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The nonlinear propagation of coherent optical fields has been extensively explored in the
framework of nonlinear optics, while the linear propagation of incoherent fields has been
widely studied in the framework of statistical optics. However, these two fundamental
fields of optics have been mostly developed independently of each other, so that a
satisfactory understanding of statistical nonlinear optics is still lacking. This article is aimed
at reviewing a unified theoretical formulation of statistical nonlinear optics on the basis of
the wave turbulence theory, which provides a nonequilibrium thermodynamic description
of the system of incoherent nonlinear waves. We consider the nonlinear Schrodinger
equation as a representative model accounting either for a nonlocal or a noninstantaneous
nonlinearity, as well as higher-order dispersion effects. Depending on the amount of
nonlocal (noninstantaneous) nonlinear interaction and the amount of inhomogeneous
(nonstationary) statistics of the incoherent wave, different types of kinetic equations are
derived and discussed.

In the spatial domain, when the incoherent wave exhibits inhomogeneous statistical
fluctuations, different forms of the (Hamiltonian) Vlasov equation are obtained depending
on the amount of nonlocality. This Vlasov approach describes the processes of incoherent
modulational instability and localized incoherent soliton structures.

In the temporal domain, the causality property inherent to the response function leads
to a kinetic formulation analogous to the weak Langmuir turbulence equation, which de-
scribes nonlocalized spectral incoherent solitons. In the presence of a highly noninstan-
taneous response, this formulation reduces to a family of singular integro-differential
kinetic equations (e.g., Benjamin-Ono equation), which describe incoherent dispersive
shock waves. Conversely, a non-stationary statistics leads to a (non-Hamiltonian) long-
range Vlasov formulation, whose self-consistent potential is constrained by the causality
condition of the response function.

The spatio-temporal domain will be considered in the limit of an inertial nonlinearity.
We review different theories developed to describe bright and dark spatial incoherent
solitons experimentally observed in slowly responding nonlinear media: The coherent
density method, the mutual coherence function approach, the modal theory and the
Wigner-Moyal formulation.
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When the incoherent wave exhibits homogeneous fluctuations, the relevant kinetic
equation is the wave turbulence (Hasselmann) equation. It describes wave condensation
and the underlying irreversible process of thermalization to thermodynamic equilibrium,
as well as genuine nonequilibrium turbulent regimes. In this way different remarkable
phenomena associated to wave thermalization are reviewed, e.g., wave condensation or
supercontinuum generation in photonic crystal fibers, as well as different mechanisms
of breakdown of thermalization. Finally, recent developments aimed at providing a wave
turbulence formulation of Raman fiber lasers and passive optical cavities are reviewed in
relation with condensation-like phenomena.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. From incoherent solitons to wave turbulence

The coherence properties of partially incoherent optical waves propagating in nonlinear media have been studied since
the advent of nonlinear optics in the 1960s, because of the natural poor degree of coherence of laser sources available at
that time (see, e.g., [1,2]). However, it is only recently that the dynamics of incoherent nonlinear optical waves received a
renewed interest. The main motive for this renewal of interest is essentially due to the first experimental demonstration
of incoherent solitons in photorefractive crystals [3,4]. The formation of an incoherent soliton results from the spatial self-
trapping of incoherent light that propagates in a highly noninstantaneous response nonlinear medium [5,6]. This effect is
possible because of the noninstantaneous photorefractive nonlinearity that averages the field fluctuations provided that
its response time, tg, is much longer than the correlation time t. that characterizes the incoherent beam fluctuations,
i.e,, t < tg. The remarkable simplicity of experiments realized in photorefractive crystals has led to a fruitful investigation
of the dynamics of incoherent nonlinear waves. Several theoretical approaches have been also developed to describe these
experiments [7-10]. Subsequently, these different theoretical methods have been shown to be formally equivalent one to
each other [11,12].

In this way, the field of incoherent optical solitons has become a blooming area of research, as illustrated by several
important achievements, e.g., the existence of incoherent dark solitons [13,14], the modulational instability of incoherent
waves [15-18], incoherent solitons in periodic lattices [19,20], in resonant interactions [21,22], in liquid crystals [23,24],
in nonlocal nonlinear media [25-27], in spin waves [28], or spectral incoherent solitons in optical fibers [29,30].
Nowadays, statistical nonlinear optics constitutes a growing field of research covering various topics of modern optics,
e.g., supercontinuum generation [31], filamentation [32], random lasers [33], or extreme rogue waves events [34-36].

