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When a disordered array of coupled waveguides is illuminated with an extended coherent optical field,
discrete speckle develops: partially coherent light with a granular intensity distribution on the lattice sites.
The same paradigm applies to a variety of other settings in photonics, such as imperfectly coupled reso-
nators or fibers with randomly coupled cores. Through numerical simulations and analytical modeling, we
uncover a set of surprising features that characterize discrete speckle in one- and two-dimensional lattices
known to exhibit transverse Anderson localization. First, the fingerprint of localization is embedded in the
fluctuations of the discrete speckle and is revealed in the narrowing of the spatial coherence function.
Second, the transverse coherence length (or speckle grain size) is frozen during propagation. Third, the
axial coherence depth is independent of the axial position, thereby resulting in a coherence voxel of fixed
volume independently of position. We take these unique features collectively to define a distinct regime that
we call discrete Anderson speckle. © 2015 Optical Society of America
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1. INTRODUCTION

Speckle, the granular spatial intensity pattern imbued to a co-
herent optical field after traversing a disordered medium or
reflecting from a rough surface, has been studied for decades
extending back to the invention of the laser [1,2] and was
known even earlier in radio waves [3,4]. It is a universal phe-
nomenon associated with the interference of random waves.
An archetypical arrangement is shown in Fig. 1(a), where a
coherent wave traverses a thin phase screen and the random
phase is converted into random intensity upon free-space
propagation, which we refer to hereon as conventional speckle.
Indeed, the propagation of light in random media or scattering
from rough surfaces is critical to practical applications in bio-
imaging [5], subsurface exploration [6], and astronomical
observations through turbulent atmospheres [7]. As such,
the study of speckle has recently become of central importance
in extracting information from—or transmitting it through—
complex turbid media [8–14].

In a multiplicity of contexts, light may be confined to
propagate on the sites of a discrete lattice, such as those de-
fined by coupled photorefractive [15], semiconductor [16],
or femtosecond laser written silica [17] waveguide arrays,

random fiber cores [18], coupled optical resonators [19],
or photonic crystal waveguides [20]. Whether classical
[15–20] or quantum light [21–24] is utilized, propagation
of an extended coherent field along a disordered photonic
lattice produces discrete speckle on the lattice sites [Fig. 1(b)],
in contrast to conventional continuous speckle. One feature
arising from the interference between randomly scattered
waves in an otherwise periodic potential is Anderson locali-
zation [25,26], which is manifested in the lack of diffusion of
the wave function. Optics has enabled direct observation of
so-called transverse localization [27] in coupled waveguide
arrays on a transversely disordered lattice [15–18,28], among
other realizations [29]. Usually in such experiments, only a
single waveguide is excited and spatially nonstationary discrete
speckle develops. The typical measure of localization in this
scenario is the spatial width of the ensemble-averaged inten-
sity distribution of transmitted light [28]. If instead the
waveguides are illuminated by extended coherent light, a con-
figuration that has not been thoroughly investigated hereto-
fore [16,30], a discrete speckle pattern with spatially invariant
statistics develops that apparently masks the localization
signature.
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In this work, we investigate numerically and analytically the
statistical properties of discrete speckle in one- and two-
dimensional (1D and 2D) disordered Anderson lattices upon
extended illumination [Fig. 1(b)]. We show that the finger-
print of localization is embedded in the fluctuations of the
emerging light and is thus revealed in the coherence function.
We uncover a surprising phenomenon: the transverse coher-
ence width associated with an extended coherent field is deter-
mined by the localization length resulting from a single-site
excitation. Consequently, beyond a critical distance, the trans-
verse speckle grain size “freezes” upon subsequent propagation
along the lattice [Fig. 1(d)]. Furthermore, the axial coherence
depth is independent of axial position, leading to a coherence
“voxel” of fixed volume independent of position. We take
these features collectively to define a new regime that we call
“discrete Anderson speckle.”Our findings are in contradistinc-
tion to the familiar characteristics of conventional speckle [31],
wherein the transverse coherence length grows with the free-
space propagation distance [Fig. 1(c)], as dictated by the van
Cittert–Zernike theorem [32].

