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INTRODUCTION

We introduce several of the basic processes that lead to third-order nonlinear
responses. In general these nonlinearities range from thermally-induced index of refraction
changes to the ultrafast bound-electronic nonlinearities of two-photon absorption and its
associated nonlinear refraction. While it is relatively easy to distinguish between thermal
and ultrafast nonlinearities, there are often ambiguities in single experiments that require
careful studies to unravel the basic physical processes. For example, two-photon absorption
is easily confused with excited-state absorption where there is a real rather than virtual
intermediate state. We give examples of experimental methods to distinguish such processes
along with some details of the nonlinear mechanisms.  Specifically, we give examples of
nonlinear refraction and absorption in semiconductors and wide gap dielectric materials,
We introduce the concept of causality and how this relates the absorption and refraction
spectra for both linear and nonlinear systems. However, for nonlinear systems, the
nondegenerate nonlinearity is needed as obtained, “for example, by pump-probe
spectroscopy.  We also briefly discuss higher-order nonlinearities associated with free
carriers (excited states) being generated by two-photon absorption. This leads us to discuss
excited-state nonlinearities where the excitation is via linear absorption. These appear as
third-order responses but are associated with a cascading of linear susceptibilities, i.e.
x %™ where  is an electric susceptibility. For these nonlinearities it is more convenient
to define cross sections than to use the usual expansion in terms of higher-order
susceptibilities. If a ¥ is defined for a cumulative nonlinearity, it will not be a material
constant but will depend on the illumination parameters such as the laser pulsewidth. We
go on to look at two-beam interactions which can lead to interesting phenomena such as
«“weak-wave retardation” and two-beam coupling whose description is useful for the
understanding of nonlinear light scattering.
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“THIRD-ORDER" NONLINEARITIES

The textbook derivation of nonlinear optics takes the wave equation,

, M

describing the interaction of light with matter through the polarization driving term and
expands the polarization P in a Taylor series in the electric field E. Ignoring the vector
nature of P and B, nmiaecalsty, the tensorial nature of the susceptibilities and the spatial z
dependence, this expansion is;'
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where %™ is defined as the nth-order time-dependent response function or time-dependent
susceptibility. Here, we take the field as
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with £ a complex, slowly varying function of time and space, i.e. it contains both amplitude
and phase information. As an example, for harmonic generation (second harmonic from 5@
or third from x*) the nonlinearity by necessity follows the rapidly varying field. The only
material response capable of this is the ultrafast bound-electronic response, i.e. the so-called
“instantaneous" response. Self-action effects come from the odd order susceptibilities and
can be caused by a variety of nonlinearities with response times from "instantaneous” for
bound-electronic NLR in silica fibers, to seconds as for some photochromic effects (e.g. in
photodarkening sunglasses),

As is usually done, Eq. 2 is Fourier transformed to give frequency dependent
functions. This gives P(w). However, for pulsed inputs, as are usually used in nonlinear
optics, the electric fields are narrow functions of frequency and they are still allowed to
slowly vary in time (the slowly varying envelope approximation).” Similarly the polarization
is allowed to slowly follow the field envelope. Therefore P(w) becomes a slowly varying
function of time, P.(?). For a single frequency input at ©, and looking only at self-action,
this leads to a slowly varying polarization at © given by

Po(f) = 502(@)E(t) = %{mwnﬂmmwm‘ km @

There is a also an implied slow variation with propagation direction, z, not explicitly shown,
Writing this Fourier transform as a function of t, as done here and elsewhere, can be
somewhat confusing. It assumes that changes of the field, and thus polarization, are so
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slow that the material response is the same as for a ow input {i.e. delta function in
frequency). Here we ignore the degeneracy factors and the tensor and polarization
properties of these nonlinearities. Thus, for example, ¥ is an effective nonlinear
susceptibility. '

In order to demonstrate how this nonlinearity leads to nonlinear absorpiion, NLA,
and nonlinear refraction, NLR, we return to the rapidly varying field and polarization, insert
this nonlinearity into the wave equation and neglect diffraction effects i.e. V* is replaced by
/62> The neglect of diffraction effects is a very useful approximation that allows the
separation of absorptive and refractive effects. It is a good approximation under the
conditions that the linear optics depth of focus of the beam (Zs=nwi’/A) is much greater
than the sample thickness L (w, is the half width at the 1/¢” maximum in the irradiance,
HW1/e?M), and the input beam profile is unaffected by the phase distortion induced by
nonlinear interactions (i.e. the induced phase distortion is much less than Zo/1). This regime
is called "external self-action®> The wave equation with Eq. 3 keeping only the most
rapidly varying terms can then be reduced to*

Flzt) ndizl) . @
- = P (z,6), 5
fz ¢ Ot 52::559 o (@) ©)

where the effect of the linear index has been included. Transforming to coordinates

traveling with the wave, t=t-zn/c and z'=z, leads to the simplified equation®

@&, o , © {E(Z
E_, o , oo, oF 6
x 2negc ® th:(x ¥ ©

where E and P are functions of z’ and ¢ and we have only included up to third-order
responses. Looking at the magnitude and phase of £ by defining
E=Ezg*, : U]

leads to separate equations describing loss (or gain) and phase shifts;

OE, o M on E
i - 8
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Given that the irradiance I is proportional to E#, Eqs. 8 and 9 (or 6) clearly show how the
real and imaginary parts of x® lead to irradiance dependent phase shifts and loss
respectively. ,
The "i" in Eq. 6 is important. It shows the n/2 phase shift between polarization and
field. Thus, the polarization can be viewed as having a real part which is in phase with the
driving electric field leading to a change of field phase, Eq. 9, and an imaginary part which




leads to a change in the field amplitude, Eq. 8, (index and absorption respectively). We
return to this point later when we discuss two-beam coupling.

Rewriting Eqs. 8 and 9 in terms of the irradiance, /, and considering only the
nonlinearly induced phase ¢ results in,

¥ i -
. “iﬁﬁm{zi‘3}]ly |2y} | = el -, (10)
dZ | 2nc : we's, ’ T
and with k=arc,
dg 1 ) 7 R
= ey} [ = kny] (1)
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where f is defined as the two-photon absorption (2PA) coefficient (in m/W) and #: is
defined as the nonlinear refractive index (in m/W). Two-photon absorption requires the
simultaneous absorption of two quanta of energy Rw. Nonlinear refraction associated with
this process is known as the bound electronic Kerr effect characterized by n, In the
literature, n; is often used to discuss everything from thermal and reorientational (eg. for
CS;) index changes, to changes in index from saturation of absorption to ultrafast ™
nonlinearities. Here we restrict the use of n; to describe the ultrafast index change.
Gaussian units (esu) are often used for n,, and a usefid relation is

m(esu)= (ST (12)

where the right hand side is all in MKS units (SI).
The nonlinear optical properties of materials range from the index change due to the
- ultrafast interaction of light with bound electrons to the index change caused by the -
relatively slow thermal expansion of a liquid due to linear absorption. The effects caused by
these nonlinear interactions with matter range from the reduction of transmittance from
increasing absorption with increasing irradiance (e.g. two-photon absorption) to beam
spreading from self-defocusing to the ultimate nonlinear interaction of laser-induced
damage. The textbook analysis in terms of  is most convenient for describing ultrafast
responses. It can also be useful for describing nonlinear interactions where the material
response time is short compared with the time scales of the experiments, e.g. compared with
_ the laser pulsewidth. An example here is the reorientation of molecules of CS; leading to
self focusing where most often optical pulses are much longer than the =2 ps reorientational
time. However, it may not be the most convenient way to describe all nonlinear
interactions, for example, those we refer to as cumulative nonlinearities, i.e. ones that build
up during the pulse and whose response time is longer than, or on the order of the
pulsewidth. Examples here include thermal nonlinearities, better described by the index
change with temperature, dn/dT, and excited state nonlinearities where the relaxation time
of the excited state is longer than the pulsewidth., In the latter case, the use of cross
sections is more convenient than the use of electric susceptibilities. These parameters are
materials constants, i.e. independent of the irradiation conditions.
We discuss methods for measuring these different nonlinear responses along with
convenient ways to describe them. We concentrate on two types of related nonlinear
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interactions; bound-electronic and free-carrier or excited-state nonlinearities.  We also
describe the intrinsic link that exists between nonlinear refraction and nonlinear absorption
due to causality, This linkage allows us to write nonlinear Kramers-Kronig relations
relating the nonlinear refraction and nonlinear absorption analogous to the relations relating
the dispersion of linear refraction to the linear absorption spectrui.

