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Transformation optics aims to identify artificial materials and structures with desired electromagnetic prop-
erties by means of pertinent coordinate transformations. In general, such schemes are meant to appropri-
ately tailor the constitutive parameters of metamaterials in order to control the trajectory of light in two and
three dimensions. Here, we introduce a new class of one-dimensional optical transformations that exploits
the mathematical framework of supersymmetry (SUSY). This systematic approach can be utilized to
synthesize photonic configurations with identical reflection and transmission characteristics, down to
the phase, for all incident angles, thus rendering them perfectly indistinguishable to an external observer.
Along these lines, low-contrast dielectric arrangements can be designed to fully mimic the behavior of a
given high-contrast structure that would have been otherwise beyond the reach of available materials and
existing fabrication techniques. Similar strategies can also be adopted to replace negative-permittivity
domains, thus averting unwanted optical losses. © 2014 Optical Society of America

OCIS codes: (290.0290) Scattering; (290.5839) Scattering, invisibility; (260.2710) Inhomogeneous optical media.
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1. INTRODUCTION

The problem of reconstructing the shape of a potential
distribution solely from information carried by its scattering
pattern has a long-standing history in a number of diverse
disciplines of science and technology [1–5]. Naturally, in
such inverse problems, the question of uniqueness is of crucial
importance: are the properties of an object fully determined by
its corresponding far-field scattering data? In general, the
answer is no. In quantum mechanical settings, for example,
one can always identify an N -parameter family of different
potentials that support the same discrete set of N bound-
state eigenvalues and exhibit similar scattering characteristics
[4]. Closely related to this subject is the idea of super-
symmetry (SUSY) [6–10]. This mathematical framework
emerged in quantum field theory as a means to treat fermions
and bosons on equal footing [9]. Subsequently, notions of
SUSY were utilized to obtain isospectral and phase-equivalent
potentials within the context of nonrelativistic quantum
mechanics [10].

On the other hand, recent developments in transformation
optics and optical conformal mapping have brought about
novel methodologies to address inverse problems [11–16].
By virtue of coordinate transformations, such schemes can
in principle provide the spatial distribution of electric permit-
tivities and magnetic permeabilities that would perform a de-
sired task such as cloaking [17–22]. As one would expect, the
material properties required to implement such configurations
might not always be available in practice. Clearly of interest
would be to develop alternative strategies that allow one to
judiciously control the scattering properties of an object, while
at the same time reducing the complexity of the structures
involved.

As we will see, SUSY can provide a new avenue for 1D
transformation optics that would have been otherwise impos-
sible using other multidimensional approaches (see Fig. 1).
Along these lines, we introduce appropriate optical transforma-
tions in 1D refractive index landscapes and explore their
implications in terms of their far-field response. In addition
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to finding superpartners with similar scattering behavior, sys-
tematic SUSY deformations allow us to design systems that
exhibit identical complex reflection and transmission coeffi-
cients for all incident angles. As a result, two such dielectric
objects, however dissimilar, become virtually indistinguish-
able. Remarkably, the proposed formalism can be employed
to synthesize photonic configurations that behave in exactly
the same way as high-refractive-index-contrast devices, by
only utilizing low-contrast dielectric media. Similar method-
ologies can be employed to substitute negative-permittivity
inclusions with purely dielectric media as a means to obtain
the intended functionality without introducing any addi-
tional loss.

2. SUPERSYMMETRIC OPTICAL
TRANSFORMATIONS

In 1D inhomogeneous settings, the propagation of TE-
polarized waves is known to obey the Helmholtz equation
[23], �∂xx � ∂yy � k20ϵ�x��Ez�x; y� � 0, where k0 is the vac-
uum wavenumber and ϵ�x� is the relative permittivity of a
given (fundamental) structure to be emulated via SUSY trans-
formations (see Fig. 1). The analysis of TM waves can be car-
ried out in a similar manner (see Supplement 1). In the TE
case, the spatial dependence of the electric field Ez can be
described via Ez�x; y� � ψ�x�eiβy. Here, β � k0n0 sin θ rep-
resents the y component of the wave vector for an incidence
angle θ, and n0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ�X → �∞�

p
is the background refrac-

tive index. By employing the normalized quantities X � k0x,
Y � k0y, and Ω � β2∕k20, the Helmholtz equation then
reduces to a 1D Schrödinger-like equation:

