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Abstract 

 
We review Z-scan and related techniques for the measurement of the nonlinear optical 
properties of materials.  The Z-scan is a simple technique for measuring the change in 
phase induced on a laser beam upon propagation through a nonlinear material.  It gives 
both the sign and magnitude of this phase change, ∆Φ, which is simply related to the 
change in index of refraction, ∆n.  Additionally, a Z-scan can also separately determine 
the change in transmission caused by nonlinear absorption that is related to the change in 
the absorption coefficient, ∆α.  Importantly, the determination of the nonlinear refraction 
from ∆n is independent of the determination of the nonlinear absorption from ∆α, within 
a quite broad range of these parameters.  Thus, for third-order nonlinear responses the 
real and imaginary parts of the third-order nonlinear susceptibility, χ(3), can be measured.  
However, Z-scan is sensitive to any nonlinear processes which result in ∆α or ∆n, so that 
great care must be taken in interpreting data taken with this or any other nonlinear 
materials characterization technique. 
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I. Introduction 
A variety of experimental techniques have been developed for measuring the nonlinear 
optical properties of materials.  Since the nonlinear response can change drastically from 
one material to another, it is usually difficult to have one measurement that can 
unambiguously determine the dominant nonlinearity. Indeed there may be more than one 
strong nonlinearity present at a time. In general many different types of measurement 
techniques are useful, and often necessary, to unravel the nonlinearities present in a 
material and determine their origins. The Z-scan technique is a method which can rapidly 
measure both nonlinear absorption (NLA) and nonlinear refraction (NLR) in solids, 
liquids and liquid solutions.1,2 The information obtained form Z-scan measurements is 



complementary to that obtained from other techniques, and this information should be 
analyzed in conjunction with other data whenever possible. In this paper we review only 
the Z-scan technique and its various closely related derivatives.  Simple methods for data 
analysis are then discussed for “thin” and “thick”3,4,5,6 nonlinear media Z-scans, eclipsing 
Z-scan (EZ-scan)7, two-color Z-scans 8,9, time-resolved pump-probe Z-scans 10,11, and 
top-hat-beam Z-scans 12. 

Z-scan is a relatively simple method to separately measure the sign and magnitude of both 
NLR and NLA.  It has gained rapid acceptance by the nonlinear optics community as a 
standard technique. In most experiments the index change, ∆n, and absorption change, 
∆α, can be determined directly from the data without resorting to computer fitting. 
However, it must always be recognized that this method is sensitive to all nonlinear 
optical mechanisms that give rise to a change of the refractive index and/or absorption 
coefficient, so that determining the underlying physical processes present from a Z-scan is 
not in general possible. A series of Z-scans at varying pulsewidths, frequencies, focal 
geometries etc. along with a variety of other experiments are often needed to 
unambiguously determine the relevant mechanisms. In this regard, we caution the reader 
that the conclusions as to the active nonlinear processes of any given reference using the 
Z-scan technique is often subject to debate.  

2. Method and Simple Interpretation 
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Figure 1.  Example of a closed aperture Z-scan performed on a sample showing self-
focusing.  The solid lines indicate the ray propagation for linear optics while the dashed 
lines show the nonlinear propagation. The upper figure shows the sample positioned at 
Z<0 while the lower figure shows the sample at Z>0. 

The usual “closed aperture” Z-scan apparatus (i.e. aperture in place in the far field) for 
determining nonlinear refraction is shown in Fig. 1 (example shown is for a sample 
exhibiting self focusing). The transmittance of the sample through the aperture is 
monitored in the far field as a function of the position, Z, of the nonlinear sample in the 



vicinity of the  linear optics focal position. The required scan range in an experiment 
depends on the beam parameters and the sample thickness L.  An important parameter is 
the diffraction length, Z0, of the focused beam defined as πw0

2/λ for a Gaussian beam 
where w0 is the focal spot size (half-width at the 1/e2 maximum in the irradiance). A 
“thin” sample is defined as having a thickness L≤n0Z0 where n0 is the linear index (later 
we add and discuss a further restriction on this definition that is usually automatically 
satisfied for a Z-scan). Although all the information is theoretically contained within a 
scan range of ±Z0 , it is preferable to scan the sample for ≈±5Z0 or more to determine the 
linear transmittance. This requirement, as we shall see, simplifies data interpretation when 
the sample’s surface roughness or optical beam imperfections introduce background 
“noise” into the measurement system.  In many practical cases where considerable laser 
power fluctuations may occur during the scan, a reference detector can be used to monitor 
and normalize the transmittance (see Fig. 2). To eliminate the possible noise due to spatial 
beam fluctuations, this reference arm can be further modified to include a lens and an 
aperture identical to those in the nonlinear arm.9   The 
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Figure 2. The Z-scan apparatus used to reduce the noise by monitoring the ratio of 
detector outputs of signal to reference.  “Open aperture” Z-scans are obtained by 
removing the apertures (or disks for EZscan) shown in front of the signal and reference 
detectors and carefully collecting all of the transmitted light. 

position of the aperture is rather arbitrary as long as its distance from the focus, d>>Z0. 
Typical values range from 20Z0 to 100Z0.  The size of the aperture is signified by its 
transmittance, S,  in the linear regime, i.e. when the sample has been placed far away from 
the focus at low energy.   In most reported experiments,  0.1<S<0.5 has been used for 
determining nonlinear refraction.  Obviously, the S=1 case corresponds to collecting all 
the transmitted light and therefore is insensitive to any nonlinear beam distortion due to  



nonlinear refraction.  The experiment with S=1 is referred to as an “open aperture” Z-scan 
and allows direct measurement of nonlinear absorption (∆α) in the sample.  We first 
discuss measurement of ∆n. 
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Figure 3.  A typical Z-scan for positive (∆φ=0.5, solid line) and negative (∆φ=-0.5, 
dashed line) third-order nonlinear refraction using an aperture with S=0.5. 