KRAMERS-KRONIG RELATIONS

Mathematically, the complex response function of any linear, causal system obeys 2
dispersion relation that refates the real and imaginary parts of the response function via
Hilbert transform pairs. In optics, Kramers-Kronig (KK) relations are dispersion relations
relating the frequency dependent refraction, n(w) to an integral over all frequencies of the
absorption a(@) and vice-versa. Toll’ gave an interesting way of viewing the necessity of
these dispersion relations as illustrated in Fig. 1. The electric field of an optical pulse in time
(a), consisting of a superposition of many frequencies, arrives at an absorbing medium. If
one frequency component (b) is completely absorbed we could naively expect that the
output should be given by the difference between (a) and (b) as shown in (c). However,
this would obviously violate causality since there is an output signal occurring at times
before the incident wave train arrives. In order for causality to be satisfied, the absorption

Causality

Input Pulse

Absorption Frequency

VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV

Transmitted Pulse

AYAVAVA'

Figure 1. Ilustration of the need for index dispersion.; a) input pulse electric field, b) monochromatic
absorption in time, c) “expected” output without dispersion.




of one frequency component must be accompanied by phase shifts of all of the remaining
components in just such a manner that the field prior to the pulse vanishes. Such phase
shifts result from the index of refraction and its dispersion.

- As will be seen, the real and imaginary parts of ¥, or n; and f5, are related through
causslity by Kramers-Kronig relations in much the same way as # and « are related for
linear optics.*”®’ This may appear somewhat surprising at first glance since Kramers-
Kronig relations are derived from linear response themy However, we treat the material in
the presence of a bright light source as a new “linear” system and then apply causality on
this changed system and obtain relations between the changes in absorption, Aa, &nd
changes in refraction, An. An important difference here with what might first be written for
this relation is that the connection is between nondegenerate nonlinearities. That is, the
material plus light beam is held constant so that in the integral relation for the nonlinear
absorption, it is the change in absorption at frequency @ due to the presence of a strong
beam at @, that is needed, Aafw; w,) or Hw; o). The sbove concept is illustrated in Fig. 2.
Thus, using this relation requires a knowledge of the spectrum of the nondegenerate
nonlinear absorption as obtained, for example, from pump-probe spectra. Therefore,
Anfo; o) or nyw; o) and Aafo; @) or Hw; ) describe the change in refractive index and
absorption coeflicient, respectively, for a weak optical probe of frequency @ when a sirong
pump of fixed frequency o, is applied as illusirated in Fig. 2. The following shows how to
mathematically cancel this precursor field in both linear and nonlinear interactions.

Linear Nonlinear

Pump

Probe

Probe

AU, ) )2

¢ T oc(Q) _c
n(@)~1= ”S/)L ) | M) ﬁso{ i

Figure 2. Dlustration of Kramers-Kronig relations for linear and nonlinear systems.

42



:¢ of all of the remaining
lse vanishes. Such phase

nd £, are related through
n and o are related for
t glance since Kramers-
, we treat the material in
| then apply causality on
in absorption, Ao, and
might first be written for
inearities. That is, the
elation for the nonlinear
the presence of a strong
pt is illustrated in Fig. 2.
o of the nondegenerate
be specira. Therefore,
i¢ in refractive index and
quency @ when a strong
following shows how to
ar interactions.

e

Linear Kramers-Kronig relations

In 2 dielectric medium the linear optical polarization, P() as givenin Eq. 2 is,

11

o
P() = 8o [ 2(s)P(1 - 1) (13)

=}

The response function, (1), is equivalent to a Green's function, as it gives the response
(polarization) resulting from a delta function input (electric field). This equation is often
stated in terms of its Fourier transform, where the convolution in Eq. 13 is ransformed into
a product

Plw) = y(@)E(w) (14)

where 1(w) is the frequency dependent susceptibility defined by,

@)= [x()e""dr. (15)

Causality states that the effect cannot precede the cause requiring that Efi-7) cannot
contribute to P(y) for t < (¢ -7). Therefore, in order to satisfy causality, x(7) = 0 for 7< 080
that the integral in Eq. 13 need only be performed for positive times. An easy way 1o see
this is to consider the response to a delta function E(7) = Eob(7), where the polarization
would then follow %(?). The usual method for deriving the KK relation from this point is to
consider a Cauchy integral in the complex frequency plane. However, in the Cauchy
integral method, the physical principle from which dispersion relations result (namely
causality) is not obvious. The principle of causality can be stated mathematically as

x(0) = 2(H0() : (16)

i.e., the response to an impulse at ¢ = 0 must be zero for ¢ < 0. Here 6y is the Heaviside
step function defined as &1 =1 for £> 0 and @1) =0 for t <0. Upon Fourier transforming
this equation, the product in the time domain becomes a convolution in frequency space

[#Dan- L[ a0 19

5@), 1 1=z<w>+,}~p
2 2 w—-Q

2@)= x(w)*[m—

2 2rw

which is the KK relation for the linear optical susceptibility (¢ indicates principle value).
Thus, the KK relation is simply a restatement of the causality condition (Eq. 16) in the
frequency domain. Taking the real part with x=y’+iy"’, we have,

N TUC)
"(“’)”n“’im"ﬂ' (18)

It is more usual to write the optical dispersion relations in terms of the more familiar
quantities of refractive index, n(w), and absorption coefficient, a(w). These relations are
derived in Ref 8 using relativistic arguments. However, if we assume dilute media with
small absorption and indices, we obtain the identical result. By setting n(w)-1=y'12 and

43




afe)=an"(a)/c, we obtain

N < t
mw)—1=-—g
@)-1=5-p [

-

o) da (19)
-0 0 ’
Since E(#) and P(¥) are real, n(-0) = n{w) and a(-a) = o), which when transforming the
integral in Eq. 19 to 0 to o gives the final result of

. c T aQ)
3 iz e Ky 20
n{m) ﬁggi 7,7 29

Neonlinear Kramers-Kronig Formalism

Clearly causality holds for nonlinear systems as well as for linear systems, however,
confusion has existed about the application of causality to nonlinear optics. As stated
previously, the usual KK relations are derived from linear dispersion theory, so it would
appear impossible to apply the same logic to & nonlinear system. The simplest way to view
this process is to first linearize the problem by viewing the material plus strong perturbing
light beam as a new linear system upon which we apply causality, i.e. the light interaction
results in & new absorption spectrum for the material as illustrated in Fig. 2, Thus, both the
NLA and the NLR are equivalent to pump-probe spectra with a fixed pump frequency and
variable probe frequency. '

Here we discuss the Kramers-Kronig relation used to calculate the change in
refractive index from the change in third-order absorption. The third-order susceptibility can
be determined by integration over positive times only as,

«©

1P (@y,0,,03) = [dr, [dr, | R o A 1))
6 0 0 ,

It is now possible to use the same method used earlier for the linear susceptibility in order to
derive a dispersion relation for x®. For example, we can write

2V(1,2,73) = 20 (e, 10,73)0(5 ) (22)

where j can refer to any of the three indices and then calculate the Fourier transform of this
equation. We could also use two or three step functions, however, the simplest result is
obtained by taking just one. This gives us a generalized nonlinear Kramers-Kronig relation
for a non-degenerate third-order nonlinear susceptibility (here choosing j=1);

2,00
O (0, 4@, +0y:0,,0,,05) = —p [ L E202:03) 4 2
1o oyt 03:0,,0;,0;) ”‘pim—Nﬂ 2 (23)

This integral is over only one frequency argument, ), and all other frequencies are held
constant. Thus, we do not obtain a relationship between the degenerate Kerr coefficient,
nx(e), and the degenerate two-photon absorption coefficient, S(w). ;

Using an analogous definition for the nondegenerate 7, and f8, defined by Egs. 10
and 11,
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As discussed in Refs. 10 and 11 there is a factor of two difference between the degenerate
and nondegenerate definitions. This accounts for cross-modulation or "beating” terms that
result for the nondegenerate case for nonlinearities that can respond fast enough. This is
sometimes referred to as "weak -wave retardation” as discussed later in this chapter."
The definition of the nondegenerate # now includes all possible nonlinear mechanisms
including 2PA, Raman and AC-Stark effects as discussed later in the next section and in
Ref 7.

We can relate these quantities by choosing @y= -a» with @, = @, to be the
perturbing field frequency (or excitation field) in Eq. 23 and convert to an integral from 0 o

@ {0 give

. @ O (-
Re(r®@i0,-0,.0) =2 p [ ML 00060y
P 2 QZ NQ?Z
which with the definitions of Egs. 24 and 25 leads to
c A,
m@0,) =< [P0, @n
T Q-

Although the calculation as illustrated above gives the nondegenerate NLR for a specific
pair of frequencies, in most cases we set w=aw, (after the integral is performed) and consider
self-refraction. This gives two times the degenerate nonlinear refractive index 7, (the factor
of two difference from weak-wave retardation).