Hψ�X � � Ωψ�X �: (1)

The resulting Hamiltonian H � ∂XX � ϵ�X � can be factor-
ized asH � BA� α, where the operators A and B are defined
as A � ∂X �W �X �, B � ∂X −W �X �, and α is an auxiliary
constant of the problem. Here B � −A†, where “†” represents

the Hermitian conjugate. The superpotential W can then be
obtained as a solution of the Riccati equation [7],

ϵ�X � � �W 0 −W 2 � α; (2)

in terms of the fundamental permittivity profile ϵ�X �.
Once W has been determined, one can establish a partner
Hamiltonian Hp � AB � α, which corresponds to a new
distribution in the electric permittivity:

ϵp�X � � −W 0 −W 2 � α: (3)

As a direct consequence of this construction, the modes ψp

of the partner potential ϵp are related [24] to the ones of
the fundamental through the expressions ψp ∝ �∂X �W �ψ
and ψ ∝ �∂X −W �ψp. These latter relations hold for guided
waves as well as for radiation modes, and each such pair of
states is characterized by a common eigenvalue. We note that
two options for choosing α exist: (a) Assuming that the struc-
ture supports at least one bound state, one may opt to set α
equal to the fundamental mode’s eigenvalue, i.e., α � Ω0.
(b) The other possibility is to choose α > Ω0, irrespective
of whether the system supports bound states or not. The first
case corresponds to an unbroken SUSY: the two potentials
share the guided wave eigenvalue spectra except for that of
the fundamental mode, which does not have a corresponding
state in the partner. In the second case, however, SUSY is bro-
ken, and the two arrangements share an identical eigenvalue
spectrum, including that of the fundamental mode. As an ex-
ample, Fig. 2(a) depicts the relative permittivity distribution
ϵ�X � � 1� exp�−�X ∕5�8�, corresponding to a step-index-like
waveguide; its unbroken and broken SUSY partners are shown
in Figs. 2(b) and 2(c), respectively. W can also be found
analytically [7] via

W � −∂X ln�ψ0� (4)

Fig. 1. Schematic overview of the different SUSY optical transformations. Starting from a given fundamental structure ϵ, supersymmetric partners
ϵp can be constructed. Whereas the broken SUSY system ϵ�br�p preserves all bound modes, unbroken SUSY (ϵ�ub�p ) removes the fundamental mode.
Regardless, in both cases, the intensity reflection and transmission coefficients of the superpartners are identical to those of the fundamental system.
In order to maintain the full complex scattering characteristics, a family ϵf of isophase structures can be synthesized. Finally, a hierarchical sequence of
higher-order superpartners ϵ�ub�p;2…N may be utilized to obtain a scattering-equivalent structure, which requires a substantially lower refractive index contrast
than that involved in the original system ϵ.
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in the unbroken SUSY case, i.e., for α � Ω0, when ϵ supports
at least one bound state ψ0. In either regime, Eq. (2) can
always be solved numerically to obtain the superpotential
W . An alternative approach is to start with an arbitrary super-
potential and construct the two superpartner structures ϵ and
ϵp according to Eqs. (2) and (3). In this scenario, it still remains
to be determined whether SUSY is unbroken or broken. This
question can be resolved by the so-called Witten index [6]. In
general, if W �X � approaches W � at X → �∞, unbroken
SUSY requires W � � −W −, while a broken SUSY demands
that W � � W −.