From a broader perspective, statistical nonlinear optics is fundamentally related to fully developed turbulence [37,38],
a subject which still constitutes one of the most challenging problems of theoretical physics [39,40]. In its broad sense,
the kinetic wave theory provides a nonequilibrium thermodynamic description of developed turbulence. We schematically
report in Fig. 1 a qualitative and intuitive physical insight into the analogy which underlies the kinetic wave approach and
the kinetic theory relevant for a gas system. The wave turbulence theory occupies a rather special place on the road-map
of modern science, at the interface between applied mathematics, fluid dynamics, statistical physics and engineering. It has
potential applications and implications in a diverse range of subjects including oceanography, plasma physics and condensed
matter physics. This review article is aimed at showing that the kinetic wave theory appears as the appropriate theoretical
framework to formulate statistical nonlinear optics.

1.2. Panoramic overview

In the following we give a panoramic overview of the subjects covered by the review article. Note that these topics have
been usually discussed separately in the literature within different contexts. As schematically depicted through Figs. 1-3,
the review article provides a generalized description and classification of these topics on the basis of a unified kinetic wave
formulation.

1.2.1. Wave turbulence formulation: Thermalization and condensation

Consider the nonlinear propagation of a partially coherent optical wave characterized by fluctuations that are statistically
homogeneous in space.! In complete analogy with a system of classical particles, the incoherent optical field evolves,
owing to nonlinearity, towards a thermodynamic equilibrium state, as schematically illustrated in Fig. 1(a)-(b). A detailed
theoretical description of the process of dynamical thermalization constitutes a difficult problem. However, a considerable
simplification occurs when wave propagation is essentially dominated by linear dispersive effects, so that a weakly nonlinear
description of the field becomes possible [37,39,40]. The weak- (or wave-)turbulence (WT) theory has been the subject of
lot of investigations in the context of plasma physics [42,43], in which it is often referred to the so-called “random phase-
approximation” approach [37,42-47]. This approach may be considered as a convenient way of interpreting the results of the
more rigorous technique based on a multi-scale expansion of the cumulants of the nonlinear field, as originally formulated in

1 Note that caution should be exercised when separating the description of statistically homogeneous and inhomogeneous random waves, since a
homogeneous statistical wave can become inhomogeneous as a result of the incoherent MI (as discussed below in Sections 2-4), or the instability of
the Zakharov-Kolmogorov spectrum as recently discussed in Ref. [41].
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Fig. 1. Analogy between a system of classical particles and the propagation of an incoherent optical wave in a cubic nonlinear medium. (a) As described
by the kinetic gas theory (Boltzmann kinetic equation), collisions between particles are responsible for an irreversible evolution of the gas towards
thermodynamic equilibrium. (b) In complete analogy, the (Hasselmann) WT kinetic equation and the underlying four-wave mixing describe an irreversible
evolution of the incoherent optical wave towards the thermodynamic Rayleigh-Jeans equilibrium state. (c) When the incoherent optical wave exhibits an
inhomogeneous statistics, the four-wave interaction no longer takes place locally, i.e., the quasi-particles feel the presence of an effective self-consistent
potential, V (r), which prevents them from relaxing to thermal equilibrium. The dynamics of the incoherent optical wave turns out to be described by a
Vlasov-like kinetic equation. (d) In the presence of a noninstantaneous nonlinear interaction, the causality condition inherent to the response function
changes the physical picture: The nonlinear interaction involves a material excitation (e.g., molecular vibration in the example of Raman scattering). The
dynamics of the incoherent optical wave turns out to be described by a kinetic equation analogous to the weak Langmuir turbulence equation. Note
however that a highly noninstantaneous nonlinear response is no longer described by the weak Langmuir turbulence equation, but instead by the ‘long-
range’ Vlasov-like equation (see Fig. 3).

Spatial domain

Nonlocal nonlinearity

WT KE
long-range

WT KE

(condensation)

WT KE

Vlasov
long-range

Vlasov
short-range

Vlasov

(condensation) (Wigner-Moyal)

Inhomogeneous statistics

Fig. 2. Schematic illustration of the validity of the fundamental kinetic equations in the framework of a spatially nonlocal nonlinear response—the vertical
arrow denotes the amount of nonlocality of the nonlinear interaction, while the horizontal arrow represents the amount of inhomogeneous statistics of the
incoherent wave. When the incoherent wave is characterized by fluctuations that are statistically homogeneous in space, the relevant kinetic description
is provided by the wave turbulence kinetic equation (‘WT KE’), which describes in particular the processes of optical wave thermalization or condensation
(see Section 5.1). When the incoherent wave exhibits an inhomogeneous statistics, the relevant kinetic description is provided by different variants of
the Vlasov equation, whose self-consistent potential depends on the amount of nonlocality in the system (see Section 2). The Vlasov equation, or more
generally the Wigner-Moyal formalism (see Section 4), describe in particular the phenomena of incoherent modulational instability and the formation of
incoherent soliton states.