These findings have their foundation in the different beam
propagation dynamics that distinguish discrete lattices from
continuous media. Nevertheless, despite the distinctions
between conventional and discrete Anderson speckle, both
phenomena have a common feature: each system contains a
single realization of a random function of the transverse coor-
dinate. In conventional speckle, the randomness is confined to
the thin screen while, in discrete Anderson speckle, it extends
axially without change. Our results help elucidate the ultimate
resolution limits of imaging through an Anderson lattice [18],
introduce new strategies for engineering the spatial optical co-
herence of a beam of light [33], and indicate the potential for
tuning higher-order field statistics beyond the Gaussian limits.

Previous investigations of electromagnetic-wave propaga-
tion through random media have studied the dimensionless
conductance, which is proportional to the transmittance
[34–36]. In such systems disorder, and hence localization,

is primarily axial instead of transverse. In case of the 1D
and 2D photonic systems examined here, the situation is quite
distinct since the disorder is transverse and back-scattering is
not allowed, so that the transmittance is always unity (in the
absence of absorption) and the localization is observed in a
plane transverse to the propagation axis.

2. DISCRETE OPTICAL LATTICE MODEL

Field propagation along a 1D lattice of parallel waveguides
with evanescent nearest-neighbor-only coupling [Fig. 2] is
given by the coupled equation [29]

i
dEx�z�
dz

� βxEx � Cx;x−1Ex−1 � Cx;x�1Ex�1 � 0; (1)

where Ex�z� is the complex optical field in the xth waveguide
�x � −N ;…; N � at axial position z, βx is the propagation con-
stant of waveguide x, and Cx;x�1 is the coupling coefficient
between adjacent waveguides x and x � 1. The evolution of
the input field Ei�xi� to the output Eo�xo� at z may be written
as Eo�xo� �

P
xi h�xo; xi�Ei�xi�, where h�xo; xi� represents the

system’s impulse response function after propagating an axial
distance z (see Supplement 1). The point spread function
(PSF) jh�xo; xi�j2 is the corresponding output intensity.
This formulation may be readily extended to 2D lattices
(Fig. 3).

A. Disorder Classes

We consider two classes of disorder. The first, diagonal disor-
der [25], is characterized by constant Cx;x�1 � C and random
βx having a uniform probability distribution of mean β and
half width Δβ. The second class, off-diagonal disorder [37], is
characterized by fixed βx � β and random Cx;x�1 having a
uniform probability distribution of mean C and half width
ΔC . Both disorder classes exhibit similar behavior in our in-
vestigations; we thus report here results for off-diagonal disor-
der and relegate those for diagonal disorder to Supplement 1.

Fig. 1. Conventional speckle and discrete Anderson speckle. (a) A thin random phase screen (σϕ � 4π) illuminated with a uniform coherent beam
produces conventional speckle. (b) Discrete Anderson speckle is produced from a highly disordered hexagonal (honeycomb) waveguide lattice with
maximal off-diagonal disorder when illuminated with a uniform coherent beam. (c) The grain size of conventional speckle increases with propagation
distance z, while that of discrete Anderson speckle does not as shown in (d).
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The findings of this study are presented in terms of dimension-
less variables by writing the coupling coefficients in units of
their average C , and the distance z in units of the coupling
length l � 1∕C . Throughout, ΔC ranges from 0 to 1. Lattice
sizes are chosen large enough so that all the central results
in this work are independent of lattice size N t � 2N � 1.
Further details are provided in Supplement 1.