The origin of the nonlinearity need not be optical but of any external perturbation.
For example this method has been used to calculate the refractive index change resulting
from an excited electron-hole plasma and a thermal shift of the band edge. For cases where
an electron-hole plasma is injected, the subsequent change of absorption gives the plasma
contribution to the refractive index. In such cases, the excitation in Eq. 27 is not necessarily
an optical frequency but can be taken as a general excitation. Thus, @, can represent, for
example, the sample temperature change. For nonlinearities due to an existing plasma, o, is
taken as the change in plasma density. Van Vechten and Aspnes'® obtained the low
frequency limit of n; from a similar KK transformation of the Franz-Keldysh electro-
absorption effect where, in this case, @, is the DC field. It is important to note that we must
first perform the integral before setting w=w,. This has been a source of confusion in
considering saturation of 8 two-level atomic system as discussed below.

This form of calculation of the refractive index for nonlinear optics is often more
useful than the analogous linear optics relation since absorption changes (which can be
either calculated or measured) usually occur only over a limited frequency range and, thus,
the integral in Eq. 27 need only be calculated over this finite frequency range. In
comparison, for the linear KK calculation, absorption spectra tend to cover a very large
frequency range and it is necessary to take account of this full range in order to obtain a
quantitative fit for the dispersion. For both linear and nonlinear systems the refractive index




changes are usually quite extensive in frequency. Therefore, a calculation of absorption
changes from refractive index changes is seldom performed.

Example: Two-Level Atom

The familiar saturable "two-level atom" problem is illustrative of the app%mti@n of
the nonlinear Kramers-Kronig relation. The absorption spectrum is given by;>"

7 1
@-oy+r  1__7
Iy (@-a,) +y° (28)

a{w)=a, 5

2

o ¥
“w-w,) +y(+1/1)

As noted, for example in Yariv's text **, this does not obey causality. The problem is that as
@ is tuned the excitation is tuned, and the saturation changed for this degenerate form of the
absorption. What is needed is the nondegenerate, or pump-probe, absorption spectrum,

2

< i
a(w) = ay 4 3 3
(@-wo) +7% | T 4
Ig {m =a}o)2 +;f ©9)
1
= ao(@) 3
I
14+—

Is (a’f"mg)z +?’2

Here o, is fixed and o clearly obeys causality since now the absorption spectrum is identical
in shape to the linear absorption but simply reduced in amplitude by homogeneous
saturation. (Note that we have ignored population pulsations and other more exotic effects
in this oversimplified description of the 2-level atom).> We next present experimental data
and methods for determining the nonlinear coefficients in semiconductors.

ULTRAFAST NONLINEARITIES IN SEMICONDUCTORS AND DIELECTRICS

The nonlinear optical properties of semiconductiors are used for a variety of
applications (e.g. optical switching and short pulse production). Some of the largest
nonlinearities ever reported have been in semiconductors and involve near-gap excitation.
Unfortunately, these resonant nonlinearities, by their nature, involve significant linear
absorption. Here we discuss the nonlinear response in the transparency range, ie. for
photon energies far enough below the band-gap energy E, that bound-electronic
nonlinearities either dominate the nonlinear response or are responsible for initiating free-
carrier nonlinearities (e.g. two-photon absorption created free carrier nonlinearities). The
bound-electronic nonlinearities due to the anharmonic response of bound, valence electrons
have been extensively studied in the past **”. The response time for these nonlinearities has
been estimated as on the order of 1 femtosecond or less, This ultrafast response time has
been exploited in applications such as soliton propagation in glass fibers and recently in the
generation of femtosecond pulses in solid-state lasers (Kerr-lens mode-locking). Another
significant application is the development of ultrafast all-optical-switching (AOS) devices.
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Our interest here is to utilize the Kramers-Kronig relations to determine the
dispersion of the bound-electronic n, from the spectrum of nondegenerate nonlinear
absorption. We begin by looking at semiconductor nonlinearities. However, we will find
that this also provides a good description of nonlinearities in wide-gap dielectrics. - In the
transparency range for photon energies greater than half the bandgap energy (ie

. BJ2<ho<E,), two-photon absorption (2PA) dominates the nonlinear losses.”™® In a similar

way, three-photon absorption (3PA) should dominate for Eg/3<hosEg2.  Other
nonlinearities, usually optical damage, make it difficult to observe four-photon absorption
and higher nonlinear absorption, Wherrett'® has shown via second-order perturbation
theory for the 2PA transition rate using only one dipole allowed with one dipole forbidden
transition with two parabolic bands, that the 2PA scales as E;?. The forbidden transition
(as shown in Fig. 3) is what is referred to as a self transition either within the valence band
or within the conduction band that essentially couples the s-like part of the wave function to
the p-like part. For semiconductors this coupling depends on the electron or hole
momentum, K, going to zero at x=0, Third-order perturbation theory for allowed-allowed-
allowed transitions shows that 3PA scales as E,. The identical result for 2PA was
obtained using a Keldysh tunneling model by Brandi et. al®

The traditional theoretical approach for calculating n; and g involves direct quantum
mechanical calculation of the complex x using second-order perturbation theory. Another
approach, more suited for absorptive processes, uses transition rate calculations to arrive at
P via diagrams as in Fig. 3. In order to calculate the nonlinear refraction, we must perform
& Kramers-Kronig integral of the nondegenerate nonlinear absorption over all frequencies.
This integral, therefore, includes frequencies above the bandgap where linear absorption is
possible. In this situation two nonlinear absorption processes in addition to two-photon

Forbidden
Conduction
I\ Band A
- Allowed-
Allowed allowed-
, Allowed allowed
Valence
Band
Forbidden
2PA 2PA 3PA

Figure 3. The two-parabolic-band model of a semiconductor showing an allowed followed by a forbidden
transition (left) and a forbidden followed by an allowed transition (middle), promoting an electron from the
valence to the conduction band via two-photon absorption. The drawing on the right depicts three-photon
absorption via an allowed-allowed-allowed transition.




absorption become possible, electronic Raman and the AC-stark effects. Both of these
phenomena coniribute szgmﬂcanﬂy to the overall nonlinear refractive index. These
processes are most easily modeled by using a Keldysh tunneling type model with 8
“dressed” final state and only keeping the first-order perturbation term in the expansmn
Using & two-parabolic band model for the semiconductor, this ﬁét‘md gives identical result
to second-order perturbation theory for 2PA as given by Wherrett' in the degenerate case,
but includes these extra nonlinear absorption contributions and directly gives the
nondegenerate results as well. Calculations of the nondegenerate nonlinear absorption in
the two-parabolic bad model are given in Ref. 22. Both methods give the same scaling of
nonlinear absorption with linear index and bandgap energy. In addition, the scaling for n; is
also obtained either from the Kramers-Kronig integral or from the scaling of ¥ in the two-
band model as given below,

An important goal of nonlinear optical materials characterization is to determine
trends from which scaling laws can be developed to give a predictive capability and check
theories. After experiments (to be discussed) have been carefully performed and analyzed to
extract B and n,, we can compare the results to theory. It would be best to make this
comparison with the nonlinear spectra for & given material. Unfortunately there are few
materials for which nonlinear spectra are known. One reason for this is that tunable sources
with the required irradiance, pulsewidth and beam quality are not typically avax!ab‘is
Instead we use simple scaling relations to scale out the material dependence. Wherrett" has
shown that the third-order nonlinear susceptibility, ¥, in inorganic solids should scale as

29 8 f (I E), (30)
Eg

where the complex function f depends only on the ratio Aa/E, (i.e. upon which states are
optically coupled). This yields;

Bhor/E,) “Lim{f (ho/E, Doy F(hw/Eg) GV

Eg E

1
nz(hw/Eg)m;;Re{z(g)}xn i —Re{f (hofEy)} ¢ —— ey G(hw/Eg) (32)

g

where the defined functions F and G are band structure dependent. Therefore, F gives the
2PA spectrum and G gives the dispersion of n,. One method to test the above scaling
relations is to scale the experimental data to obtain the experimental functions (designated
by the superscript e);

1
Fé(ho | E)) = n’E3p° . 33
( 2) F JE;- P (33)
G* (A ;) = ——nE S 34)
k' JE,

where § and n,’ are experimental values of £ and n,, and K and X’ are proportionality
constants, Here E, is the Kane energy and is nearly material independent with a value near
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21 eV.” Figure 4 plots the scaled data for f as a function of hav/E,, with the predicted
dependence from the two-parabolic band model given from perturbation theory or the
Keldysh tunneling model. The value of X is fit to the data shown for medium gap
semiconductors and has the value K=3100 in units so that £, and £ are in eV and fis in
cm/GW and K’ comes directly frm the Kramers-Kronig integration (see Eq. 36)."" Figure 4
shows 2PA turning on sharply at half the band-gap energy (there are many data below Ej/2
with /§ =0 not shown) and then slowly decreasing for photon energies approaching the band
gap. While this data is for degenerate 2PA, the theory for nondegenerate 2PA has a similar
shape but turns on at h{o+0,)=E, The functional dependence of the nondegenerate 2PA

is given by,

3/2 \2
. Xy +xy—1 i1 e
2 X%y X Xz

where x;; =ho2/E; Once this functional dependence is known, the extent of variation of
the magnitude of # can better be seen in a log-log plot of § scaled by the spectral response
function F; =x,) versus E, as in Fig. 5. Here data for other materials including wide gap
dielectric materials are included.