Refs. [48-50]. This theory has been reviewed in Ref. [51], and studied in more details through the analysis of the probability
distribution function of the random field in Refs. [52-54,40]. In a loose sense, the so-called ‘random phase approximation’
may be considered as justified when phase information becomes irrelevant to the wave interaction due to the strong
tendency of the waves to decohere. The random phases can thus be averaged out to obtain a weak turbulence description of
the incoherent wave interaction, which is formally based on irreversible kinetic equations [37]. It results that, in spite of the
formal reversibility of the equation governing wave propagation, the kinetic equation describes an irreversible evolution
of the field to thermodynamic equilibrium. This equilibrium state refers to the fundamental Rayleigh-Jeans spectrum,
whose tails are characterized by an equipartition of energy among the Fourier modes. The mathematical statement of such
irreversible process relies on the H-theorem of entropy growth, whose origin is analogous to the Boltzmann’s H-theorem
relevant for gas kinetics. Note that the terminology ‘wave turbulence’ is often employed in the literature to denote the study
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Fig. 3. Schematic illustration of the validity of the fundamental kinetic equations in the framework of a temporally noninstantaneous nonlinear response—
the vertical arrow denotes the amount of noninstantaneous response of the nonlinearity, while the horizontal arrow represents the amount of non-
stationary statistics of the incoherent wave. The diagram for the temporal domain reported here is similar to that reported in the spatial domain in Fig. 2. The
essential difference between the spatial and the temporal domain relies on the fact that in the temporal domain the response function is constrained by the
causality condition. It turns out that when the finite response time of the nonlinearity cannot be neglected, the relevant kinetic description is provided by an
equation analogous to the weak Langmuir turbulence equation, irrespective of the nature of the fluctuations that may be stationary or non-stationary (see
Section 3.2). This equation has been shown to describe non-localized spectral incoherent solitons. In the presence of a highly noninstantaneous nonlinear
response and a stationary statistics of the incoherent wave, the weak Langmuir turbulence reduces to singular integro-differential kinetic equations (‘SID-
KE"), e.g., Benjamin-Ono equation, which describe incoherent dispersive shock waves. Conversely, when the wave exhibits a non-stationary statistics still
in the presence of a highly noninstantaneous response, the dynamics is ruled by a ‘temporal long-range’ Vlasov equation, whose self-consistent potential
is constrained by the causality condition of the noninstantaneous response function, which breaks the Hamiltonian structure of the Vlasov equation (see
Section 3.3). The WT kinetic equation (‘WT KE’) turns out to be relevant for an instantaneous nonlinear response and a statistically stationary incoherent
wave, as will be discussed in Sections 5.3-5.4, in particular in the framework of supercontinuum generation.

of wave systems governed by this type of irreversible kinetic equations, whose structure is analogous to the Boltzmann
kinetic formulation (see, e.g., [37,47,40]). However, in many cases in this review the terminology ‘wave turbulence’ will be
employed in a broader sense, which also includes different forms of nonequilibrium kinetic formalisms, such as the Vlasov or
the weak Langmuir turbulence descriptions of a wave system (see Fig. 1). We remark that besides this nonequilibrium kinetic
approach, the equilibrium properties of a random nonlinear wave may be studied on the basis of equilibrium statistical
mechanics by computing appropriate partition functions [55-64]. In this way, the statistical properties of incoherent fields
in random lasers have been analyzed by applying methods inherited from spin-glass theory [65,66]. It should also be noted
that a statistical mechanics of a gas of soliton particles has been developed in the framework of integrable (NLS) equations
[67,68].

In this article we will review different processes of optical wave thermalization on the basis of the WT theory, as well
as some mechanisms responsible for its inhibition. In particular, we will see how the phenomenon of supercontinuum
generation can be interpreted, under certain conditions, as a consequence of the natural thermalization of the optical
field towards the thermodynamic equilibrium state. Furthermore, wave thermalization can be characterized by a self-
organization process, in the sense that it is thermodynamically advantageous for the system to generate a large-scale
coherent structure in order to reach the most disordered equilibrium state. A remarkable example of this counterintuitive
phenomenon is provided by wave condensation [69-73], whose thermodynamic equilibrium properties are analogous to
those of quantum Bose-Einstein condensation. Classical wave condensation can be interpreted as a redistribution of energy
among different modes, in which the (kinetic) energy is transferred to small scales fluctuations, while an inverse process
increases the power (i.e., number of ‘particles’) into the lowest allowed mode, thus leading to the emergence of a large scale
coherent structure.

