUSION

In this paper we have shown that the interplay between
supersymmetry and PT symmetry can be fruitfully applied
to modify the guided-mode spectra of optical waveguides. In
the case of PT -symmetric systems, it preserves the mutual
cancellation of gain and loss while allowing for the selective
removal of arbitrary guided modes. The SUSY formalism
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gives rise to isospectral families of complex refractive index
landscapes that exhibit entirely real spectra, despite the fact
that their shapes violatePT symmetry. Finally, we have shown
how SUSY can facilitate the elimination of modes exhibiting
complex eigenvalues in order to overcome the spontaneous
breaking of PT symmetry.
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