A typical closed aperture Z-scan output for a thin sample exhibiting nonlinear refraction, 
is shown in Fig. 3. For example, a self-defocusing nonlinearity, ∆n<0 (dashed line in Fig. 
3), results in a peak followed by a valley in the normalized transmittance as the sample is 
moved away from the lens in Fig. 1 (increasing Z). The normalization is performed in 
such a way that the transmittance is unity for the sample far from focus where the 
nonlinearity is negligible (i.e. for |Z|>>Z0 ). The negative lensing in the sample placed 
before the focus moves the focal position further from the sample resulting in a smaller 
far field divergence and an increased aperture transmittance. On the other hand, with the 
sample placed after focus, the same negative lensing enhances the diffraction (increases 
the far field divergence) resulting in a reduced aperture transmittance. The opposite 
occurs for a self-focusing nonlinearity, ∆n>0 (solid line in Fig. 3).  

A very useful feature of the Z-scan technique is the ease by which the NLA and NLR can 
be separately determined and absolutely calibrated.  The errors are primarily limited by 
errors in the determination of the irradiance, fluence and/or energy. However, as is the 
case with most nonlinear optical measurement techniques, the measured quantities are the 
nonlinearly induced <∆n> and/or <∆α>, where < > denotes a time-average over the time 
corresponding to the temporal resolution of the detection system.  Accurate determination 
of nonlinear coefficients such as n2 or β is model dependent and can be influenced by 
competing nonlinearities. 



Given a specific nonlinearity (e.g. an ultrafast χ(3) response), a Z-scan can be rigorously 
modeled for any beam shape and sample thickness by solving the appropriate Maxwell’s 
equations. However, a number of valid assumptions and approximations will lead to 
simple analytical expressions, making data analysis easy yet precise.  Aside from the 
usual SVEA (slowly varying envelope approximation), a major simplification results 
when we assume the nonlinear sample is “thin” so that neither diffraction nor nonlinear 
refraction cause any change of beam profile within the nonlinear sample. This implies that 
L<<n0Z0 and L<<Z0/∆Φ0 respectively where ∆Φ0 is the maximum nonlinearly-induced 
phase distortion.  The latter requirement assures “external self-action” and simply states 
that the effective focal length of the induced nonlinear lens in the sample should be much 
larger than the sample thickness itself.13  In most experiments using the Z-scan technique 
we find that this second criterion is automatically met since ∆Φ0 is small.  In Section 4 we 
will analyze thick sample Z-scans (L>Z0) and show that for phase distortions that are 
small enough, simple expressions can still be derived for the Z-scan transmittance. 
Additionally we will show that for the sample to be safely regarded as “thin”, the first 
criterion for linear diffraction is more restrictive than it need be, and it is sufficient to 
replace it with L<n0Z0 . 

The external self action limit simplifies the problem considerably, and the amplitude √I 
and phase ∆φ of the electric field E are now governed in the SVEA by the following pair 
of simple equations: 
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where z’ is the propagation depth in the sample and α(I) in general includes linear and 
NLA terms. Note that z’ should not be confused with the sample position Z. 

For third-order nonlinearities we take, 
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and 

∆α β= I ,  (4) 
 

where n2 is the nonlinear index of refraction, E is the peak electric field (cgs), and I 
denotes the irradiance (MKS) of the laser beam within the sample.  Here β denotes the 
third-order nonlinear absorption coefficient, which for ultrafast NLA is equal to the two-
photon absorption (2PA) coefficient.  n2(esu) and n2(MKS) are related through the 
conversion formula, n2(esu)=(cn0/40π)n2(MKS), where c (m/sec) is the speed of light in 
vacuum  We note, however, that while we are using n2 here for any third-order 
nonlinearity, it may not be the best description of cumulative nonlinearities. These occur 
in, for example, reverse saturable absorbing (RSA) dyes.14  In such dyes linear absorption 
is followed by excited-state absorption (ESA) where the excited-state absorption cross 



section is larger than the ground-state cross section.  As the resulting change in absorption 
is best described by a cross section and not by a two-photon absorption coefficient, the 
index change, here due to population redistribution, is better described by refractive cross 
sections than by an n2.  Such an “n2” (or β) would change with the laser pulsewidth. 15,16  
This is discussed in more detail in Section 5. 

Once the amplitude and the phase of the beam exiting the sample are known, the field 
distribution at the far-field aperture can be calculated using diffraction theory (Huygen’s 
principle).  We will briefly review this procedure in Secion 3 for a Gaussian beam.  
Simple analytical or empirical relations as obtained from those rigorous treatments are 
presented in this section.  In most practical cases these relations present a convenient yet 
accurate method for estimating the nonlinear coefficients. In the remainder of this chapter  
n2 always refers to n2 (MKS). 