3. DISCRETE ANDERSON SPECKLE:
TRANSVERSE COHERENCE

A. Anderson Localization

To set the stage for examining transverse coherence of discrete
speckle in Anderson lattices upon uniform illumination, we
first describe briefly the results of single-waveguide excitation.
When disorder is absent (ΔC � 0), ballistic spread leads to an
extended output state [Fig. 2(a)]. Progressively introducing
disorder into the lattice results in a gradual transition to an
exponentially localized state [Fig. 2(b)] manifested in the pro-
nounced confinement of the mean PSF hjh�xo; 0�j2i around
the excitation waveguide, where h·i is the ensemble average.
In general, similar behavior is observed in 2D lattices
[Fig. 3(a)]. We define the localization length σs as the root-
mean-square width of the mean PSF. As shown in Figs. 2(b)
(inset) and 3(b), σs decreases monotonically with increasing
ΔC at fixed distance z in 1D and 2D lattices. On the other
hand, σs typically increases with z at fixed ΔC until it satu-
rates, a signature of localization, which happens earlier for large
ΔC [Fig. 2(b), inset]. For later reference, we note that for short
propagation distances at intermediate disorder levels, features
of both localized and ballistic states coexist.

B. Transverse Coherence

We now move on to our investigation of the global statistics of
light in Anderson lattices by examining the case of coherent
extended uniform illumination. For a 1D array, Ei�xi� � 1
and the output field is Eo�xo� �

P
xi h�xo; xi�, which is a ran-

dom function of xo in the case of a disordered lattice; a similar
relation holds for 2D arrays. In the absence of disorder, the
extended intensity distribution is invariant with respect to
propagation [Fig. 3(c) for 2D]. Upon introducing disorder,
this uniform distribution transitions into a granular intensity
pattern I�xo� � hjEo�xo�j2i defined on the lattice sites, which
we call discrete speckle. Examples of individual realizations
for 1D and 2D lattices are shown in Figs. 2(c) and 3(c),

Fig. 2. Anderson localization and discrete speckle in 1D waveguide
lattices. (a) PSF I�xo� � jh�xo; 0�j2 at z � 10 for a 1D periodic array
for single-waveguide excitation at xi � 0. Inset is a schematic of the con-
figuration. (b) Mean PSF hI�xo�i � hjh�xo; 0�j2i for disordered 1D
arrays. Insets show the localization length σs as a function of ΔC (for
fixed z � 10) and of z (for fixed values of ΔC). For the values of σs
in the insets, 21 points for ΔC and 200 for z are chosen. (c) Realizations
of discrete speckle at various disorder levels (z � 10) for extended uni-
form coherent input light. The dotted lines are ensemble averages. We
use N t � 151 throughout.

Fig. 3. Anderson localization and discrete speckle in 2D waveguide lattices. (a) Mean PSF hI�xo; yo�i � hjh�xo; 0; yo; 0�j2i for 2D hexagonal (honey-
comb) arrays with increasing disorder (from left to right) at z � 10. For clarity, each panel is normalized separately and convolved with a Gaussian
function of width 1.6 for better visualization. (b) Localization radius σs as a function of disorder levelΔC . For the values of σs shown, 11 points forΔC are
chosen. (c) Individual realizations of discrete speckle at various disorder levels corresponding to the panels in (a) upon extended uniform coherent
illumination. Note that the speckle grain size decreases with increasing disorder. Insets are magnified by a factor of 2. Speckle contrasts are 0,
0.76, 1.22, and 1.24 from left to right. We use N t × N t � 101 × 101 throughout.
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respectively. Several characteristics are immediately apparent
in these results. First, with increasing disorder, the grain
size–which is related to the transverse spatial coherence
width–decreases. On the other hand, the speckle contrast c,
defined as the ratio of the standard deviation in the speckle
intensity σI to its mean intensity I , c � σI∕I , increases with
disorder. These observations are telltale signs of a decrease
in the transverse coherence width with increasing disorder.
Indeed, these characteristics are shared with conventional
speckle [31].