We note in this respect that the phenomenon of condensation has been recently extended to optical cavities in different
circumstances [74-81], which raises important questions, such as e.g., the relation between laser operation and the
phenomenon of Bose-Einstein condensation (see Section 7.1) [82]. From a different perspective, when a wave system
is driven away from equilibrium by an external source, it no longer relaxes towards the Rayleigh-Jeans equilibrium
distribution. A typical physical example of forced system can be the excitation of hydrodynamic surface waves by the
wind. This corresponds to the generic problem of developed turbulence. In general, it refers to a system in which the
frequency-scales of forcing and damping differ significantly. The nonlinear interaction leads to an energy redistribution
among the frequencies (modes). A fundamental problem is to find the stationary spectrum of the system, i.e., the law of
energy distribution over the different scales. The WT theory provides an answer to this vast issue under the assumption that
the nonlinear interaction is weak—the so-called Kolmogorov-Zakharov spectra of turbulence [37]. An experiment aimed
at observing these nonequilibrium stationary turbulent states in the context of optics has been reported in Ref. [83] (see
Section 5.5, or Ref. [84] for a complete review). Beyond optics, we refer the interested reader to different comprehensive
reviews concerning this vast area of research [37,51,47,39,40].
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1.2.2. Vlasov and Wigner-Moyal formulations: Incoherent solitons

When the nonlinear material is characterized by a nonlocal or a highly-noninstantaneous response, the dynamics of the
incoherent wave turns out to be essentially governed by an effective nonlinear potential V (r). This potential is self-consistent
in the sense that it depends itself on the averaged intensity distribution of the random field, as schematically illustrated in
Fig. 1(c). Actually, the mechanism underlying the formation of an incoherent soliton state finds its origin in the existence of
such self-consistent potential, which is responsible for a spatial self-trapping of the incoherent optical beam. From this point
of view, the vary nature of incoherent optical solitons is analogous to the random phase solitons predicted in plasma physics
a long time ago in the framework of the Vlasov equation [85-87]. This analogy with nonlinear plasma waves has been also
exploited in optics in different circumstances [88-92], in particular in the framework of the Wigner-Moyal formalism [10,
93,12,94,95], or to interpret the existence of a threshold in the incoherent modulational instability as a consequence of the
phenomenon of Landau damping [96,10,17,97].

Incoherent spatial solitons can be also supported by a nonlocal spatial nonlinearity, instead of the traditional
noninstantaneous nonlinearity inherent to the photorefractive experiments discussed above in Section 1.1. A nonlocal wave
interaction means that the response of the nonlinearity at a particular point is not determined solely by the wave intensity at
that point, but also depends on the wave intensity in the neighborhood of this point. Nonlocality thus constitutes a generic
property of a large number of nonlinear wave systems [98-105], and the dynamics of nonlocal nonlinear waves has been
widely investigated in this last decade [ 106-110]. In particular, in the highly nonlocal limit, i.e., in the limit where the range
of the nonlocal response is much larger than the size of the beam, the propagation equation reduces to a linear and local
equation with an effective guiding potential given by the nonlocal response function. The optical beam can thus be guided
by the nonlocal response of the material, a process originally termed ‘accessible soliton’ [111,110,100,101]. In this highly
nonlocal limit, it has been shown both theoretically and experimentally that a speckled beam can be guided and trapped by
the effective waveguide induced by the nonlocal response [112,26].

More recently, the long-term evolution of a modulationally unstable homogeneous wave has been studied in the presence
of a nonlocal response [27]. Contrarily to the expected soliton turbulence process where a coherent soliton is eventually
generated in the midst of thermalized small-scale fluctuations [113,114,58,60,61], a highly nonlocal response is responsible
for an incoherent soliton turbulence process [27]. It is characterized by the spontaneous formation of an incoherent soliton
structure starting from an initially homogeneous plane-wave. A WT approach of the problem revealed that this type
of incoherent solitons can be described in detail in the framework of a long-range Vlasov equation, which is shown to
provide an accurate statistical description of the nonlocal random wave even in the highly nonlinear regime of interaction.
We note that this Vlasov equation differs from the traditional Vlasov equation considered for the study of incoherent
modulational instability and incoherent solitons in plasmas [115,86,87], hydrodynamics [116] and optics [10,91,92,90].
The structure of this Vlasov equation is in fact analogous to that recently used to describe systems of particles with long-
range interactions [117]. For this reason we will term this equation ‘long-range Vlasov’ equation. It is important to underline
that the long-range nature of a highly nonlocal nonlinear response prevents the wave system from reaching thermal
equilibrium [27]. This fact can be interpreted intuitively in analogy with gravitational long-range systems and the Vlasov-like
description of galaxies in the Universe [117].

1.2.3. Weak Langmuir turbulence formulation: Spectral incoherent solitons and incoherent shocks

When the incoherent wave propagates in a nonlinear medium whose non-instantaneous response time cannot be
neglected (e.g., Raman effect in optical fibers), the dynamics turns out to be strongly affected by the causality property
inherent to the nonlinear response function (see Fig. 1). The kinetic wave theory reveals in this case that the appropriate
description is provided by a formalism analogous to that used to describe weak Langmuir turbulence in plasmas [29,118].
A major prediction of the theory is the existence of spectral incoherent solitons [29,119,30]. This incoherent soliton is
of a fundamental different nature than the incoherent solitons discussed here above. In particular, it does not exhibit
a confinement in the spatiotemporal domain, but exclusively in the frequency domain. For this reason this incoherent
structure has been termed ‘spectral incoherent soliton’. Indeed, because the optical field exhibits a stationary statistics,
the soliton behavior only manifests in the spectral domain. Then contrarily to the expected thermalization process, the
incoherent wave self-organizes into these incoherent soliton structures, which can thus be regarded as nonequilibrium and
nonstationary stable states of the incoherent field.