With the inclusion of Raman and AC-Stark contribution to the NLA in Eq. 35, we
can perform the Kramers-Kronig integral and obtain the dispersion of the nondegenerate
NLR. This calculation, in agreement with the scaling relation of Eq. 32 yields for ny ®

0.06

0.04

0.02

ho/E
g

Figure 4. Scaled values of # (according to Eq. 33) as a function of Aw/Eg along with the theoretical plot of
the function F (see Eq. 35 with x1=x2). Data from Ref. 18.
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while the nondegeneraie dispersion function & is given by
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Scaling the data as in Eq. 34 (0, =02) gives the plot of Fig. 6 showing a small,
positive, nearly dispersionless n; for RavE, much less than E,, reaching a peak near EJj2
(where 2PA turns on) and then decreasing, reaching negative values as o approaches the
band edge. The curve is the result of the Kramers-Kronig integral of Eq. 27. This curve is
similar to the behavior of the linear index in a solid which has its peak value at the band
edge, where linear absorption turns on, and then rapidly turning down toward smaller values
as Ao increases. Note that in order to obtain the degenerate 7, we set @ =an =@ and

divide the result by two to account for “weak-wave retardation”.
Again, a large variation in the magnitude of n;, including a change in sign, is hidden
by this scaling and is better seen in a log-log plot of n; scaled by the dispersion function G
as given in Fig. 7. At the same time it shows the hidden E; ™ scaling (see Fig, 6) of the
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2 3
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a
oo

10"
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10™ ’
0.1 1 10

E (V)

Figure 5. A log-log plot of scaled data for § versus Eg (closed circles from Ref. 18, open triangles form Ref.
24, and open circles for InSb from Ref. 26).

50

g



€L

of Fig. 6 showing a small,
reaching a peak near E/2
lues as ko approaches the
al of Eq. 27. This curve is
its peak value at the band
own toward smaller values
2, we set @y =a» =a and

a change in sign, is hidden
* the dispersion function G
scaling (see Fig. 6) of the

1% ZnTe
0.05 F /N ©CdSSe
casl N
Ly g
=} Z‘r&Se/ﬁ \
B wall - ? o
B S
Q) O.00 Feersmmm L TN T
1 CdSe
L ‘ \\‘
f rd*%éi\
v 8]
—0.05 F ! GaAs
| | ZnSe\
”C}TQ L | i ! 1 i | .
0.0 0.2 0.4 0.6 0.8 1.0

fiw/E

W/ b

Figure 6. a. A plot of experimental values of the nonlinear refractive index, 2%, scaled according to Eq. 34
versus Aw/Eg. The solid line is the two-parabolic-band-model prediction for the dispersion function G%

" 'The values for semiconductors (squares) were obtained from Z-sgan measurements at 1.06 and 0.532 pm,

Also shown are n? measurements of large-gap optical materials 0 (solid circles). From Ref. 7.

nonlinear index that leads to a wide variation of n;: 2.5x107" esu for MgF; at 1.06 um, ~
2x10~° esu for AlGaAs at 810 nm, and 2.7x107" esu for Ge at 10.6 pm. The straight line is
theory showing the £, dependence. It is seen that the scaling law holds over a 5 orders-
of-magnitude variation in the modulus of #,. Also note that although the measured values of
n, for ZnSe at 1.06 and 0.532 um have different signs, both measurements are consistent
with the scaling law. More recent data on a series of UV transmitting materials at the
harmonics of the Nd:YAG laser are shown in Fig. 8.7

We next describe a few of the experimental techniques used to measure Aa and 4n
from which the physical processes can be determined. Adding to the complexity of analysis,
Eqs.10 and 11 adequately describe material interactions only when and n, are solely
responsible for the nonlinearity and only when diffraction can be ignored within the material
(external self action). As we discuss below, other nonlinear mechanisms must often be

included.

EXPERIMENTAL METHODS

There are a number of difficulties that need to be addressed when attempting to
determine the value of £ or 1, from experiment. An examination of the literature on values
of B for the semiconductor GaAs show well over a two order of magnitude change in the
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Figure 7. A log-log plot showing the Eg 4 dependence of n). The data points g{e identical to those in Fig. 6,
but are scaled by the dispersion function G. The solid line is the function Eg * which appears as a straight
line of slope 4 on the log-log plot (adapted from Ref. 8), ~

reported value over the past three decades as shown in Fig. 9. It is illustrative to look
briefly at the reasons behind the trend toward smaller values with time shown in this figure.
In general the reasons boil down to poorly characterized laser beam parameters and
competing nonlinearities, i.e. experimental technique and interpretation. In the early years
of these measurements laser pulses were often multimode in either space or time or both,
leading to irradiance fluctuations resulting in larger losses from nonlinear absorption than
smooth pulsed beams. This leads to an overestimation of 5. More importantly long pulses
were used which results in the dominant nonlinear absorption process of free-carrier
absorption from the 2PA generated carriers, again resulting in an overestimation of § (this is
discussed in more detail later under “excited-state nonlinearities). An additional problem is
that nonlinear refraction can cause beam size deviation either within the sample or after the
sample. If this occurs within the sample the irradiance is changed and, thus the loss is
changed. Changes in beam size after the sample can cause errors if some fraction of the
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G versus ho/Eg taken with Ee harmonics of a picosecond Nd:YAG laser on wide bandgap materials, The
solid line is the function Eg ™ which appears as a straight line of slope —4 on the log-log plot (adapted from

Ref. 8)

transmitted light beam is not collected. This also results in an overestimation of f In
semiconductors such as GaAs the dominant nonlinear refraction is usually self-defocusing
from the 2PA generated carriers. The longer the pulse for a given irradiance the larger the
energy and, thus, the greater the carrier density produced and the larger both free-carrier
absorption and free-carrier refraction become (see later section on “exited-state
nonlinearities.

The solution to the three problems mentioned after they have been identified is
relatively simple; use smooth beam profiles, e.g. TEMo,, carefully characterize the output,
use short pulses (for most semiconductors 30 ps is short enough to nearly eliminate free-
carrier absorption effects, and the carrier defocusing is reduced to a manageable level),
carefully collect all the transmitted light (e.g., place a large area detector directly at the back
of the sample), and be sure to use samples short enough and irradiance low enough to be in_

the external self-action regime.

Beam Propagation

As an example of beam distortion due to external self-action, Fig. 10 shows the far
field energy distribution of a picosecond pulse after transmittance through 2.5 cm of NaCl
at low and high irradiance.”’ The curves were normalized to coincide at the center of the
beam. The optical path-length change at the center of the beam and at the peak of the pulse
due to this bound-electronic n; as shown in the figure is =A/2.0. The sensitivity of this
method is limited to the order of a 7/4 peak phase distortion with the sample placed at the
beam waist of a Gaussian input beam (100 pm HW1/eM was used for the data in Fig. 10).
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Figure 9. The two-photon absorption coefficient, B, plotted as 2 ﬁu;ctimi ofky:ear pﬁbliéhed in the literature

(note the semilogarithmic scale). The dats is from Ref. 26,

However, the sensitivity to induced phase distortion is minimized by placing the sample at
the beam waist, i.e. from linear optics, a phase mask or lens has little effect on a beam when
placed at the waist. One way to take advantage of the increased effect of a lens on a beam
when moved away from the waist is the Z-scan method. -

Z-Scan and EZ-Scan

We first describe the use of these techniques for measuring NLR. We then describe
their use for measuring NLA, and finally describe how NLR can be measured in the
presence of NLA. With the development of this method, accurate measurements of nyina
large number of semiconductors and optical solids in various spectral regions have been
obtained.?* The Z-scan has the advantage of easily providing the sign of the nonlinearity,
an important factor for the comparison of experiment with theory presented here.
Techniques such as degenerate four-wave mixing (DFWM), for example, are sensitive to
PP so that A and An effects are not readily distinguished,

Using a single Gaussian laser beam in a tight focus geometry, as depicted in Fig. 11,
we measure the transmittance of a nonlinear medium through a finite aperture (Z-scan) or
around an obscuration disk (EZ-scan), both positioned in the far field, as a function of the
sample position Z measured with respect to the focal plane. The following example
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qualitatively describes how such data (Z-scan or EZ-scan) are related to the NLR. of the
sample.