2.1 Nonlinear Refraction without Nonlinear Absorption 
We define the change in transmittance between the peak and valley in a Z-scan as ∆Tpv= 
Tp -Tv where Tp and Tv are the normalized peak and valley transmittances as seen in Fig. 
3.  The empirically determined relation between the induced phase distortion, ∆Φ0, and 
∆Tpv for a third-order nonlinear refractive process in the absence of  NLA is, 

∆ ∆ΦT Spv ≅ −0 406 1 0 27
0. ( ) ,.  (5) 

where 

∆Φ0 2 0
2

=
π
λ

n I Leff    (6) 

with, Leff=(1-e--αL)/α ,  and S is the transmittance of the aperture in the absence of a 
sample. ∆Φ0 and I0 are the on-axis (r=0), peak (t=0) nonlinear phase shift and the 
irradiance with the sample at focus (Z=0) respectively.  The sign of ∆Φ0 and hence n2 is 
determined from the relative positions of the peak and valley with Z as shown in Fig. 3. 
This relation is accurate to within ±3% for  ∆Tpv < 1. As an example, if the induced 
optical path length change due to the nonlinearity is λ/250, ∆Tpv ≈1% for an aperture 
transmittance of  S=0.4.  Use of S=0.4 is a good compromise between having a large 
signal which averages possible beam nonuniformities. 

The distance in Z between peak and valley, ∆Zpv, is a direct measure of the diffraction 
length of  the incident beam for a given order nonlinear response.  In an standard Z-scan 
(i.e. using a Gaussian beam and a far-field aperture), this relation for a third-order 
nonlinearity is given by: 

∆Z Zpv ≈ 17 0.   (7) 

This can be extremely useful since it gives the focal spot size of the beam for diffraction 
limited optics independent of the irradiance for small nonlinearities.  In principle the Z-
scan can be used to measure very small spot sizes by using very thin samples.  For small 
∆Φ0, peak and valley are equidistant (≈±0.856 Z0) from the focus (Z=0).  As ∆Φ0 



increases, the peak and valley positions do not remain symmetric; the valley moving 
toward focus and the peak away so that  ∆Zpv remains nearly constant as given above.  We 
must re-emphasize that the above relation is valid only for closed-aperture Z-scans 
involving an n2-type nonlinearity, a good quality Gaussian beam (M2≈1), and thin 
nonlinear samples.  Any departure from these conditions will give rise to a different 
characteristic ∆Zpv.  Later on, we will briefly discuss cases involving thick samples,  χ(5)-
type nonlinearities, eclipsing and top-hat-beam Z-scans. 

The linear relationship between ∆Tpv and ∆Φ0 makes it convenient to include a time 
averaging factor which is not included in Eqs. 5 and 6 for pulsed inputs.  Inclusion of this 
temporal averaging reduces the measured ∆Tpv by a factor, Aτ, which generally depends 
on the pulse shape and the response time of the nonlinearity.  For nonlinearities with 
response times much shorter than the pulsewidth (i.e. instantaneous nonlinearities), Aτ is 
given by: 2 

A
f t dt

f t dt
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( )
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where f(t) denotes the dimensionless temporal profile of the incident laser pulse.  For a 
Gaussian temporal shape, this gives Aτ=1/√2 while a Sech2 pulse gives Aτ=2/3. In the 
other extreme, where the time response of the nonlinearity is much larger then the 
pulsewidth, Aτ assumes a value of 1/2 for a third-order nonlinearity, independent of the 
pulse shape 2.  Of course, in this case, the interpretation of n2 changes.  For example, in 
the case of reverse-saturable absorbers and under the approximations discussed in Ref. 
16, n2I0 is replaced by σrF/2ω, where σr is the excited-state refractive cross section and F 
is the fluence.  Cases involving higher-order nonlinearities, and/or with response times 
that are comparable to the pulsewidth, require proper averaging of ∆Φ0(t) according to 
Eq. 8, and will not be discussed here. 

2.2 Higher Order Nonlinearities: 
Although many observed nonlinear optical effects give index changes proportional to the 
irradiance (∆n∝I), we often encounter higher order effects where ∆n∝Iη, with η>1.  For 
example, a fifth order NLR, (a χ(5)-type nonlinearity where η=2) becomes the dominant 
mechanism in semiconductors when ∆n is induced by two-photon generated free-carriers. 
17  For this type of nonlinearity, where ∆n=n4I2 is assumed, we can derive simple relations 
that accurately  characterize the Z-scan data.  For a Gaussian beam and far-field aperture, 
these are given by: 

∆ ∆ΦT Spv ≅ −0 21 1 0 27
0. ( ) ,.   (9) 

and 

∆Z Zpv ≈ 12 0. ,  (10) 



where  ∆Φ0=kn4I0
2L’eff  with  L’eff=[1-exp(-2αL)]/2α.   In certain cases where competing 

χ(3) and χ(5) processes are simultaneously involved, the data analysis becomes more 
complicated. In Ref. 17 a procedure is given for separating the two processes using a 
number of Z-scans at different irradiances.  This procedure makes use of simple relations 
of Eqs. 5 and 9 to estimate the nonlinear coefficients associated with both χ(3)  and χ(5) 
processes. 

2.3 Eclipsing Z-scan (EZ-Scan) 
As the Z-scan method relies on propagation of a phase distortion to produce a 
transmittance change, the minimum detectable signal is determined by how small a 
transmittance change can be measured. The surprising interferometric sensitivity comes 
about from the interference (diffraction) of different portions of the spatial profile in the 
far field. Recently, it was realized that this sensitivity could be greatly increased by 
looking at the outer edges of the beam in the far field rather than the central portion as in 
the Z-scan.  This is accomplished by replacing the apertures in Fig. 2 with disks that block 
the central part of the beam.  The light that leaks around the edges appears as an eclipse, 
thus the name EZ-scan for eclipsing Z-scan.7  An analogous empirical expression to Eq. 9 
for the EZ-scan is  

∆ ∆ΦT Spv ≅ − −0 68 1 0 44
0. ( ) ,.   (11) 

which is accurate to within ±3% for |∆Φ0|≤0.2 and a disk linear transmittance rejection S 
in the range 0.98>S>0.995, i.e. the fraction of light seen by the detector is 1-S. 
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Figure 4.  A comparison of EZ-scan data (S=0.98, solid line) and Z-scan data (S=0.02, 
dashed line) for a self-focusing nonlinearity with a phase shift of 0.1. 