Despite the spatially varying intensity distribution jEo�xo�j2
in the individual realizations for extended input, the statistical
homogeneity of this discrete speckle is clear in the uniform
distribution obtained upon averaging multiple realizations
hjEo�xo�j2i [the dotted lines in Fig. 2(c)]. The coherence func-
tion at a pair of positions xo and xo � x in 1D is therefore a
function of only the separation x,

G�1��xo; xo � x� � G�1��0; x� � hE�
o �0�Eo�x�i

�
X
x 0;x 0 0

hh �0; x 0�h�x; x 0 0�i: (2)

Its normalized version is the complex degree of

coherence g �1��x��G�1��0;x�∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G�1��0;0�G�1��x;x�

p
, with

0 ≤ jg �1��x�j ≤ 1. In 2D discrete speckle, we similarly write
the complex degree of coherence g �1��r� as a function of
the radial separation distance r shown in Fig. 3(c). For later
reference (see Section 5), we note that transverse spatial invari-
ance results in the double summation in Eq. (2) separating
over the two impulse response functions, such that
G�1��0; x� � �

η
P

x 0 0h�x; x 0 0�
�
, where η � P

x 0h��0; x 0� is a
zero-mean, complex random variable.

We have carried out an extensive computational explora-
tion of the coherence properties of light propagating in
Anderson lattices. Figures 4(a) and 5(a) depict the magnitudes
of g�1��x� and g �1��r� for 1D and 2D lattices, respectively,
revealing a nonzero pedestal jg �1��∞�j riding on which is a
finite-width distribution. This pedestal jg �1��∞�j signifies the
survival of long-range transverse order; that is, some level of
transverse correlation is maintained regardless of the separa-
tion between the pair of waveguides. Indeed, jg �1��∞�j de-
creases monotonically with ΔC until it vanishes altogether
at a threshold ΔC value [Fig. 4(b) for 1D and Fig. 5(b)
for 2D].

It is useful at this point to compare the coherence of discrete
speckle just described to that of conventional speckle produced
in the arrangement shown in Fig. 1(a). The random compo-
nent of the screen phase ϕ is typically a Gaussian process with
zero mean, variance σ2ϕ, and spatially invariant transverse cor-
relation of width xc , which we take as a transverse unit length
in analogy to the unit separation between the waveguides on a
lattice. During propagation along z, the field passes through
two regimes. In the first regime, where z < 2N cx2c ∕λ (Nc is
the size of the illuminating beam in units of xc and λ is the
wavelength), the coherence properties do not change with z.
Interestingly, the coherence function g�1��x� for conventional

speckle contains a pedestal associated with the specular com-
ponent of the field when the thin phase screen has small σ2ϕ
[31], in analogy to the pedestal resulting from ballistic propa-
gation in its discrete counterpart for small ΔC [Figs. 4(a)
and 5(a)]. In conventional speckle, the pedestal height drops
gradually with increased σ2ϕ for fixed z [similar to the behavior
of jg �1��∞�j with ΔC in Figs. 4(b) and 5(b)], and gradually
vanishes as the field leaves this regime, i.e., z > 2N cx2c ∕λ.
In the far field, g �1��x� becomes the Fourier transform of
the illumination spot and the grain size increases continuously
with z in accordance with the van Cittert–Zernike theorem
[Fig. 1(c)].

A distinction between near and far field may be similarly
made for discrete speckle based on the disappearance of the
pedestal g �1��∞�. For small distances, g �1��∞� is nonzero
and the discrete speckle undergoes dynamical changes upon
propagation, as shown in Figs. 4(c) and 4(d). However, for
a given disorder level ΔC , the pedestal vanishes after some dis-
tance z > 5

ΔC [Fig. 4(e)] that we determined empirically–
which we take as an indication that the far field has been
reached (z > 10

Δβ for arrays with diagonal disorder). Beyond this
axial distance, g �1��x� is stationary and the grain size freezes.
This observation is a glaring departure from conventional
speckle, where grain size increases upon propagation in the
far field. We call discrete speckle in this regime discrete