Aperture —s
N A T
———
. ¢ - — — -
Ty
§ Reference
Detector
! Signal
Sample Aperture —p 15 )
¥ _+ Detector
— \‘\
H\W~W“’””“ ®
MM%:-MM%\‘M\ J
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Figure 11. The experimental setup for performing Z-scang {or BZ-scans by replacing the aperture with a
disk,

108 sy

Figure 12. Typical closed aperture Z-scans of'a material showing only nonlinear refraction for positive
(solid line) and negative (dotted line) An. '

; Assume, for example, a material with a positive nonlinear refractive index. Starting
the scan from a distance far away from the focus (negative Z) the beam irradiance is low
and negligible NLR occurs; hence, the transmittance remains relatively constant, and the
normalized transmittance is unity as shown in Fig. 12. As the sample is brought closer to
focus, the beam irradiance increases leading to self-focusing in the sample. This positive
NLR moves the focal point closer to the lens leading to a larger divergence in the far field,
thus reducing the transmittance, Moving the sample to behind focus (Z>0), the self-
focusing helps to collimate the beam increasing the transmittance of the aperture. Scanning
the sample farther toward the detector returns the normalized transmittance to unity. Thus,
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the valley followed by peak signal shown by the solid line in Fig. 12 is indicative of positive
NLR, while a peak followed by valley shows self-defocusing.

The EZ-scan can be described in nearly identical terms except we monitor the
complementary information of what light leaks past the obscuration disk, or eclipsing disk.
Since in the far field, the largest fractional changes in irradiance occur in the wings of &
Gaussian beam (see Fig. 10), the EZ-scan can be more than an order-of-magnitude more
sensitive than the Z-scan. Figure 13 demonstrates the sensitivity of this method by
comparing a Z-scan and an EZ-scan on neat toluene with nanosecond 532 nm puises under
identical experimental parameters (only replacing an aperture by a disk). Note that the
vertical scale for the Z-scan is expanded by a factor of 10, and the signal is inverted for the
EZ-scan since what is transmitted by an aperture is blocked by a disk. Using this method
we have observed a peak optical path length change of as small as 1/2200 with a signal-to-
noise ratio greater than 5 (A®=271/2200, where A®D, is defined as the integrated peak-on-
axis phase shift).*’
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Figure 13. A Z-scan and EZ-scan on toluene. From Ref. 30.

It is an extremely useful feature of the Z-scan (or EZ-scan) method that the sign of
the nonlinear index is immediately obvious from the data. In addition the methods are
sensitive and simple single beam techniques. We can define an easily measurable quantity
AT,y as the difference between the normalized peak and valley transmittance: T, - T,. The
variation of AT,y is found to be linearly dependent on the temporally averaged induced
phase distortion, defined here as A®, (for a bound-electronic n,, A®, involves a temporal
integral of Eq. 11). For example, in a Z-scan using an aperture with a transmittance of
=40%; .

AT,, = 036|A®,| for AT, <1. (38)

With experimental apparatus and data acquisition systems capable of resolving transmission
changes AT,=1%, Z-scan is sensitive to less than A/225 wavefront distortion (i.e.,
ADy=27/225). The Z-scan has a demonstrated sensitivity to a nonlinearly induced optical
path length change of nearly A/10° while the EZ-scan has shown a sensitivity of A/10%,




In the above picture we assumed a purely refractive nonlinearity with no absorptive
nonlinearities (such as multiphoton or saturation of absorption). Qualitatively, multiphoton
absorption suppresses the peak and enhances the valley, while saturation produces the
opposite effect, If NLA and NLR are simultaneously present, & numerical fit to the data can
extract both the nonlinear refractive and absorptive coefficients, The NLA leads to a
symmetric response about Z=0, while the NLR leads to an asymmetric response (if AT,y is
not too large), so that the fitting is unambiguous. In addition, noting that the sensitivity to
NLR in a Z-scan is entirely due to the aperture, removal of the aperture completely
eliminates the effect. In this case, the Z-scan is only sensitive to NLA. Nonlinear
absorption coefficients can be extracted from such “open aperture” experiments. A further
division of the apertured Z-scan (referred to as “closed aperture” Z-scan) data by the open
aperture Z-scan data gives a curve that for small nonlinearities is purely refractive in nature.
In this way we can have separate measurements of the absorptive and refractive
nonlinearities without the need of computer fits with the Z-scan. Figure 14 shows such &
set of Z- scans for ZnSe. Separation of these effects without numerical fitting for the EZ-
scan is more complicated.

The single beam Z-scan can be modified to give nondegenerate nonlinearities by
focusing two collinear beams of different frequencies into the material and monitoring only
one of the frequencies (different polarizstions can be used for degenerate frequencies).”’
This “2-color Z-scan” can separately time resolve NLR and NLA by introducing a temporal
delay in the path of one of the input beams. This method is particularly useful to separate
the competing effects of ultrafast and cumulative nonlinearities.
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Figure 14, Z-scans of ZnSe showing closed aperture (upper left), open aperture (lower left) and closed
divided by open aperture data (upper right). The solid lines are theoretical fits. Adapted from Ref, 7,
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Pump-Probs Z-scan

Pump—pmb@ {or excite-probe) technigues in nonlinear optics have been commonly
employed in the past to deduce information that is not accessible with a single beam
geometry. The most significant application of such techniques concerns the ultrafast
dynamics of the nonlinear optical phenomena. There has been a number of investigations
that have used Z-scan in pump-probe scheme. The general geometry is shown in Fig. 15
where collinearly propagating excitation and probe beams are used. After propagation
through the sample, the probe beam is then separated and analyzed through the far-field
aperture, Due to collinear propagation of the pump (excitation) and probe beams, we are
able to separate them only if they differ in wavelength or polarization. The time-resolved
studies can be performed in two fashions. In one scheme, Z-scans are performed at various
fixed delays between excitation and probe pulses. In the second scheme, the sample
position is fixed (e.g. at the peak or the valley positions) while the transmittance of the
probe is measured as the delay between the two pulses is varied. The analysis of the 2-color
Z.-scan is naturally more involved than that of a single beam Z-scan. The measured signal,
in addition to being dependent on the parameters discussed for the single beam geometry,
will also depend on parameters such as the excite-probe beam waist ratio, pulsewidth ratio
and the possible focal separation due to chromatic aberration of the lens. However, these
can easily be handled theoretically. Figure 16 shows a temporally-resolved, 2-color Z-scan
for ZnSe using 30 ps, 532 nm ?uiges as the excitation source and 40 ps, 1.064 um pulses as
the temporally delayed probe.?

if
i
i

Figure 15, The experimental setup for performing a time-resolved, 2-color Z-scan.
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Degenerate Four-Wave Mixing

Another commonly used method to determine the dynamics of the nonlinear
response of a material is time-resolved degenerate four-wave mixing (DFWM).® One
implementation of this technique is shown in Fig. 17 where the interference of the
temporally and spatially coincident forward pump (irradiance I) and probe (I} sets up a
nonlinearity that is examined by the backward pump (I,) as a function of its temporal delay.
One interpretation is that Ir and I, set up a grating whose dynamics is investigated by I
scattering off this grating into the detector shown in Fig. 17 (often referred to as the
“conjugate” direction).>* While this does not adequately describe the signal within the
pulsewidth, it gives a reasonable picture of the longer time response of this method. Figure
18 shows the response in this experiment performed on ZnSe using 30 ps, 532 nm pulses.”
Clearly there is a fast response following the pulse shape and a slower response with a
decay time of 100’s of picoseconds (dominated by carrier diffusion washing out the
grating). While this technique gives information about the dynamics of the nonlinear
response, absorptive and refractive nonlinearities both contribute to the signal and their
effects are difficult to separate. That is, in the grating picture, both absorptive and
refractive gratings scatter the backward pump into the detector.
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Figure 17. Experimental setup for time-resolved degenerate four-wave mixing (DFWM). From Ref, 35,
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Figure 18. DFWM experiment performed on a sample of ZnSe at 532 nm. From Ref, 35,
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Streak Camera Imaging