Figure 4 shows a comparison of an EZ-scan with a Z-scan for a phase distortion of 0.1 
radian.  The relative positions of peak and valley switch from the Z-scan since light that is 
transmitted by an aperture is now blocked by the disk and vise versa.  Evident from the 



above relation, as S→1 (large disks), the sensitivity increases significantly.  Sensitivities 
to optical path length changes of ≅λ/104 have been demonstrated as compared to ≅λ/103 
for Z-scan.  For the range of S given above, the spacing between peak and valley, ∆Zpv, is 
empirically found to be given by  ∆Zpv ≈0.9-1.0Z0, which grows to the Z-scan value of 
≈1.7Z0 as S→ 0.   The enhancement of sensitivity in the EZ-scan , however, comes at the 
expense of signal photons as well as a reduction in accuracy and absolute calibration 
capability.  This added uncertainty originates from the deviations of the actual laser 
beams from a Gaussian distribution, and the fact that we need to know S very accurately. 
We, therefore, recommend using this technique only when the added sensitivity is 
required and with a known reference sample to calibrate the system. 

2.4 Nonlinear Absorption 
While NLA can be determined using a two parameter fit to a closed aperture Z-scan (i.e. 
fitting for both ∆n and ∆α), it is more directly (and more accurately) determined in an 
open aperture Z-scan. For small third-order nonlinear losses, i.e. ∆αL=βILeff<<1 with 
response times much less than the pulsewidth (e.g. two-photon absorption), and for a 
Gaussian temporal shape pulse, the normalized change in transmitted energy 
∆T(Z)=T(Z)-1, becomes  

∆Τ( )
[ / ]

z
q

Z Z
≈ −

+
0

2
0
22 2

1
1

 ,  (12) 

where q0 =βI0Leff  (|q0|<<1). This mimics the Lorentzian distribution of the irradiance with 
Z for a focused Gaussian beam as seen for the dashed line in Fig. 5.  If the response time 
of the material is much longer than the pulsewidth used, the factor 2√2 is replaced by 2. 
This is independent of the temporal pulse shape. Of course, in this case, the interpretation 
of β  changes.  For example, in the case of reverse-saturable absorbers and under the 
approximations discussed in Ref. 16, βI0 is replaced by σF/2ω, where σ is the excited-
state absorption cross section. 

2.5 Nonlinear Refraction in the Presence of Nonlinear Absorption 
We can also determine NLR in the presence of NLA.  As mentioned, this can be done by 
fitting the Z-scan with a two parameter fit or by separately measuring the NLA in a Z-scan 
performed with the aperture removed (i.e. open aperture Zscan). This second method is 
more accurate since two single parameter fits give a higher accuracy than one two 
parameter fit.  Within approximations elaborated in Ref. 2 (primarily that the Z-scan is 
not dominated by nonlinear absorption) a simple division of the curves obtained from the 
two Z-scans (closed/open) gives a curve that closely approximates what would be 
obtained with a closed aperture Z-scan on a material having the same ∆n but with ∆α=0. 
This greatly simplifies determining ∆n. An example of this division process is shown in 
Fig. 5.  In lieu of this division, with ∆α known from the open aperture results, the Z-scan 
with aperture in place (S<1) can be used to extract the remaining unknown, namely ∆n by 
a direct fitting as described later.17 
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Figure 5.  Calculations of closed (solid line, S=0.5) and open (dashed line) aperture Z-
scan data along with their ratio (dotted line) for self-defocusing (∆Φ0=-0.5) 
accompanied by nonlinear absorption (q0=0.4).   The Lorentzian shaped curve (dashed 
line) is the result of an open aperture Z-scan. 

2.6 Pump-Probe Z-scans 
Pump-probe techniques (also referred to as excite-probe techniques) in nonlinear optics 
have been commonly employed in the past to deduce information that is not accessible 
with a single beam geometry.  The most significant application of such  techniques 
concerns the ultrafast dynamics of the nonlinear optical phenomena.  There has been a 
number of investigations that have used Z-scan in an pump-probe scheme.8,9,10,11  The 
general geometry is  shown in Fig. 6 where collinearly propagating pump and probe 
beams are used.  After propagation through the sample, the probe beam is then separated 
and analyzed through the far-field aperture.  Due to collinear propagation of the pump 
and probe beams, we are able to separate them only if they differ in wavelength or 
polarization.  The former scheme, known as a 2-color Z-scan, has been used to measure 
the nondegenerate n2 and β in semiconductors.8,9  The time-resolved studies can be 
performed in two fashions. In one scheme,  Z-scans are performed at various fixed delays  
between pump and probe pulses.  In the second scheme, the sample position is fixed (e.g. 
at the peak or the valley positions) while the  transmittance of the probe is measured as 
the delay between the two pulses is varied. The analysis of the 2-color Z-scans is naturally 
more involved than that of a single beam Z-scan.  The measured signal, in addition to 
being dependent on the parameters discussed for the single beam geometry,  will also 
depend on parameters such as the pump-probe beam waist ratio, pulsewidth ratio and the 
possible focal separation due to chromatic aberration of the lens.8,10  
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Figure 6.  Pump-probe Z-scan apparatus.  The filter in front of the detector blocks the 
pump beam and transmits the probe beam. 