As discussed here above in Section 1.2.2, the existence of a highly nonlocal response changes the dynamics of spatially
incoherent nonlinear waves in a profound way. A natural question is to see how a highly noninstantaneous nonlinear
response can change the dynamics of temporally incoherent waves. In this temporal long-range regime, the spectral
dynamics of the field can exhibit incoherent shock waves [120]. They manifest themselves as an unstable singular behavior
of the spectrum of incoherent waves, i.e., ‘spectral wave-breaking’. Note that shock waves play an important role in
many different branches of physics [121]. However, it should be underlined that, at variance with conventional coherent
shock waves, which require the strong nonlinear regime, incoherent shocks develop into the highly incoherent regime of
propagation, in which linear dispersive effects dominate nonlinear effects. The weakly nonlinear kinetic approach then
reveals that these incoherent shocks are described, as a rule, by singular integro-differential kinetic equations, which
involve the Hilbert transform as singular operator. In this way, the theory reveals unexpected links with the 3D vorticity
equation in incompressible fluids [122], or the integrable Benjamin-Ono equation [123,124], which was originally derived
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in hydrodynamics to model internal waves in stratified fluids [125,126], and recently considered in the context of quantum
liquids and quantum Hall states [127,128].

1.2.4. Breakdown of thermalization and the FPU problem

The relationship between formal reversibility and actual dynamics can be rather complex for infinite dimensional
Hamiltonian systems like classical optical waves. In integrable systems, one may expect that the dynamics is essentially
periodic in time, reflecting the underlying regular phase-space structure of nested tori. This recurrent behavior is broken
in nonintegrable systems, where the dynamics is in general governed by an irreversible process of diffusion in phase
space [129]. The essential properties of this irreversible evolution to equilibrium can be described by the wave turbulence
theory, as discussed here above in Section 1.2.1.

It is instructive to discuss the phenomenology of nonlinear wave thermalization from a broader perspective. We recall
in this respect the fundamental assumption of statistical mechanics that a closed system with many degrees of freedom
ergodically samples all equal energy points in phase space. In order to analyze the limits of this assumption, Fermi, Pasta
and Ulam (FPU) considered in the 1950’s a one-dimensional chains of particles with anharmonic forces between them [ 130].
They argued that, owing to the nonlinear coupling, an initial state in which the energy is in the first few lowest modes would
eventually relax to a state of thermal equilibrium where the energy is equidistributed among all modes on the average.
However they observed that, instead of leading to the thermalization of the system, the energy transfer process involves only
afew modes and exhibits a reversible behavior, in the sense that after a sufficiently (long) time the system nearly goes back to
its initial state. This recurrent behavior could not be interpreted in terms of Poincaré recurrences, a feature which motivated
an intense research activity. Fundamental mathematical and physical discoveries, like the Kolmogorov-Arnold-Moser
theorem and the formulation of the soliton concept, have led to a better understanding of the Fermi-Pasta-Ulam problem,
although it is by no means completely understood [130].

We should note that, in spite of the large number of theoretical studies, experimental demonstrations of FPU recurrences
have been reported in very few systems. In particular, the FPU recurrences associated to modulational instability of the NLS
equation have been experimentally studied in deep water waves [131], and, more recently, in magnetic feedback rings [ 132]
and optical wave systems [133-137].

In relation with the FPU problem, we will discuss in this review some mechanisms which inhibit the irreversible process
of optical wave thermalization towards the Rayleigh-Jeans distribution. We will focus the presentation on particular
mechanisms which are described in detail by the WT kinetic equation. We will consider the concrete example of the
one-dimensional NLS equation in the presence of higher-order dispersion effects. This generalized NLS equation is known
to provide an accurate description of light propagation in photonic crystal fibers [138,139,31]. We will discuss three
different mechanisms which inhibit optical thermalization [ 140-143]. The WT theory will be shown to provide an accurate
description of this breakdown of thermalization. In particular, the WT theory reveals the existence of local invariants in
frequency space, which lead to a novel family of equilibrium states of a different nature than the expected thermodynamic
(Rayleigh-Jeans) equilibrium states. The inhibition of thermalization for the integrable NLS equation will also be considered
in the framework of a generalized WT equation.