The dynamics of the nonlinear lensing effects can be dramatically demonstrated by
monitoring the spatial beam profile in real time with the use of a streak camera, Figure 19
shows the spatial profile at low and high input energies for 30 ps, 532 nm pulses incident on
ZnSe after propagation in the relatively near field.*® At high inputs the 2PA creates carriers
which are long lived with respect to the pulsewidth used and build up in time with the
integrated energy. Thus, the defocusing from these carriers is observed in Fig. 19 to get
stronger with increasing time in the pulse, ‘

E=58nd
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Figure 19. Spatial scans at different times (separated by 7.4 ps) in the pulse after transmission through
ZnSe and propagation to the near ficld as measured using a streak camerafvidicon combination. The left
side shows low energy (i.e. the input shape) and the right side shows the defocusing at high input. From
Ref. 36. '

EXCITED-STATE NONLINEARITIES

Both Figs. 16 and 18 show a fast response mimicking the input pulse (i.e. a response
time less than the input pulsewidth) along with another more slowly responding
nonlinearity. The rapid response is either a combination of degenerate 2PA, f(2¢) and
nx2a@) effects for the DFWM experiment (see Fig. 18), or the separate effects of
nondegenerate 2PA, f(w;2a), for the 2-color Z-scan and nondegenerate nx(w;2a), see Fig.
16. Here o correspond to a wavelength of 1.064 um. The longer time response in Figs. 16
and 18 (and 19) is due to the nonlinear absorption and refraction induced by ZPA generated
carriers. The generation rate for these carriers of density N is givenby

dN pI’
N _pPL 39
d  2ho @9

The absorption from these carriers is referred to as free-carrier absorption, FCA, and the
refraction as free carrier refraction, FCR and both effects are linear in the carrier density.
While the FCA and FCR depend on the carrier density independent of their generation
mechanism, when the carriers are generated via 2PA these effects appear as fifth order




nonlinearities or, as an effective, pulsewidth dependent 3" However, they are best
described in terms of absorptive (o,) and refractive (o) cross sections ag;

% =g NI
A . {40)

g )
=g, N
?dﬁmz ’

Sometimes k is included in the phase equation changing the units of 5, to length cubed. The
sign of o, is intrinsically positive while, in principle o, can have either sign. In fact,
however, for below gap excitation, o, is always negative leading to self-defocusing. Once
excited, these carriers can undergo a variety of processes including several types of
recombination and diffusion which have not been included in Eq. 40. For short pulse
excitation (e.g. ps) with pulsewidths less than recombination and diffusion times Eq. 39 is
adequate to describe the response within the duration of the pulse. Combining the 3 and 5%
order responses gives,

dg . .
~—=kn I +ko N . (41,
2 itk )

The dynamics of these carriers is seen in the time-resolved Z-scan of Fig, 16, the DFWM
data of Fig. 18 and the streak camera imaging of Fig. 19. In the Z-scan data carrier
recombination dominates the decay while in the DFWM experiment carrier diffusion
between peaks and valleys of the grating dominates. These decays would need to be
included in Eq. 39 to describe these dynamics. The order of the response is seen in the
DFWM data as the inset of Fig. 18 where the signal at two time delays is plotted as
function of the input irradiance I (all three input irradiances varied simultaneously). At zero
delay the slope of the signal versus I is three (third-order, x® response) while at & 200 ps
delay (well past the overlap of the pulses), the slope is five indicating the fifth-order
response,
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Figure 20, A plot of the index change, An, divided by the irradiance, I, as & function of I From Ref, 37.
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This higher-order response for nonlinear refraction is also observed in Z-scans
performed at different irradiance inputs of 532 nm picosecond pulses. At low inputs the
third-order bound-electronic response dominates while at higher inputs the fifth-order self-
defocusing from the 2PA generated free carriers becomes important. Figure 20 shows the
index change divided by the peak-on-axis input irradiance, Ip, in ZnSe ai 532 nm, as a
function of Iy. The index change is calculated from the measured A®,. For a purely third-
order response, An=n,ly and this figure would show a horizontal line. The slope of the line
shown in Fig. 20 shows a fifth-order response while the intercept gives ns, the negative
bound-electronic defocusing at 532 nm. This helps explain some of the discrepancies of
measured values of 2PA coefficients in GaAs (see Fig, 9). These higher order nonlinearities
seen in semiconductors give some indication of the importance of the careful
characterization needed to interpret the measured nonlinear loss and phase.

It would seem reasonable that o, and o, would be related by causality through
Kramers-Kronig relations. However, after excitation there can be rapid redistribution of
the carriers within the bands due to various mechanisms. This redistribution leads to so-
called band-filling nonlinearities, and for the time scales of picoseconds used in the
experiments shown, this prohibits the use of Kramers-Kronig relations for the cross sections
(note that after excitation and redistribution the absorption and refraction due to these
cartiers are related by Kramers-Kronig relations).

EXCITED-STATE NONLINEARITIES ViA ONE-PHOTON ABSORPTION

As discussed in the previous section, excited carriers can lead to NLA and NLR, In
other materials such as molecular systems, the creation of excited states can lead to
analogous nonlinearities described by identical equations (Eqs. 40) where N is interpreted as
the density of excited states. Again, how they are generated is unimportant. If the carriers
or excited states are created by ZPA the resulting nonlinearities are fifth order, i.e., an
effective 5. Depending on the absorption spectra, these states can also be created by linear
absorption where, neglecting decay within the pulse,

aN _d . “42)
di  ho
Concentrating on molecular nonlinearities we refer to these nonlinearities as excited-state
nonlinearities, ESA and ESR in analogy to FCA and FCR respectively. Assuming that
depletion of the ground state can be ignored (i.e., no saturation), ‘

-;% =—al ~o N . 3)

By temporal integration of Eqs. 43 with 42 we find;

drF ao, .2 ’
a1y 3 44
dz' 2ho @4

where F is the fluence (i.e., energy per unit area). This equation is exactly analogous to Eq.
10 which describes 2PA, except that the irradiance is replaced by the fluence and the 2PA
coefficient, g is replaced by ao,/2 w. Thus, experiments such as Z-scan will monitor s
third-order nonlinear response that could easily be mistaken for 2PA. However, there must
be some linear absorption present, however small, for ESA to take place. Two-photon-




absorption does not require linear logs. Unfortunately this is not enough to differentiate the
processes as there can be linear absorption present in 2PA materials unrelated to the NLA
process, e.g. from impurities or other absorbing levels. A temporally resolved measurement,
such as DFWM or time-resolved Z-scan, would also show the excited-state lifetime
assuming the pulsewidth was short compared to this lifetime. Another way to determine the
mechanism is to measure the nonlinear response for different input pulsewidths, again
assuming the pulses can be made shorter than the excited state lifetime. Figure 21 shows
this measurement performed on a solution containing chloro-aluminum phthalocyanine
(CAP).*® While the energy in the pulses was held fixed while the irradiance was changed by
a factor of two by changing the pulsewidih, the nonlinear transmittance remained the same
in the open aperture Z-scans, This clearly indicates that the NLA is fluence rather than
irradiance dependent and, therefore, must be described by a real state population, i.e., ESA.
In CAP, at 532 nm, the ESA cross section &, is considerably larger than the ground-state
cross section, This type of absorber is referred to as a reverse-saturable absorber since the
absorption increases with increasing input. Such effects are useful in optical limiting.” For
large inputs the ground siate can become depleted reducing the overall NLA.

1.04 - 1.20 -

Normalized Transmittance

Z (mm) Z (mm)

Figure 21. Z-scans performed on a sample of CAP at 532 nm. The lefi shows open aperture Z-scans for
pulsewidths of 29 ps (squares) and 61 ps (triangles) and the right shows closed aperture Z-scans (after
absorption is divided out) for the same pulsewidths. Adapted from Ref, 38.

Associated with ESA is ESR as given by the second term in Eq. 41, which is simply
due to the redistribution of population from ground to excited state. This is analogous to
the index change in a laser from gain saturation which leads to frequency pulling of the
cavity modes.? Ground state absorbers are being removed and excited state absorbers are
being added. Depending on the spectral position of the input with respect to the peak linear
and peak excited-state absorption, the NLR can be of either sign. For reverse saturable
absorbing materials the NLR is most likely controlled by the addition of excited-state
absorbers, and their spectrum since the cross section is larger. Thus N is determined by Eq.
42. Figure 21 also shows the NLR in CAP for two different pulsewidths demonstrating that
it is also fluence dependent and, thus, dependent on real state populations.