2.7  Non-Gaussian Beams 

While Gaussian beams are extremely convenient since their propagation is particularly 
simple (e.g. a Gaussian beam remains Gaussian throughout a linear optical system in the 
absence of aberrations), the output of many lasers do not posses a Gaussian profile in 
space. Zhao and Palffy-Muhoray12 derived the results of performing a Z-scan using a 
focused “top-hat” beam, where the profile at the initial focusing lens is approximately a 
step function (Heaviside function) in the radial coordinate r (i.e. Θ(r0-r) with r0 a 
constant).   In practice, one can produce this type of beam profile by sufficiently 
expanding any spatially coherent optical beam and then use a circular aperture at the 
focusing lens.  The lens focuses this beam to an Airy pattern in the absence of aberrations.  
The empirical expression relating ∆Tpv to ∆Φ0 and aperture transmittance S is given by: 12 

∆Τ ∆Φpv S≈ −2 8 1 0 371 14
0. ( ) tanh( . ).  ,  (13) 

where ∆Φ0 is the peak nonlinear phase shift at the center of the Airy disk at the focal 
plane.  For S≈0 and small ∆Φ0, the above expression gives ∆Tpv≈1.036∆Φ0, indicating 
approximately a 2.5 times larger sensitivity than for a Gaussian beam Z-scan. This 
enhanced sensitivity is due to the steeper beam curvature gradients encountered by the 
nonlinear sample at Z positions near the focal plane.  
 
It is also possible to use a sample of known nonlinearity as a reference to calibrate a 
system using a beam of arbitrary profile.  Reference18 shows a way to use a reference 
sample to obtain the relative NLA and NLR without regard to the laser beam 
characteristics.  This also allows violation of  the thin sample approximation as long as 
the reference sample has the same thickness as the sample under measurement, and the 
irradiance is adjusted such that the ∆Tpv’s in both measurements are nearly equal.  More 
generally, Z-scans using reference sample calibration are useful provided that the orders 



of both nonlinearities are the same (e.g. both are χ(3) type) and conditions and parameters 
of  both experiments are kept nearly the same. 
 

2.8 Background Subtraction 
In all the possible situations discussed above, it is often beneficial to perform experiments 
at high and low irradiance levels (low enough that the nonlinear response is negligible) 
and subtract the two sets of data.2 This greatly reduces background signals due, for 
example, to sample inhomogeneities or sample wedge.  A necessary condition for this 
background subtraction process to be effective is that the sample position be reproducible 
for both high and low irradiance scans (i.e. laterally, vertically and along Z).  It is also 
important that the data sets be normalized  before subtraction such that T(|Z|>>Z0) are 
made equal for high and low irradiance Z-scans.   Experience shows that even when the 
signal is indistinguishable within a background that this subtraction can often uncover a 
usable signal.2 

3. Thin Nonlinear Medium Analysis 
While the above analysis gives the dependence of NLA on the sample position Z, the 
analysis for NLR was restricted to ∆Tpv. The Z dependence for NLR can be obtained by 
straightforward numerical techniques as outlined below. 2 We find it useful to fit the full Z 
dependence of the Z-scan signals since there is information regarding the order of the 
nonlinearity in this Z dependence as discussed in Section 1. 

The irradiance distribution and phase shift of the beam at the exit surface  of a sample 
exhibiting a third-order nonlinear refractive index are obtained by simultaneously solving 
Eqs. 1 and 2: 
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q Z r t= +2 1     (15) 

where q(Z,r,t)=βI(Z,r,t)Leff.   Combining Eqs. 14 and 15 we obtain the complex field at 
the exit surface of the sample to be2,4  

E E Z r t e qe
L ikn= +− −( , , ) ( )/ ( / / )α β2 1 21 2     , (16) 

where E(Z,r,t) is the incident electric field.  The reflection losses can be safely assumed to 
be linear and hence will be ignored in this formalism.  In evaluating the nonlinear 
coefficients, however, one should account for reflection loss of the first surface by  taking 
the irradiance (i.e. I0) to be that inside the sample.  

In general for radially symmetric systems, a zeroth order Hankel transform of Eq. 16 will 
give the field distribution Ea at the aperture which is placed a distance d from the focal 
plane: 
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where d’=d-Z is the distance from the sample to the aperture plane.   The measured 
quantity is the pulse energy or average power transmitted through the far-field aperture 
having a radius of ra.  The normalized transmittance is then obtained as:  

T Z
dt E Z r t d rdr

U
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( )
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= −∞

∞
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2

 (18), 

where U is the same as the numerator but in the linear regime (i.e. for I≈0 ). In the case of 
an EZ-scan, the limits of the spatial integral in Eq. 18  must be replaced by rd to ∞ where 
rd is the radius of the obscuration disk.  It is generally more convenient to represent the 
aperture (or disk)  size by the normalized transmittance (or rejection)  S in the linear 
regime. 

The formalism thus far presented  is generally applicable to any radially symmetric beam.  
Here, however,  we assume  a TEM0,0 Gaussian distribution for the incident beam as 
given by: 
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where w(Z)=w0(1+Z2/Z0
2)1/2  and  R(Z)= Z+Z0

2/Z.  The radially invariant phase terms, 
contained in φ, are immaterial to our calculations and hence will be ignored.    