Fig. 4. Transverse coherence for 1D discrete Anderson speckle.
(a) Magnitude of g �1��x� for 1D arrays for various disorder levels ΔC
at propagation distance z � 10. (b) Long-range-order coherence pedestal
jg �1��∞�j as a function of ΔC at z � 10. The circles in (b) correspond to
the same values of ΔC in (a). Magnitude of g�1��x� at various z for
(c) ΔC � 0.2 and (d) ΔC � 0.4. The pedestal decreases with z and
g�1��x� becomes stationary with respect to further propagation.
(e) jg �1��∞�j as a function of z at various ΔC . (f) Transverse coherence
width σc as a function of ΔC at z � 30. All areas shaded in gray, and also
the dashed arrows, indicate the onset of the discrete Anderson speckle
(DAS) regime.
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Anderson speckle, since we will show later that the transverse
coherence width σc here is dictated by the localization length
σs. We define the coherence width σc (or grain size) as the full
width at half-maximum (FWHM) of the steady state jg �1��x�j
[that is, in the far field where the pedestal g �1��∞� disappears].
We find that σc decreases monotonically withΔC , as shown in
Fig. 4(f). In the near field, the pedestal in effect reduces the
speckle grain size by screening the steady-state jg �1��x�j. Freez-
ing of the coherence function with propagation takes place
slower in 2D (Fig. 5).

To uncover the physics underlying this disorder-induced
freezing of the grain size in the discrete Anderson regime,
we compare σc for uniform illumination to the localization
length σs resulting from a single-waveguide excitation. For
this comparison, we redefine σs as the FWHM of the mean
PSF. We find that these two very different quantities are in
fact linearly proportional σc ≈ 1.3σs (Fig. 6). This may be
understood by noting that in the presence of disorder, the
PSF is a random function with finite average width
[17,21,22]. Light emerging from waveguides separated by a
distance greater than the PSF width are likely to have passed
through nonoverlapping paths of the random array, and
should therefore be uncorrelated. We will present below a
general analytical argument that establishes the relationship
between σc for extended illumination to σs for a single-
waveguide excitation.

4. DISCRETE ANDERSON LOCALIZATION: AXIAL
COHERENCE

Further insight may be drawn from a detailed examination of
the axial coherence propagation dynamics. We plot I�xo; z� �
jE�xo; z�j2 for three realizations at ΔC � 0.2, 0.4, 1.0 in
Fig. 7(a). The longitudinal freezing of the transverse discrete
speckle is evident for all three cases in the far field, resulting in
axial filamentation of the intensity distribution corresponding
to the nonoverlapping, uncorrelated paths along the disordered
lattice mentioned previously. Evaluation of the axial coherence

Fig. 5. Transverse coherence for 2D discrete Anderson speckle.
(a) Magnitude of g �1��r� for 2D arrays for various disorder levels ΔC
at propagation distance z � 10. (b) Long-range-order coherence pedestal
jg �1��∞�j as a function ofΔC at z � 10. The hexagons in (b) correspond
to the same values of ΔC in (a). Magnitude of g �1��r� at various z for
(c) ΔC � 0.2 and (d) ΔC � 0.4. The pedestal height decreases with z,
and g �1��x� becomes stationary with respect to further propagation.
(e) jg�1��∞�j as a function of z at various ΔC . (f) Transverse coherence
width σc as a function ofΔC at z � 30. All areas shaded in gray, and also
the dashed arrows, indicate the onset of the DAS regime.
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Fig. 6. Correlation between transverse coherence and localization in
the discrete Anderson speckle regime. Correlation between σs and σc with
varying disorder level at z � 30. Here, σs is the FWHM of the mean PSF
and σc is the FWHM of the degree of transverse coherence jg �1��x�j. The
axial distance z � 30 is selected such that the discrete Anderson speckle
regime (where jg �1��∞�j ≈ 0) has been reached for all disorder levels
from ΔC � 0.5 to 1.