3. ISOPHASE FAMILIES OF OPTICAL
POTENTIALS

It is important to note that more than one superpotential can
exist for any given distribution ϵ�X �. In fact, as we show here,
one can systematically generate an entire parametric family
W f of viable superpotentials that satisfy Eq. (3). To show this,
let us start from Eq. (3), which relates the superpartner ϵp
to the superpotential W . Starting from a particular W , this

solution can be generalized by adopting the form
W f � W � 1∕v, in which case the unknown function v
satisfies �∂X − 2W �v � 1. Direct integration readily leads

to v � e�2
R

X

−∞
W dX 0�

C � R
X
−∞ e−2

R
X 0
−∞

W dX 0 0
dX 0

�
, where C is

an arbitrary real-valued constant, giving rise to a para-
metric family W f of superpotentials W f �X ;C� � W�
∂X ln

�
C � R

X
−∞ e−2

R
X 0
−∞

W dX 0 0
dX 0

�
. If the superpotential W

has been specifically obtained from the bound state ψ0 [from
Eq. (4)], then this parametric family can be obtained via

W f �X ;C� � W � ∂X ln

�
C �

Z
X

−∞
ψ2
0�X 0�dX 0

�
: (5)

Whereas all members of this family lead to the same super-
partner ϵp, each of them describes a different permittivity
distribution ϵ according to Eq. (2). The resulting parametric
family [10] of structures ϵf �X ;C� is associated with the fun-
damental distribution ϵ and its ground state ψ0 as follows:

Fig. 2. Relative permittivity distributions of the original and the transformed potentials. (a) The fundamental system has a step-like profile
ϵ�X � � 1� exp�−�X ∕5�8�. (b) Superpartner in the unbroken SUSY regime. (c) Superpartner in the broken SUSY case. (d) Phase-equivalent structures.
(e) Scattering geometry. (f–h) Superpotentials W corresponding to panels (b–d). (j) Identical reflectivity R (solid line) and transmittivity T (dashed line)
corresponding to Figs. 1(a)–1(d). (k–m) Relative phases of the reflection (ΔΦr , solid line) and transmission (ΔΦt , dashed) coefficients of the structures in
(b–d) compared to the fundamental system (a) as a function of the incident angle θ. The scattering characteristics were evaluated by means of the
differential transfer matrix method [23].
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ϵf �X ;C� � ϵ�X � � 2∂XX ln

�
C �

Z
X

−∞
ψ2
0�X 0�dX 0

�
; (6)

where C represents a free parameter. Note that here the trans-
formation between the original structure and its superpartner
was only used to prove Eq. (6), which itself is completely in-
dependent from the superpartner. According to this equation,
simply by starting from a given potential and its ground state
eigenfunction, a whole family of isospectral potentials can be
established. Figure 2(d) depicts such family members for the
fundamental structure ϵ shown in Fig. 2(a) when C � 0.1,
0.5, or 2.0, respectively. Note that the original permittivity

distribution ϵ is in itself a member of this family, since
ϵf → ϵ for C → �∞. All the modes ψ f of any other member
are related to its states ψ , according to ψ f ∝ �∂X −W f �
�∂X �W �ψ . As a result, all family members share the same
guided wave characteristics, e.g., they have identical sets of ei-
genvalues as in the case of broken SUSY. This in turn means
that an unbroken SUSY partner cannot be a part of the iso-
spectral family associated with its fundamental structure, since
the superpartner per definition lacks one guided mode. Never-
theless, SUSY optical transformations can be employed to
synthesize dedicated isospectral families for any initial index
landscape. Figures 2(f)–2(h) provide an overview of the

Table 1. Reflection and Transmission Coefficients for the Different SUSY Transformationsa

Coefficient Unbroken SUSY Broken SUSY Isophase

Reflection rp � r · exp
h
−2i tan−1

�n0 cos θ
W −

�i
rp � r · exp

h
−2i tan−1

�n0 cos θ
W −

�i rf � r

Transmission tp � t · exp
h
−2i tan−1

�n0 cos θ
W −

�i tp � t tf � t

aW − � W �−∞� designates the asymptotic value of the superpotential on the left side of the structure, and r; t are the coefficients of the original structure.

Fig. 3. Reflection/transmission characteristics of structures obtained by SUSY transformations depicted in Fig. 2 as functions of wavelength λ and angle
of incidence θ. (a–c) Intensity difference in transmission. (d–f) Relative phases in reflection and (g–j) relative phases in transmission. The dashed lines
follow the phase jumps of π, which originate from the interaction with guided modes in the fundamental structure and unbroken-SUSY partner. Top row,
unbroken SUSY; middle row, broken SUSY; bottom row, isophase case (C � 0.5).
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different superpotential functions in the regimes of unbroken
and broken SUSY [Figs. 2(b), 2(c)], as well as for the family
members shown in Fig. 2(d).