TWO-BEAM INTERACTIONS

Here we give examples of “nondegenerate” nonlinearities, where here the breaking
of degeneracy is not just frequency, but propagation direction, e.g. 2-beam coupling. There
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are many phenomena that can occur when two beams are coincident in space and time on a
nonlinear sample. Among these are cross-phase modulation where a pump beam modulates
the phase of s probe through the optical Kerr effect, 2PA induced on the probe, excited
species created by the pump affecting the probe or temperature changes induced by the
pump changing the index seen by the probe. In these cases, if the probing beam, p, is much
weaker than the pump (exciting beam ¢, the changes in the weak probe beam can be twice
as large as the changes in the strong beam (the strong beam is unaffécted by the wesk
probe). This factor of two comes from the cross term or grating term in the nonlinear
interaction and is sometimes referred to as weak-wave retardation.” From Eg. 4 with two
input fields E,(1,z)expli(k, -7 — o) and E o (1, z?exp[;(% P —wi)and keeping only the
third-order self-action term {(ignoring their vector nature other than keeping track of the
wave-vector dependence) gives;
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We plug this equation into the reduced wave equation given in the slowly varying amplitude
and phase approximation by Eq. 6. Looking just at the terms with k vectors in the pump

explik , - F), and probe, exp(ik, - F), directions separately, we have;
p
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where it has been assumed that E,<<E,.. This explicitly shows the factor of two difference
in the nonhneanty seen by the pump and by the weak probe, The [E[* acts like an irradiance
or time averaging of the field squared. This averaging can have important consequences if
the nonlinearity has a finite response time compared to the pulsewidth. For example, let’s
assume that the pump pulse creates excited states that change the index of refraction (or
absorption) as seen by the probe pulse. We then write the slowly varying nonlinear
polarization at o for the two beams separately by observing their separate k dependence as;
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where 1, is the excited-state lifetime and 16 is the grating lifetime, both assumed here to
have exponential decays. The quotation marks are placed around x™ since this is really
describing a x™ 3 effect. The second term in P, is called the grating term because it
arises from the pump scattering off the material grating induced in the sample by the
interference of the pump and probe beams. The grating decay is in general shorter than the
excited-state decay since it includes the latter but also decays via diffusion which smoothes
the grating in time. Note that if the pulsewidth is long compared to the grating decay time
but short compared to the excited-state lifetime, the grating term will not contribute
significantly to the nonlinearity and the pump and probe will see the ‘same nonlinear
response, both seeing only the direct effect of the pump.
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Figure 22, Vidicon images of the spatial irradiance distribution of an originally Gaussian spatial profile
beam after traversing a Si sample and propagating to the far field A) probe without pump, B) probe with
pump C) pump beam. From Ref, 12,

Such a grating can or cannot cause energy to be transferred between the two beams
(2-beam energy transfer- or 2-beam coupling) depending on the relative phase of the grating
produced with respect to the irradiance modulation. We’ll get back to this point later. A
very graphic example of this weak-wave retardation can be seen by looking at the self-
defocusing produced in silicon by the generation of free-carriers by linear absorption."
Once carriers are generated (excited) the index of refraction is lowered (band-blocking).
This appears as a third-order nonlinearity (xV:x"" rather than %®). Figure 22 shows the
transmitted 1.06 pm beam profiles in the far field after propagating through 270 pm of
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silicon. Silicon is an indirect gap semiconductor and 1.06 um falls below the direct gap but
above the indirect gap so that the transmittance for this sample length is =25% including
Fresnel reflection losses. The 65 ps (FWHM) pulses are short compared to carrier lifetimes
and diffusion times assuring that the nonlinearity including the grating did not decay within
the pulsewidih so that the nonlinearity accumulates throughout the puise without decay. As
shown in the figure, the weak probe beam undergoes more self-defocusing (more phase
distortion) than the excitation beam (=2x). By temporally delaying the probe with respect
to the pump we can see how this nonlinearity builds up from carriers excited by the pump
with time as shown in Fig. 23. The scattering of light off the grating is graphically shown
by moving the vidicon to the near field as seen in Fig. 24 where both beams can be
simultaneously observed. Here the pump and probe pulse have equal energy to show the
extra scattered beams on either side of the pump and probe. The beams diffracted in the
outer directions are the other order beams (i.e. there is a +1 and -1 order diffraction) in the
thin grating region. This thin grating or Raman-Nath limit is appropriate in this experiment
where the sample is thin and the angle between beams is small =1.2°. The exira beam (when
the probe is small) is often called the forward scattered conjugate beam. In the case of
silicon, where the primary nonlinear interaction is the index change due to the creation of
free carriers (the excited states), there is not a direct transfer of energy from the pump to
the probe since the phase of the scattered light is /2 out of phase, i.e. an index effect. This
/2 phase shift is seen as the 7 in the field change, 2/, equations, e.g. see Eq. 46. It
indicates that the phase of £ is normally changed by Re{y}. A shift in the phase of the
grating can lead to amplitude changes in the probe from Re{y}. There is, however, energy
transferred to the forward conjugate beams since in these directions there is no light to

“interfere” with, We discuss energy transfer or 2-beam coupling more in what follows.
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Figure 23. The spatial profile of the probe beam of Fig. 22B as a function of the time delay between the
pump and probe.

In order to have energy transferred, the phase term in the JE/& equation given by
i=exp(in/2) must be altered. Clearly, if ¥ is complex, loss or gain of the field amplitude
becomes possible, but this can be caused by material absorption (or gain) and not actual
transfer of energy from the pump beam. In what follows we assume a purely refractive
nonlinearity so that energy conservation in the light beams can be invoked. The question of
whether or not energy is transferred between beams due to the grating produced by the
interference between two beams is illustrated in Fig. 25. This figure is meant to give a
physical picture of why the grating results in no net energy transfer if the phase of the
grating is unshifted with respect to the irradiance modulation. The arrows point in the
direction normal to the phase front (i.e. rays) and their size indicates the irradiance - for
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equal input beams there is an equal irradiance in the direction of either beam, no net energy
transfer. For unequal inputs, a little more thought shows that the initial imbalance is
maintained. On the other hand, Figure 25 shows that & /2 phase shift between the incident
irradiance modulation and the material grating results in & net transfer of energy from one
beam to the other (the direction depending on the sign of the phase shift), Deviation from a
/2 phase shift reduces the magnitude of the effect. The question remains of how to
produce this phase shift,
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Figure 24, The spatial profiles of equal energy “pump” and “probe” beams in the near field along with
extra scattered beams at high irradiance as a function of the time delay between equal energy pump and
probe beams (inset shows the pump and probe at Iow irradiance),
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Figure 25. An illustration of the physical reason for needing a n/2 phase shifi between the interference
pattern and the material refractive grating in order to have energy transfer,
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The photorefractive effect, utilizing charge migration and the electro-optic effect, is
the usual example of how this phase shift is obtained.” In pulsed experiments the transient
energy transfer that occurs from absorptive gratings leads to what are commonly referred to
as coherent artifacts.**> A phase shift is guaranteed for absorption gratings in the transient
regime.******* These coherent artifacts occur near zero temporal delay between the pulses
(within the temporal coherence time) and transfer of energy from the stronger to the weaker
beam. However, for purely refractive gratings, no energy transfer occurs even in the
transient regime. In the example of silicon shown in Figs. 22-24 the nonlinearity was
dominated by the refractive grating from the free-carriers. If, on the other hand, there is 2
frequency difference between the pump and probe, and the material response is non-
instantaneous, & phase lag can occur between the refractive index grating and the moving
irradiance interference pattern leading to energy transfer or 2-beam coupling. We give the
following as an example of how the grating term can lead to energy transfer between beams
for a purely refractive nonlinearity.

Purely Refractive 2-Beam, Transient Energy Transfer

Here the non-instantaneous nonlinearity is the optical Kerr effect due to
reorientation of the cigar-shaped CS; molecules. The phase shift is produced by the phase
lag of the material grating with respect to a moving interference pattern. The interference
pattern is made to move by interfering two slightly different frequency beams. This results
in transient energy transfer or two-beam coupling in CS; or other transparent Kerr liquids.
The frequency difference results form using an initially chirped pulse which is split into

"pump and probe. The frequency difference then depends on the relative time delay between

the two beams. Energy can be transferred from either beam to the other depending only on
the relative delay (this changes the sign of the phase lag) with no transfer at zero time delay
since then the grating is stationary (no frequency difference). Of course this scattering only
occurs within the coherence time of the pulse (here picoseconds) where an interference
grating is produced. Figure 26 shows the energy transfer as a function of time delay. This
particular type of scattering is referred to as stimulated Rayleigh-wing scattering (SRWS),
RWS is caused by thermal fluctuations of the macroscopic polarization due to fluctuations
of the orientation of the individual dipoles. For these pulses the frequency increases with
time in the pulse (i.e positive chirp). Thus, the first pulse always loses energy while the
second pulse gains this energy.
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Figure 26. Energy transfer into and out of the probe beam as a function of time delay with respect to the
pump beam (dashed line, theory for linear chirp - solid line, theory for actual chirp).
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The only parameters needed for the theoretical fittings are the nonlinear index m;, its
relaxation time, 7, and the linear chirp of the laser pulse. The first two are well known for
CS2 and the laser chirp can be independently measured using first and second order
autocorrelation measurements. The chirp parameter, C, gives a measure of how rapidly the
frequency changes per unit time within the pulse, Assuming a linear chirp the electric field
is given by;