The integral in Eq. 17 can be analytically evaluated if we assume that |q|<1 (in Eq. 16) 
and then perform a binomial series expansion of  Ee in powers of q.  Recalling that 
q∝I∝exp(-r2/w2), this expansion effectively decomposes Ee into a sum of Gaussian beams 
with varying beam parameters.  This method of beam propagation known as Gaussian 
decomposition was first given by Wearie et. al.19  Following the expansion, we obtain: 
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where the Fm , the factor containing the nonlinear optical coefficients, is given by:    

F i Z t
m

i j
nm

m

j

m

= + −















=
∏( ( , ))

!
,∆φ λβ

π
0

21
1 1

2 2
(21) 

with F0=1 and ∆φ0(Z,t)=∆φ(Z,r=0, t) denoting the on-axis instantaneous nonlinear phase 
shift .  The Hankel transform of Ee will then give the field at the aperture plane as a sum 
of Gaussian beams: 
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where the beam parameters of each Gaussian beam are as follows:  
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Finally, the normalized transmittance can then be evaluated  as given by Eq. 18. We 
should note here that with an incident Gaussian beam, the aperture transmittance can be 
given as S=1-exp(-2ra

2/wa
2) where wa=w0(1+d2/Z0

2)1/2 is the linear beam radius at the 
aperture.    

It is worthwhile to analyze the implications of the above results under a number of further 
approximations.   In the absence of nonlinear absorption (i.e. β=0), 
F i Z t mm

m= ( ( , )) / !∆φ0  and  the far-field beam deformation will be as a result of 
external self-action (self-focusing and self-defocusing).  In that case we can write ∆φ0 as: 
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where ∆Φ0=∆φ0(0,0) is the peak-on-axis nonlinear phase shift, and f(t) represents the 
irradiance temporal profile of the incident pulse.  We find that this Gaussian 
decomposition method is useful for the small phase distortions detected with the Z-scan 
(or EZ-scan) method since only a few terms of the sum in Eq. 22 are needed.  Figure 3 
depicts calculated Z-scans for ∆Φ0=±0.5 using the above formalism..  The simple  
relations  (Eq. 9 and 11) given earlier were obtained by empirically fitting the calculated 
results using the equations derived in this section.  As was shown in Ref. 2, such 
empirical relations are exact in the limit of small ∆Φ0 where only one nonlinear term in 
the expansion (Eq. 22) is retained. 

With NLA present (i.e. β≠0), although no restriction is imposed on the magnitude of ∆Φ0, 
the above formalism is valid only for q0=|βI0Leff|<1.   Note that the coupling factor 
λβ/2πn2 = q0/∆Φ0 in Eq. 21 is twice the ratio of the imaginary to real parts of the third-
order nonlinear susceptibility, χ(3) (i.e. q0/2∆Φ0 = Im{χ3}/Re{χ3}).  The 2PA figure-of-
merit (FOM) for all-optical switching has been defined as 4π times this value.20  Since the 
irradiance and effective length cancel in this ratio, this FOM can be deduced for third-
order nonlinearities without knowledge of the irradiance or sample length as long as the 
thin sample approximation is valid. 

The Z-scan transmittance variations can be calculated following the same procedure as 
described  previously.  As is evident from Eqs. 21-22, the absorptive and refractive 
contributions to the far field beam profile and hence to the Z-scan transmittance are 
coupled.  When the aperture is removed, however, the Z-scan transmittance is insensitive 



to beam distortion and is only a function of the nonlinear absorption.  The total 
transmitted fluence (i.e. energy per unit area) in that case (S=1) can be obtained by 
spatially integrating Eq. 14 without having to include the free space propagation process.  
The resultant normalized transmittance for a pulse with a temporal profile f(t) can then be 
derived as: 2  
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For |q0 |<1, this transmittance can be expressed in terms of the peak irradiance in a 
summation form more suitable for numerical evaluation.  Assuming a Gaussian temporal 
profile (i.e.  f(τ)=exp(-τ2)) this can be written as : 
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Thus, once an open aperture (S=1) Z-scan is performed, β can be unambiguously 
deduced.  With β known, the Zscan with aperture in place (S<1) can be used to extract 
the remaining unknown, namely the coefficient n2.  Note that ∆T, as given by Eq. 12 in 
Section 2, is simply the m=1 term in Eq. 26. 

4.    “Thick” samples  
It is apparent from relations derived so far, that a way to obtain larger Z-scan signals 
(∆Tpv) is to  increase ∆Φ0 through either stronger focusing  (shorter Z0) or  thicker 
samples (larger L) .  In either case, we recall that the validity of these relations becomes 
questionable once the thin sample criterion (L<<n0Z0) is violated.  In this section we 
address this problem and analyze a general case in which  no limitation is imposed on  the 
sample length.  The rigorous treatment of this problem involves numerical solutions to 
nonlinear wave equations and will not be discussed here.6  In addition to numerical 
calculations, two types of approximate solutions, resulting in simple relations, have been 
reported.  One involves an “aberration-free” approximation of the nonlinear wave 
equation,3,21  and the other treats the wave propagation exactly to first order in the 
nonlinear phase shift (∆φ).4,5  The latter approach requires that ∆φ is small enough  that no 
nonlinear beam distortion (self-action) occurs within the sample although linear 
diffraction does occur.  This condition is controllable and can be satisfied in an 
experiment.  In fact, often being faced with this limitation  (low ∆n), is the very reason 
that one resorts to thick sample conditions.  