Fig. 7. Axial coherence in 1D discrete Anderson speckle. (a) Axial
evolution of the intensity in individual realizations of 1D lattices with
different ΔC . (b) Amplitude of the axial coherence function
jg �1��Δz�j. (c) Axial coherence depth σa for different ΔC .
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function G�1��z;Δz� � ΣxohE��xo; z�E�xo; z � Δz�i reveals
that it is in fact independent of z altogether. The normalized
axial degree of coherence jg �1��Δz�j decays with Δz at a rate
proportional to the disorder level [Fig. 7(b)], so that its
FWHM or axial coherence depth σa drops with disorder
[Fig. 7(c)]. This behavior is stationary along z. Finally, a
unique aspect of the features described in this section is
that they are evident in individual realizations, unlike obser-
vations of Anderson localization that necessitate ensemble
averaging.

We have found that the transverse coherence width σc
reaches a steady state in the discrete Anderson speckle regime,
and the statistical homogeneity renders it independent of
transverse position x. Furthermore, the axial coherence depth
σa for a fixed disorder level is independent of axial position z
(and is primarily due to dephasing; see Figs. S3–S5 in
Supplement 1). By combining these findings concerning trans-
verse and axial coherence in disordered lattices, we conclude
that a coherence voxel of fixed volume exists everywhere along
the lattice in the discrete Anderson speckle regime. The vol-
ume of this coherence voxel depends solely on the disorder
level ΔC . This behavior is once again a dramatic departure
from that of conventional speckle where the transverse coher-
ence growth in the far field is dictated by the van Citter–
Zernike theorem, and this growth in transverse coherence

length is accompanied by a reduction in the axial coherence
length.

5. ANALYTICAL MODEL

We have shown numerically that the fingerprint of localization
exists in the fluctuations of the discrete speckle emerging from
Anderson lattices for an extended coherent input. It may be
initially surprising that a link exists between the localization
length (typically associated with a point excitation and averag-
ing over output intensity) and the transverse coherence width
(associated with an extended input and averaging over field
products for pairs of waveguides); see Fig. 6. Our goal here
is to link the extended-illumination scheme that has been
our focus [Fig. 1(b)] with the more usual single-waveguide ex-
citation strategy [Figs. 2(a)–2(b)]. To elucidate this link, we
adapt to our setting a conceptual scheme from quantum optics
known as Klyshko’s advanced-wave picture [38,39], which is
also of use to classical fields. This scheme allows for the
identification of correlation functions of an extended field
traversing an optical system with the field or intensity of a
double-pass configuration (backward then forward) of a point
source through the same system.

We start by depicting in Fig. 8(a) the 1D scenario we have
investigated in this work, whereupon an extended coherent

Fig. 8. Heuristic model linking the transverse coherence width to the localization length in an Anderson lattice. (a) Schematic for extended uniform
excitation Ei�xi� � 1 in an array of waveguides resulting in an output field Eo�xo� having a narrow transverse coherence function with no pedestal. Here,
ΔC � 1 and z is taken such that we are in the discrete Anderson speckle regime. Ensemble averaging of the output intensity hjI�xo�j2i yields a constant.
(b) Representation of Klyshko’s advanced-wave picture in which an unfolded cascade of systems is excited at a single point (xi � 0) and whose output may
be put in correspondence with that of the extended illumination configuration in (a). The field propagates backward through the disordered lattice [as a
result of the conjugation in Eq. (3)], and a spatial average of the output field η � Σx 0h��0; x 0� is evaluated. An extended uniform field with random
complex amplitude η propagates forward through the same realization of the lattice to produce an output field Ẽ�x� whose ensemble average hẼ�x�i
corresponds to the coherence function in (a). We also plot the function hηh�x 0; x 0 0�i for reference. ΔC � 1 and ensemble size is 104 in (a)–(b).
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field traverses a random lattice (ΔC � 1). Averaging the out-
put intensity jEo�xo�j2 over multiple realizations yields a con-
stant distribution with no localization signature [Fig. 2(c)].
Nevertheless, computing the spatially stationary coherence
function G�1��0; x� by averaging over products of fields from
pairs of waveguides separated by x yields a localized function
(independently of xo) of width σc . Referring to Eq. (2), we
write G�1��0; x� as