1.3. Organization of the manuscript

This review article is also aimed to render the mathematical tools of the kinetic theory accessible to a broad audience in
the nonlinear physics community. A special effort is thus devoted to structure the article in a self-contained and pedagogical
fashion. In order to start with a simple physical situation, we first consider in Section 2 the spatial evolution of the incoherent
wave in a nonlocal Kerr environment. In this way, different variants of the Vlasov equation are derived, whose self-consistent
potential depends on the amount of nonlocality in the system, as discussed above in Section 1.2.2. Then we consider in
Section 3 the temporal evolution of an incoherent wave, in which the causality condition of the response function introduces
the weak Langmuir turbulence formalism commented here above in Section 1.2.3. The general spatio-temporal problem is
analyzed in Section 4 in the limit of a slowly responding (inertial) nonlinearity, which also provides an introduction to
the Wigner-Moyal formalism. Section 5 is devoted to the analysis of the WT kinetic equation and the phenomena of wave
thermalization and condensation or incoherent waves, as discussed above in Section 1.2.1. The mechanisms responsible for
possible inhibitions of the thermalization process are presented in Section 6, in line with the FPU problem commented in
Section 1.2.4. Section 7 discusses several important perspectives and open problems, in particular in relation with the study
of optical turbulence in passive cavities and laser systems. We finally note that, although this review is essentially focused on
theoretical formulations of the dynamics of incoherent nonlinear waves, we also briefly comment some major experimental
observations in various different subsections.

2. Spatial domain
In this section we study the transverse spatial evolution of a partially coherent wave that propagates in a nonlocal

nonlinear medium. We consider the case where the random wave exhibits fluctuations that are statistically inhomogeneous
in space. As illustrated schematically in Fig. 2, the dynamics of the incoherent wave is described by different forms of the



A. Picozzi et al. / Physics Reports 542 (2014) 1-132 9

Vlasov equation, whose self-consistent potential depends on the degree of nonlocality. The case of homogeneous statistics
will be discussed in Section 5, in the framework of the WT kinetic equation. The presentation of this section is structured
along the lines of Refs. [27,144].

2.1. Nonlocal response

2.1.1. NLS model

A nonlocal nonlinear response of the medium is found in several wave systems such as, e.g., dipolar Bose-Einstein con-
densates [98], atomic vapors [99], nematic liquid crystals [100,101,145], photorefractive media [104], thermal susceptibili-
ties [ 146,102,103], soft materials [ 147] and plasmas physics [ 105]. For this reason the impact of nonlocality on the dynamics
of nonlocal nonlinear waves has been widely investigated [110], in particular through the analysis of MI [106], of dark soli-
tons [109], of the role of disorder [148-151], or through the inhibition of collapse in multi-dimensional systems [107,108].

We consider here the standard form of the nonlocal NLS model equation describing wave propagation in nonlinear media
that exhibit a nonlocal response

i82w+aV21/f+w///U(x—x/)Ix/flz(z,x/) dx' =0, (1)

where x denotes the position in the transverse plane of dimension d and V2 denotes the corresponding transverse Laplacian
(V> =82 ford =1,V? = 9 + 8} for d = 2). The nonlocal response function U (x) is a real and even function normalized
in such a way that f U(x) dx = 1, so that in the limit of a local response (U (x) = §(x), 6(x) being the Dirac function), Eq. (1)
recovers the standard local NLS equation. The parameters « = 1/(2k;) and y refer to the linear and nonlinear coefficients,
respectively, where k; = n2m /A1, nbeing the linear refractive index of the material and A; the wavelength of the laser source.
A positive (negative) value of y corresponds to a focusing (defocusing) nonlinear interaction. Besides the momentum, Eq. (1)
conserves the power (or number of particles) & = f | (x)|?dx, and the Hamiltonian # = & + U, where

&(2) :a/|Vw(x,z)|2dx (2)

denotes the linear (kinetic) contribution, and

U(z) = —%/ [y (x,2)PU(x—X) |, 2)|* dedx’ (3)

the nonlinear contribution to the total energy . We denote by o the spatial extension of U(x), which characterizes the
amount of nonlocality in the system. This length scale has to be compared with the healing length A = \/a/(|y|p), where
o = N /L% is the density of power (intensity), L being the size of the periodic box in the numerical simulations. We recall
that A denotes the typical wavelength excited by the modulational instability of a homogeneous background in the limit
of a local nonlinearity, o — 0. An other important length scale is the typical length A that characterizes the homogeneity
of the statistics. It reflects the typical length scale over which the fluctuations of the incoherent wave can be considered as
homogeneous in space.

Homogeneous vs. inhomogeneous statistics

The kinetic equation consists of an equation describing the evolution of the spectrum of the field during its propagation in
the nonlinear medium. Note that, in the particular case in which diffraction effects can be neglected (o« = 0), an expression
for the evolution of the second order correlation function can be obtained in explicit form, see Refs. [152,153].