Following Hermann and McDuff4, and Tian et al.5, the on-axis (S≈0) Z-scan transmittance 
of a thick nonlinear sample can be written as: 

T x F x lz( ) ( , ),≈ +1
0

∆Φ    (27) 

where ∆Φz0 =(2π/λ)n2I0Z0 is the nonlinear phase shift occurring within one Z0, x=Z/Z0, 
and l=L/(n0Z0) is the normalized length of the sample.   F(x,l) is given by,4 
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Plots of F(x,l)are shown in Fig. 7 for l=1,2,5,8 and 10.  The analysis here is strictly 
correct for n0=1, but does not account for the longitudinal shift of the linear focus for 
n0>1.  Since no useful information (regarding the nonlinear optical measurement) exists in 
the absolute position of the transmittance peak and valley,  this analysis is sufficient and 
simple.  The position of peak and valley are obtained by evaluating dF/dx=0, which 
gives: 
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The peak-valley separation, therefore, is given by ∆Zpv=2|Xp,v|Z0.   As evident from Fig. 8 
which shows Leff/(n0Z0) as a function of L/(n0Z0), this separation approaches L/n0 for 
L>>n0Z0 .3  All the above relations reduce to that derived for a thin sample when we let l-
→0.  Moreover, as one would expect, it is seen in Fig. 8 that by increasing the sample 
thickness above ≈2n0Z0, the signal (∆Tpv) gradually levels off and ultimately becomes a 
constant.   A useful quantity that illustrates this effect, is the effective length of a thick 

-15 -10 -5 0 5 10 15
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

L/n0Z0=1,2,5,10,15

F

Z/n0Z0

Figure 7.  Normalized change in transmittance, F (see Eq. 28) for thick samples with 
L/n0Z0 =1,2,5,8,10 for ∆Φz0 =-0.01, as a function of Z/n0Z0. 



nonlinear medium defined as the length that can be attributed to the sample if it were to 
be regarded as thin in data analysis.  Once we identify  such an effective length, we can 
use the “thin” sample relation (Eq. 5) to quickly evaluate the n2 coefficient for third-order 
nonlinearities.  We, thus, define this length as leff = Leff/(n0Z0) = ∆Tpv(thick)/(0.406∆Φz0) 3 
which is evaluated from the above expressions as: 

l
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.
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This is plotted in Fig. 8  together with a simpler empirical fit given by: 
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 Figure 8.  The effective sample length, leff  (Leff, in units of n0Z0), as a function of 
l=L/n0Z0 (solid line) and empirical fit to this line (dotted line).  The dot-dashed line is a 
straight line of slope one.  

5. Interpretation 
There are many physical processes which can lead to third-order nonlinearities (i.e. 
effects proportional to the input irradiance, fluence or energy).  Ultrafast nonlinear 
absorption processes include multiphoton absorption22,23, stimulated Raman scattering24 



and AC-Stark effects.25,26  These lead via causality and Kramers-Kronig relations to the 
bound-electronic nonlinear refractive index, n2.25,26,27,28  Cumulative (i.e. slow) 
nonlinearities include population redistribution from linear absorption (this includes 
saturable and excited-state or reverse saturable absorption and their refractive 
counterparts), reorientation of anisotropic molecules such as in CS2, thermal refraction, 
electrostriction, etc.  The Z-scan is sensitive to all of these nonlinearities including higher-
order effects and cannot simply be used by itself to distinguish these nonlinear processes 
or separate fast from slow nonlinearities.  

A key to distinguishing these processes is to pay particular attention to the temporal 
response.   Ultrafast nonlinearities are easily analyzed as has been discussed.  The use of 
pulsewidths much shorter than the decay times of excited states allows such cumulative 
nonlinearities to be more easily analyzed.  As we shall show, in this regime, the excited-
state nonlinearities are fluence dependent, while the ultrafast effects remain irradiance 
dependent. The explicit temporal dependences of the nonlinearities can be obtained from, 
for example, degenerate four-wave mixing experiments 29 or time resolved Z-scan 
experiments which can separate ∆n(t) and ∆α(t) 10,11. 

These time-resolved experiments can, in principle, separate slow and fast nonlinear 
responses. In addition, nondegenerate nonlinearities can be determined from pump-
probe30, four-wave mixing29 , or 2-color Z-scan 8,9, etc. experiments.  These 
nondegenerate nonlinear responses are also useful in distinguishing various contributing 
nonlinear mechanisms. 

We illustrate the potential problems associated with interpreting nonlinear measurements 
with a single example of comparing excited-state absorption (reverse saturable 
absorption) and two-photon absorption signals. The equation describing 2PA in the 
presence of residual linear absorption is: 

dI
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I I
'
= − −α β 2 .   (32) 

Excited states created by linear absorption in molecules are characterized by a 
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we find the fluence F (energy per unit area) varies with z’ as 16  
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Notice that this equation is exactly analogous to the equation describing 2PA loss (Eq. 
32) with the fluence replacing the irradiance and ασ/2ω replacing β.  Therefore, since in 
most experiments the pulse energy is detected, excited-state absorption initiated by linear 
absorption and 2PA will give nearly identical results for loss as a function of input energy 
(microscopically ESA can be considered as the limit of 2PA with a resonant intermediate 
state).  The difference between Eqs. 32 and 33 when determining the transmitted energy is 
in the temporal integral over the pulse for 2PA.  For ESA this integral has already been 
performed.  In other words, in order to determine which of these nonlinearities is present, 
the temporal dependence must be measured in some way. An analogous problem exists 
with excited-state refraction and the bound electronic n2. Additionally, as seen in many 
semiconductors 17 and in some organic materials, 31,32  the excited states can be created by 



nonlinear absorption (e.g. 2PA) leading to fifth-order nonlinear absorption and refraction, 
further confusing interpretation.  