G�1��0; x� � h
X
x 0 0

h�x; x 0 0�
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{forward X

x 0|{z}
averaging

h��0; x 0�
zfflfflfflffl}|fflfflfflffl{backward

i: (3)

This equation can be interpreted in light of the Klyshko ad-
vanced-wave picture as a cascade of the three steps illustrated in
Fig. 8(b). First, a point excitation at xi � 0 propagates back-
ward through the system h to the x 0 plane, as dictated by the
conjugation operation. Second, the output field from this
backward propagation is spatially averaged over x 0 to yield
the complex random variable η � Σx 0h��0; x 0�, which is then
equally distributed over points x 0 0 in the input plane for a sec-
ond pass forward through the same realization of the system h.
Third, the uniform extended field of amplitude η propagates
forward through h to produce an output random fieldeE�x� � ηΣx 0 0h�x; x 0 0�. Ensemble averaging results in heE�x�i �
G�1��0; x� per Eqs. (2) and (3).

Let us examine the third step in this cascade, the forward
pass. Each waveguide at position x 0 0 is fed with a noisy field
having complex random amplitude η with zero mean. The en-
semble average of the output field in the x plane contributed
by each waveguide is hηh�x; x 0 0�i. While the ensemble average
of hηi and hh�x; x 0 0�i (for high disorder levels) is each zero, the
average of their product need not be so since both random
variables are generated by the same realization of the disordered
lattice. Indeed, since η is generated by the random lattice envi-
ronment in the vicinity of x � 0 in the Anderson localization
limit, then it correlates only with h in the same vicinity, while
remaining uncorrelated hηh�x; x 0 0�i ∼ 0 when h is evaluated
away from the origin, as shown in Fig. 8(b). Consequently,
only a few waveguides in the vicinity of x 0 0 � 0 contribute
to the forward pass. Since h produces a localized output for
a point excitation, the few-waveguide excitation here results
in a slightly broader localized spot whose width is σc [resulting
from the convolution of the impulse response function with
the width of the distribution in Fig. 8(b)]. We have thus es-
tablished on these grounds that σc is intimately linked with the
localization length σs, but is expected to be slightly larger, as
was shown numerically in Fig. 6.

We next proceed to an analytical model of discrete Ander-
son speckle based on modal analysis. Using the eigenmodes of
the lattice coupling matrix, we justify (1) the freezing of the
transverse coherence width σc (and hence the speckle grain
size) once the discrete Anderson speckle regime is reached,
and (2) the independence of the axial coherence depth σa from
the axial position z.

A. Origin of the Freezing of the Transverse Coherence
Width

We analyze the propagation of the field along an Anderson
lattice in terms of the eigenmodes and eigenvalues of the Her-
mitian coupling matrix Ĥ that is defined by the equation of
dynamics in Eq. (1) by writing

i
dE�z�
dz

� ĤE � 0; (4)

where E is a vector of length 2N � 1 containing the field am-
plitudes in the waveguides, and Ĥ is a real symmetric (and
hence Hermitian) matrix with the wave numbers along the
diagonal and coupling coefficients off the diagonal. If the ei-
genmodes and eigenvalues of Ĥ are ϕn�x� and bn, respectively,
then since h � eiĤz , the eigenvalue problem is defined for the
impulse response function as

X
x 0
h�x; x 0; z�ϕn�x 0� � eibnzϕn�x�; (5)

such that the impulse response function may be expressed as

h�xo; xi; z� �
X
n
eibnzϕn�xo�ϕn�xi�: (6)

We have made use of the fact that the eigenmodes are real
since Ĥ is real and symmetric. Using this definition, we recast
the joint transverse-axial coherence function in terms of ϕn�x�
and bn,

G�1��0; x;z; z�Δz�
�

X
x 0;x 0 0

hh��0; x 0;z�h�x; x 0 0;z�Δz�i

�
X
x 0;x 0 0

X
n;m

hϕn�0�ϕn�x 0�ϕm�x�ϕm�x 0 0�ei�bn−bm�z e−ibmΔzi: (7)