As schematically described through Figs. 2 and 3, the structure of a kinetic equation depends on the nature of the statistics
of the random wave. The statistics is said to be homogeneous (or stationary in the temporal domain), if the correlation
function B(X1, X2, ) = (¥ (%1, z)¥* (X2, z)) only depends on the distance | x; — X |. In the following, the brackets (.) denote
an average over the realizations of the initial noise of the random wave ¥ (x, z = 0). In this section we consider the case
where the statistics of the random wave is assumed to be inhomogeneous. We will see that the dynamics is ruled by different
forms of the Vlasov equation, whose self-consistent potential depends on the degree of nonlocality [ 144].

2.2. Short-range Vlasov equation
We follow the standard procedure to derive an equation for the evolution of the autocorrelation function of the field,
B(x,§,2) = (y(x+&/2,2)y™ (x — §/2, 2)), with
X=(X1+%)/2, §=x—x. (4)

Because of the nonlinear character of the NLS equation, the evolution of the second-order moment of the wave depends on
the fourth-order moment. In the same way, the equation for the fourth-order moment depends on the sixth-order moment,
and so on. One obtains in this way an infinite hierarchy of moment equations, in which the nth order moment depends
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on the (n + 2)th order moment of the field. This makes the equations impossible to solve unless some way can be found
to truncate the hierarchy. This refers to the fundamental problem of achieving a closure of the infinite hierarchy of the
moment equations [37,51,39,40]. A simple way to achieve a closure of the hierarchy is to assume that the field has Gaussian
statistics. This approximation is justified in the weakly nonlinear regime, Ly /Ly < 1 (or |U/&| < 1), where Ly = A2/« is
the diffraction length, A being the coherence length, and L,; = 1/(|y|p) is the characteristic length of nonlinear interaction.

2.2.1. Nonlocal case
Exploiting the property of factorizability of moments of Gaussian fields, one obtains the following closed equation for
the evolution of the autocorrelation function

i0,B(x,§,z) = —2aV,.VeB(x,&,2) — yP(x,&,2) — yQ(x, &, 2), (5)
where

P(x. §) = B(x, &) / UNGE -y +8&/2) — Nx—y — £/2)]dy. (6)

Q.8 = / UW)[Bx—y/2+&/2,y)Bx—y/2.E—y) —Bx—y/2.E+y)Bx—y/2 —&/2, —y)|dy, (7)
and

N(x,z) = B(x,£=0,2) = (|[y|*) *. 2) (8)

denotes the averaged power of the field, which depends on the spatial variable x# because the statistics of the field is a priori
inhomogeneous. Note that we have omitted the z-label in Eqs. (6) and (7).

Eq. (5)-(7) is quite involved. To provide an insight into its physics we assume that the incoherent wave exhibits a quasi-
homogeneous statistics, that is to say A, (i.e. the length scale of the random fluctuations) is much smaller than the length
scale of homogeneous statistics A (i.e. typically the size of the incoherent beam), & = A./A < 1. We assume that the range
of the response function is of the same order as the healing length, o ~ A. Defining the local spectrum of the wave as the
Wigner-like transform of the autocorrelation function,

(X, z) = / B(x, &, 2) exp(—ik.§) d§, (9)
and performing a multiscale expansion of the solution

B(x, & 2) = B (ex, &, £2) + 0(e), (10)
we obtain in the first-order in ¢ the following Vlasov-like kinetic equation (see Appendix A.1)

0, (X, 2) + Op o (X, 2).0xNk (X, Z) — Oxlo (X, 2). 0Nk (X, 2) = 0. (11)
The generalized dispersion relation reads

ok (X, 2) = w(k) + Vi (x, 2), (12)

where w(k) = «|k|? is the linear dispersion relation of the NLS equation (1), and the self-consistent potential reads

Vie(x, 2) = —— /(1 + U—i) e (%, 2) di¢, (13)
2m)e
where U(k) = f U (x) exp(—ik.x) dx is the Fourier transform of U (x) [U(k) being real and even] and
1
N(x,z) = W/nk(x, z)dk (14)

is the averaged spatial intensity profile of the wave [see Eq. (8)].

Properties of the Vlasov equation
Several important properties of the Vlasov equation (11) result from its Poisson bracket structure. More specifically, the
Vlasov equation can be recast in Hamiltonian form by means of the following Liouville’s equation

d,ng(z, X) = 0,1 + R.9en + k.9n = 0, (15)
where the variables k and x appear as canonical conjugate variables,

k =k =—da, (16)

X = 0,x = 0, (17)

where the generalized dispersion relation (12) plays the role of an effective Hamiltonian.



A. Picozzi et al. / Physics Reports 542 (2014) 1-132 11

The Vlasov equation is a formally reversible equation, i.e., it is invariant under the transformation (z, k) — (—z, —k).
Moreover, it conserves the number of particles, &' = (27r) ™ [[ nk(x, z) dx dk, the momentum » = (27)~? [ k nk(x, 2)
dx dk, and the Hamiltonian

1 i
w= o / / w(k) ng (x) dx di — ﬁ / / / N, (%) Uy —k, M, (%)l lley dlcy. (18)

In addition, the Vlasov equations (11)-(13) also conserves the so-called Casimirs, M = jff[n] dxdk, where f[n] is an
arbitrary functional of the distribution n (x, z).