Equation 33 is only valid for low fluence where the changes in transmittance are small.  
For higher fluence, saturation of the ground state absorption process (or even the excited 
state absorption 33) can occur.   In such cases the best approach is to solve the system of 
rate equations to determine the level populations and then use these in the loss equation 
(Eq. 34) in terms of absorption cross sections, σij , or phase equation (Eq. 35) using 
refractive cross sections (σr)ij :   
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where ∆Nij is the population difference between two levels (Ni -Nj ) coupled by an 
absorption cross section σij .  The nonlinear refraction is due to the redistribution of level 
populations and the sign depends on the frequency position with respect to the resonance 
frequency as well as on whether the loss increases or saturates.  For many materials (e.g. 
organic reverse saturable absorbers) ∆Nij can be replaced by the population of the lower 
level Ni, since the upper level rapidly decays to an intermediate level (e.g. in the 
vibration/rotation band).34  Temporal and spatial integrals of Eqs. 34 and 35 also need to 
be performed numerically.  This procedure, of course, leads to Z-scans where the loss or 
refraction are not described by the third-order analysis given in this paper.  This can also 
be said of the simple 2-level saturation model which is only described by a third-order 
response for small inputs. 

It is important to note the importance of accurately measuring the laser mode and pulse 
parameters.  For example, 2PA is irradiance dependent.  Thus, given the pulse energy, we 
need to know both the beam area (i.e. spatial beam profile) and the temporal pulsewidth 
(i.e. temporal shape) in order to determine the irradiance.  Any errors in the measurement 
of irradiance translate to errors in the determination of β as well as several other nonlinear 
coefficients. 

There are several other papers that report methods or analysis for Z-scans that we have 
not yet mentioned.  For example, Herman et. al. discuss factors that affect optical limiting 
in thin samples with large nonlinearities related to Z-scans in Ref. 35.  In Ref. 36, 
Hochbaum discusses the simultaneous determination of two or more nonlinear refractive 
constants in Z-scan measurements.  Sutherland describes the effects of multiple internal 
reflections within a sample on the Z-scan signal in Ref. 37. 
 

For some materials the light permanently or temporarily changes the optical properties so 
that the sample properties change within the duration of a Z-scan experiment.  Oliveira et. 
al. discuss the analysis of such data.38  Petrov et.al. describe the use of a Z-scan in a 
reflection mode to determine changes of  the complex dielectric function at surfaces.39  
Kershaw desribes his analysis of EZ-scan measurements in Ref.40,  and a method to 
enhance the sensitivity of a 2-color Z-scan is described in Ref. 41. 



6. Conclusion 
There are a several different methods and techniques for determining the nonlinear optical 
response of a material, each with its own weaknesses and advantages.  It is advisable to 
use as many complementary techniques as possible over a wide range of input irradiance, 
power and fluence, using different pulsewidths and over a broad spectral range in order to 
unambiguously determine the active nonlinearities.  Z-scan is one of the simpler 
experimental methods to employ and interpret.  Despite the wide range of available 
methods, it is rare that any single experiment will completely determine the physical 
processes behind the nonlinear response of a given material.  A single measurement of the 
nonlinear response of a material, at a single wavelength, irradiance and pulsewidth gives 
very little information on the material, and should not, in general, be used to judge the 
device performance of a material or to compare one material to another. 

When measuring nonlinear material response, it is important to know the intended 
application.  For example, if optical limiting with nanosecond pulses is the purpose, so 
that materials having large nonlinear loss for 10 ns pulses is desirable, the pulsewidth to 
be used is 10 ns.  However, in order to determine the physics behind the nonlinear loss it 
may be useful to look at this loss using shorter or longer pulses.42 

Nonlinear absorption and refraction always coexist (although with different spectral 
properties) as they result from the same physical mechanisms.  They are connected via 
dispersion relations similar to the usual Kramers-Kronig relations that connect linear 
absorption to the linear index, or equivalently, relate the real and imaginary parts of the 
linear susceptibility. 25,26,27,28  The physical processes that give rise to NLA and the 
accompanying NLR include “ultrafast” bound electronic processes, “excited state” 
processes where the response times are dictated by the characteristic formation and decay 
times of the optically induced excited states, thermal refraction, etc.  Ultrafast processes 
include multi-photon absorption22,23, stimulated Raman scattering 24 and AC-Stark effects 

25,26.  Excited-state nonlinearities can be caused by a variety of physical processes 
including absorption saturation43, excited-state absorption in atoms or molecules 15 or 
free-carrier absorption in solids 17,44 , photochemical changes45 , as well as defect and 
color center formation46.  The above processes can lead to increased transmittance with 
increasing irradiance (e.g. saturation, Stark effect) or decreased transmittance (eg. multi-
photon absorption, excited-state absorption).  A key to distinguishing these processes is to 
pay particular attention to the temporal response.  One way of achieving this is the use of 
pulsewidths much shorter than the decay times of the excited states.  In this regime, the 
excited-state nonlinearities are fluence (i.e. energy per unit area) dependent, while the 
ultrafast effects remain irradiance dependent. 

The Z-scan has only recently been introduced.   The use of the Z-scan technique as both 
an absolutely calibrated method for determining standards and as a relative measurement 
method is increasing.  The database of nonlinear material properties is rapidly increasing, 
however, great care must still be employed when using  numbers obtained from Z-scans 
as well as from other techniques primarily due to questions of data interpretation, e.g. is 
the response really third-order and ultrafast?   The Z-scan signal as a function of 
irradiance and shape with respect to sample position, Z, can give useful information on 
the order of the nonlinearity as well as its sign and magnitude. 
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