4. SCATTERING CHARACTERISTICS

Let us now turn our attention to the scattering characteristics
of structures connected by SUSY transformations. Consider a
plane wave exp�iX n0 cos θ� iY n0 sin θ� incident from the
left, i.e., X → −∞, as shown schematically in Fig. 2(e). For
reasons of simplicity, we assume a uniform background
medium n� � n− � n0 at X → �∞; the general case of n� ≠
n− is discussed in Supplement 1. Here, the reflected and trans-
mitted waves in the far field are given as r exp�−iX n0 cos θ�
iY n0 sin θ� and t exp�iX n0 cos θ� iY n0 sin θ� in terms of
the complex reflection and transmission coefficients r and t
[24]. By adopting similar solutions for the partner scatterer
ϵp, its respective reflection and transmission coefficients rp
and tp can readily be found. This is done by using the
intervening relation ψp ∝ �∂X �W �ψ , which connects the
scattering states of the original structure to those of the super-
partners. A similar approach can be followed for the isospectral
configuration by utilizing ψ f ∝ �∂X −W f ��∂X �W �ψ .
Further details concerning this procedure can be found in
Supplement 1. Table 1 summarizes the relations between the
complex reflection/transmission coefficients of the original and
the unbroken and broken superpartners, as well as the
isophase families.

Interestingly, the SUSY transformation yields a partner
structure with exactly the same absolute values in reflection
and transmission, as illustrated in Fig. 2(j). Evidently, all
the permittivity distributions from Figs. 2(a)–2(d) display
identical reflectivities R � jrj2 � jrpj2 and transmittivities
T � 1 − R for all angles of incidence. In contrast, the scatter-
ing phases depend on whether SUSY is broken or not (see
Table 1). In the case of unbroken SUSY, both reflection
and transmission coefficients acquire additional phases with
respect to the fundamental scattering potential. If on the
other hand SUSY is broken, the transmission coefficient is
the same in both amplitude and phase. Finally, each member
of the parametric family ϵf directly inherits all scattering
properties of the original structure (in both intensity and
phase), i.e., they are phase equivalent to ϵ. Figures 2(k)–2(m)
illustrate these relations.

So far, the performance of these systems has been exam-
ined at a given operating wavelength λ0. Of importance
would be to investigate to what extent their supersymmetric
properties persist when the wavelength λ varies around λ0. As
one would expect, even if two dissimilar profiles exhibit the
same phases at a given wavelength, their internal light dynam-
ics may gradually undergo different changes with λ. To elu-
cidate this structural dispersion, we provide the spectral
dependence of the difference in transmittivities ΔT (or reflec-
tivities ΔR) between the fundamental structure [Fig. 2(a)]
and its superpartners [Figs. 2(b)–2(d)] as a function of the
incidence angle θ, as shown in Figs. 3(a)–3(c). As these
figures indicate, this difference only becomes notable in the
unbroken SUSY regime [Fig. 3(a)], while it is almost absent

under broken SUSY and isophase conditions [Figs. 3(b),
3(c)]. The difference in the corresponding reflection phases
is similarly presented in Figs. 3(d)–3(f). The dashed lines
trace the abrupt phase jumps of π, which mark the interaction
with guided modes in the two partners and intersect at the
design wavelength λ0. Evidently, the isophase design displays
the greatest resilience with respect to spectral deviations. Note
that such phase jumps do not occur in the transmission
phases, as can be seen in Figs. 3(g)–3(j). In this latter case,
the isophase system again proves to be the least susceptible to
spectral deviations. These results demonstrate that SUSY
transformations can be robust over a broad spectral range
around the design wavelength.