25“??A

2
o P i ¢ L
EF,0=E, %xgg}(é:ar wezﬁ)léﬁzp mwf{m} (1+iC)|, (48)
where C is the linear chirp coefficient, and the coherence time is determined from
igmi@ihcz? where 7 is the pulsewidth (HW1/eM). In this case we find the frequency
difference, €2, between the two beams is linear in the time delay between pulses 7, ie.
O=Cv/z’. Thisleadstoa simple expression for the signal, §:
AD ~1/%ele z
S(y=14— 2 lln__ ~1UeI5y)

(49)
V2 3+(f!iﬁ)2

E

where fn=1,"/C 7w, and 7., is the reorientation relaxation time. Even simpler, if the above
expression is differentiated to find the peak and valley, the total change in transmittance
between peak and valley, AT, (not related to a Z-scan) is

AT =22 exp(wﬁl;?;)ég&f!ﬁ- , (50)
T
4

where here A®g=kn;l .. Figure 26 shows Eq. 49 fit to the signal obtained for CS,.

Given the nonlinear refractive index, irradiance and chirp, the lifetime can be
determined from this measurement. An interesting feature of the Eqs. 49 and 50 and the
experiment on CS, is that lifetimes considerably shorter than the pulsewidth can be
determined. In the case of CS,, 24 ps (FWHM) pulses were used to measure a lifetime 10
times shorter, and the only limitation is how small a total change in transmittance can be
measured. With high repetition rate femtosecond lasers using high frequency modulation
methods ATy of 107 can be detected. With 100 fs pulses and 1, values typical of
transparent dielectrics, this should allow measurements of lifetimes of the order of 0.1 fs,
This is of the estimated order of bound-electronic nonlinearities for these materials (so-
called instantaneous nonlinearities). *’

ALL OPTICAL SWITCHING

An important application of the nonlinearities discussed in this chapter is switching
use all-optical means (i.c. all-optical switching, AOS). The theory of n; and B allows direct
determination of the ideal operating point of a passive optical switch. Optical switch
designers have established a figure-of-merit (FOM) for candidate materials, defined by the
ratio kony/B.* The goal of maximizing the FOM clearly shows the need for a large
nonlinear phase shift (nny/A) while keeping the 2PA loss (8) small. Using Eqgs. 33 for § and
36 for ny, along with Eq. 37 relating the dispersion function G to F for 2PA, the FOM can
be determined as shown in Fig. 27. Here the absolute value of the FOM is shown as the
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solid line. Figure 27 also compares experimental data for seversl semiconductors to this
theory. Note that the data here is the ratio of two experimental values,  and n, for each
material. The remarkable agreement between theory and experiment indicates that this
quantity is indeed a fundamental property of semiconductors, depending only on the
pormalized optical frequency (An/Ey).

The two horizontal lines in Fig. 27 represent the minimum acceptable FOM for
nonlinear directional couplers (NLDC) and Fabry-Perot (FP) interferometers. Although it
demands a larger FOM, the NLDC scheme is the preferred practical geometry. From Fig.
27 we see that the FOM requirement is satisfied either just below the 2PA edge or very near
resonance (Ao =~ Eg) . Since ny o< E,*, & low switching threshold at a given wavelength
demands a material with the smallest possible bandgap energy. The theory then suggests
that the ideal operating region is just below the bandgap. However, linear loss due to band-
tail absorption makes this scheme unworkable at present. Operation near to but above the
half bandgap where there is a small “resonance” in n, requires increased irradiance due to
the reduced absolute magnitude of n, resulting in detrimental 2PA as discussed above. On
the other hand, operation just below the E,/2 eliminates 2PA with only a small reduction in
iz, It has recenily been suggested that by using semiconductor laser amplifiers (SLA),
parasitic linear loss can be mitigated, making near-gap operation a practical possibility,
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Fig. 27. All-optical switching figure of merit for passive optical switches. Adapted from Ref. 7,

OPICAL LIMITING

Another application of the nonlinearities discussed above is for sensor protection
against laser pulses. Devices for this purpose are called optical limiters. The ideal optical
limiter has the characteristics shown in Fig. 28. It has a high linear transmission for low
input (e.g. energy E or power P), a variable limiting input E or P, and a large dynamic range
defined as the ratio of the E or P at which the device damages (irreversibly) to the limiting
input. Such devices can also be used as power or energy regulators. However, since the
primary application of the optical limiter is for sensor protection, and damage to detectors is
almost always determined by fluence or irradiance, these are usually the quantities of
interest for the output of the limiter. Getting the response of Fig. 28 turns out to be possible
using a wide variety of materials; however, it is very difficult to get the limiting threshold as
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Figure 28, The ideal optical limiter input-output response characteristics,

low as is often required and at the same time have a large dynamic range. Because high
transmission for low inputs is desired, we must have low linear absorption. These criteria
lead to the use of two-photon absorption (2PA) and nonlinear refraction. Such devices
work well for picosecond inputs. For example, 8 monolithic ZnSe device limits at inputs as
low as 10 nJ (300 W), and has a dynamic range greater than 10* for 0.53 pum, 30 ps
(FWHM) pulses.*® The liming effect from such & device is & combination of nonlinear loss
from 2PA and free-carrier absorption and defocusing of the beam, which reduces the
transmitted fluence, from free-carrier refraction. The lensing from n, is usually a smaller
effect except when quite short pulses are used. Unfortunately, except in the IR, 2PA
coefficients of inorganic solids are too small for most of these applications which look to
protect against nanosecond sources. Organic materials have the potential for larger
nonlinearities and are being actively investigated. In addition, if small linear absorption can
be tolerated, reverse saturable absorbers can be effective.’! Here the transmitted fluence is
reduced so that the energy of a long pulse is limited as well as a short pulse as long as the
pulsewidth is less than excited-state decay times.

CONCLUSION

It should now be clear that the interpretation of NLA and NLR measurements is
fraught with many pitfalls. Great care must be taken. In extensive studies of a wide variety
of materials it is found that there is seldom a single nonlinear process occurring. Often
several processes occur simultaneously, sometimes in unison, sometimes competing. For
example we have given the example of potential confusion between “instantaneous” two-
photon absorption and excited-state absorption. Such processes as reorientational,
electrostrictive, thermal, saturation and excited-state nonlinearities can be thought of as two
step processes, or cascaded x:x® nonlinearities. For example, for excited-state
absorption, light first induces a transition creating an excited state (an Im{x™} process) and

then the excite state absorbs (a second Im{x™} process), ie., two linear absorption
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processes. For these types of slow cumulative nonlinearities, the irradiance (or field) may no
longer be the important input parameter. It makes sense to describe the ultrafast process of
2PA by x® or B (sometimes o, is also used in analogy to ny) and the cumulative process of
ESA or ESR by an absorptive or refractive cross section. Fourier transformation of the
response function {see Eq. 1) results in the usually quoted frequency dependent
susceptibility ¥™(©1,05,...,0,). Memory, which was previously explicitly included in the
response function, is lost in the dispersion. Thus, irradiance, I, and fluence, F, dependencies
are treated equally. This can lead to confusion as the two processes (ulirafast and
curnulative) are indistinguishable for pulses long compared to relevant relaxation processes.
The usual expansion in terms of susceptibilities is useful for fast nonlinear responses but is
often not the most convenient description and has been overused. Recently, siudies of so-
called 1%y cascading of second-order nonlinearitites have shown they can also mimic third-
order responses of both P and n,.”? It is necessary to experimentally distinguish and separaie
these various processes in order to understand and model the interactions, There are &
variety of methods and techniques for determining the nonlinear optical response, each with
its own weaknesses and advaniages. In general, it is advisable to use ag many
complementary techniques as possible over a broad spectral range in order to
unambiguously determine the active nonlinearitics. Numerous techniques are known for
measurements of NLR and NLA in condensed matter. Nonlinear interferometry, degenerate
four-wave mixing (DFWM), nearly-degeneraie three-wave mixing, ellipse rotation, beam
distortion, beam deflection, and third-harmonic generation, are among the technigues
frequently reported for direct or indirect determination of NLR. Z-scan is capable of
separately measuring NLA and NLR. Other techniques for measuring NLA include
transmittance, calorimetry, photoacoustic, and pump-probe methods.
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