The freezing of the speckle grain size in the discrete Ander-
son speckle regime is realized at large propagation distances z
when the condition Stdfbngz ≳ 2π is satisfied; here, Stdf·g is
the standard deviation. We expect that Stdfbng is proportional
to ΔC , such that the distance z that satisfies this condition is
inversely proportional to ΔC . In the case of off-diagonal dis-
order, which we have considered here, the eigenvalue b0 is ex-
cluded from this condition since it remains deterministic with
value 0 [40]. This exclusion is not required in the case of
diagonal disorder which is described in Supplement 1. We
have found numerically that this limit in lattices with off-
diagonal disorder is attained when z > 5

ΔC, which we have
taken to define the discrete Anderson speckle regime.

When the condition Stdfbngz ≳ 2π is met, the difference
bn–bm when n ≠ m has the same order of magnitude as this
standard deviation, but is equal to zero when n � m, therefore
implying that upon ensemble averaging, the impact of the ex-
ponential term in Eq. (7) is ei�bn−bm�z → δn;m. Thus, setting
Δz � 0 in the axial regime where z > 5

ΔC, Eq. (7) reduces to
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G�1��0; x; z; z� �
X
x 0;x 0 0

X
n

hϕn�0�ϕn�x�ϕn�x 0�ϕn�x 0 0�i: (8)

This equation implies that, in the discrete Anderson speckle
regime, the transverse coherence is a function of the separation
x but not the axial distance z, as demonstrated numerically
in Fig. 4.

B. Independence of Axial Coherence Depth from
Axial Position

In considering the axial coherence along the lattice, we make
use of the transverse stationarity of the lattice and consider a
single lattice site x in Eq. (7), whereupon the axial coherence
function is

G�1��x; x; z; z � Δz�
�

X
x 0;x 0 0

X
n;m

hϕn�x�ϕn�x 0�ϕm�x�ϕm�x 0 0�ei�bn−bm�ze−ibmΔzi: (9)

By taking a spatial average over x, we obtain a simplified
relation

X
x

G�1��x; x; z; z � Δz� �
X
x 0;x 0 0

X
n

hϕn�x 0�ϕn�x 0 0�e−ibnΔzi;

(10)

in which we used
P

xϕn�x�ϕm�x� � δn;m. Consequently, the
axial coherence function averaged over the transverse coordi-
nate is altogether independent from z. However, since
G�1��x; x; z; z � Δz� is stationary in x, its statistical properties
are the same as those of

P
xG

�1��x; x; z; z � Δz�. Therefore,
the axial coherence function is independent of z, and as a result
its width σa is also independent of z and relies only on Δz, as
demonstrated numerically in Fig. 7.

6. CONCLUSION

We have investigated the evolution of a set of mutually coher-
ent waves traveling through 1D and 2D disordered lattices of
coupled waveguides. The emerging wave forms discrete speckle
that is statistically homogeneous with random intensity distri-
bution on the lattice sites. The disordered lattice structure that
results in Anderson localization when a single waveguide is ex-
cited exhibits, in the case of an extended excitation, a complete
freezing of the discrete speckle grain size after reaching a steady
state, unlike the usual growth observed in conventional
speckle–a regime we refer to as discrete Anderson speckle.
Moreover, axial and transverse coherence are independent
of position, resulting in a coherence voxel of fixed volume in-
dependent of its transverse and axial position on the lattice.
These results are applicable to a broad host of photonic systems
in which disorder may impact coupling between discrete ele-
ments [15–23]. While we have studied second-order field cor-
relations on a discrete lattice, the new behavior reported here
signposts important vistas to be investigated in the context of
higher-order correlations and photon statistics [41].

Finally, the correspondence between the propagation of
light and that of a quantum particle on discrete lattices [29]

has led recently to fruitful exchanges between optical and con-
densed matter physics [42–48]. Our result, therefore, points to
new regimes that may be investigated in other physical sys-
tems, ranging from Bose–Einstein condensates [49] to acoustic
lattices [50], where Anderson localization takes place owing to
interference of random waves.
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