5. REFRACTIVE INDEX ENGINEERING USING
SUSY TRANSFORMATIONS

One of the main challenges in designing optical systems is the
limited dynamic range of refractive indices associated with
available materials. This issue becomes particularly acute when
high-contrast arrangements are desirable. For example, the
number of grating unit cells required to achieve a certain
diffraction efficiency grows with the inverse logarithm of
the index contrast n2∕n1 between the individual layers [23].
As it turns out, SUSY optical transformations can be utilized
to reduce the index contrast needed for a given structure. This
can be done through a hierarchical ladder of superpartners, i.e.,
sequentially removing the bound states of the original high-
contrast setting [Fig. 4(a)]. In this example, the relative per-
mittivity in the original structure is supposed to vary between
2 and 9, leading to a considerable contrast. Evidently, this
range may be difficult to implement in practice in such a wave-
length-scale arrangement. On the other hand, each successive
step demands less contrast in the corresponding index land-
scape than the previous one [Fig. 4(b)]. We would like to point
out that since reflection and transmission are only relevant for
propagating waves, the removal of guided modes is in no way
detrimental to scattering-based functionalities. The ultimate
result is a low-contrast equivalent structure that fully inherits
the intensity reflectivity R and transmittivity T of the original
configuration under all incident angles [Figs. 4(c)–4(d)]. For
this particular example, we see an approximately four-fold
decrease in the required permittivity contrast.

Finally, SUSY transformations can provide a possible
avenue in replacing negative-permittivity inclusions (typically
accompanied by losses) by purely dielectric materials. In this
respect, inverse SUSY transformations, which now add modes
with certain propagation constants to a given structure,
can instead be used to locally elevate the permittivity (see
Supplement 1). Along similar lines, it is possible to find super-
potentials that relate a structure with metallic or negative-
permittivity regions to an equivalent arrangement with entirely
positive ε, as depicted in Fig. 5. Here, we make use of the fact
that in a broken-SUSY transformation, the spatial average of ϵ
happens to be a conserved quantity. Therefore, changes in the
broader vicinity of the original metal–dielectric structure can
be used to achieve this goal.
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6. CONCLUSION

We have introduced a new type of supersymmetric optical
transformation for arbitrary 1D refractive index landscapes.
Compared to conventional transformation optics, our ap-
proach poses significantly less stringent requirements on the
constituent parameters, and does not involve any modifica-
tions to the magnetic response of the materials involved. This
method can be utilized to construct photonic arrangements
that faithfully mimic the scattering characteristics of high-
index-contrast or even metal–dielectric structures. We would
like to emphasize that this approach is readily capable of
emulating the behavior of arrangements whose permittivity
distributions are far beyond the reach of naturally occurring
materials. As such, SUSY transformation optics can likewise
be employed to narrow the necessary range of effective param-
eters, and thereby complement the design process of metama-
terial devices. SUSY transformation optics may have potential
applications in a wide range of scenarios that rely on engi-
neered scattering and transmission properties such as, for ex-
ample, optical metasurfaces, antireflection coatings, and
diffraction gratings. Of interest will be to explore how the
aforementioned strategies could be paired up with recently de-
veloped transformation schemes for guided-wave photonics
based on dielectric materials [25,26]. Finally, the unique char-
acteristics of supersymmetric optical structures may open new
opportunities for tailoring the response of non-Hermitian
systems beyond PT symmetry [27], and could be employed
for a new class of integrated optical mode converters [28].

Fig. 5. (a) Metal–dielectric grating arrangement comprising five layers
of negative electrical permittivity (red sections). (b) An entirely dielectric
superpartner grating constructed in the broken SUSY regime, using
the respective superpotential (c). (d) Despite the absence of any metallic
regions, the equivalent structure exhibits identical reflectivities/
transmittivities.

Fig. 4. (a) Hypothetical high-contrast dielectric layer arrangement that supports N � 9 guided modes. (b) Hierarchical sequence of partner structures
obtained through iterative SUSY transformations. (c) Despite the general trend toward lower-contrast configurations, each intermediate step inherits the
reflectivity and transmittivity of the fundamental system (a). (d) The resulting low-contrast structure is free of bound states and faithfully mimics the
intensity-scattering characteristics of the original high-contrast configuration for all angles of incidence. Note that the transverse coordinate x scales in
units of λ0∕2π.
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