We remark that the effective potential (13) of the Vlasov equation also depends on the spatial frequency k, which
considerably complicates the study of the Vlasov equation. The dependence of the potential (13) on k is expected to
introduce new dynamical behaviors which will be the subject of future investigations.

2.2.2. Local limit

In the limit of a local interaction, U(x) — §(x), the Vlasov equation derived here above recovers the traditional Vlasov
equation, whose self-consistent potential (13) becomes k-independent and reduces to

V(x,z) = —2yN(x, 2). (19)

This type of Vlasov equation will be discussed more specifically in Section 4. It was considered in various different fields
to study incoherent modulational instability and incoherent solitons in plasmas [115,86,87], hydrodynamics [116] and
optics [10,91,92,90].

2.3. Long-range Vlasov equation

2.3.1. Long-range response

Let us now consider a long-range nonlocal nonlinear response, o /A >> 1. Note that in this case the random field exhibits
fluctuations whose spatial inhomogeneities are of the same order as the range of the nonlocal potential, o ~ A (a feature
illustrated by the incoherent solitons discussed in [27], whose typical size is determined by o ). The derivation of the long-
range Vlasov equation is obtained by following a procedure similar to that for the short-range case (o ~ A), except that we
have to introduce the following scaling for the nonlocal potential

U(x) = eU©Q (ex). (20)

Note that the prefactor ¢ is required by the normalization condition, [U(x)dx = [ U (ex)d(ex) = 1. Following
the multiscale expansion technique, we derive in Appendix A.2 the Vlasov-like kinetic equation (11), with the effective
dispersion relation

wr(x,2) = w(k) +V(x,2), (21)

and the long-range self-consistent potential
V(x,z) = —y / Ux—xX)N(,2z)dx. (22)

This effective potential then appears as a convolution of the nonlocal response with the intensity profile of the incoherent
wave. Contrarily to the short-range potential, it does not depend on the spatial frequency k. The long-range Vlasov equation
conserves the number of particles, &' = (27)~? [ ny(, z) dx dk, the momentum » = (27)~¢ [[ k nk(x, z) dx dk, the
Hamiltonian

H = (Z]T)d /f w(k) ng(x, z) dedk + %/V(x, Z)N(x, z) dx, (23)

as well as the Casimirs, M = fff[n] dxdk, where f[n] is an arbitrary functional of the distribution ny(x, z). As will be
discussed below in Section 2.3.5, the long-range Vlasov equation was considered in [27] to describe highly nonlocal spatial
incoherent solitons.

2.3.2. Validity of the long-range Vlasov equation

It is important to underline that, thanks to the long-range nonlocal response, the system exhibits a self-averaging
property of the nonlinear response, [ U(x — &) |y (¥, 2)|°d¥’ =~ [ U(x — ¥ )N(¥', z)dx'. Substitution of this property into
the nonlocal NLS equation (1) thus leads to a closure of the hierarchy of the moment equations. More specifically, using
statistical arguments similar as those in [91], one can show that, owing to the highly nonlocal response, the statistics
of the incoherent wave turns out to be Gaussian. Then contrarily to a conventional Vlasov equation, whose validity is
constrained by the assumptions of (i) weakly nonlinear interaction and (ii) quasi-homogeneous statistics, the long-range
Vlasov equation provides an exact statistical description of the random wave v (x, z) in the highly nonlocal regime, ¢ < 1.
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This property is corroborated by the fact that the Vlasov equation considered here is formally analogous to the Vlasov
equation considered to study long-range interacting systems [117,154]. In this context, it has been rigorously proven that,
in the limit of an infinite number of particles, the dynamics of mean-field Hamiltonian systems is governed by the long-
range Vlasov equation [117]. Note however that the term ‘long-range’ used in Ref. [117] refers to a response function whose
integral diverges, f U(x) dx = 400, while the response functions considered here refer to exponential or Gaussian shaped
functions typically encountered in optical materials (see e.g., [110]).

2.3.3. Highly nonlocal response: Linear limit

In the limit of a highly nonlocal nonlinear interaction, the range of the response function can be much larger than the
scale of inhomogeneous statistics, o >> A.In this limit, the response function can be extracted from the convolution integral
in the effective potential (22), which thus leads to

V) = —yNU®K). (24)

It is interesting to note that in this limit, the response function plays the role of the effective potential. Accordingly, the
Vlasov equation looses its self-consistent nonlinear character and thus reduces to a linear kinetic equation.

Accessible (incoherent) solitons

This highly nonlocal limit was originally explored by Snyder and Mitchell in Ref. [111], and has then been the subject
of a detailed investigation in optics in the framework of the so-called ‘accessible solitons’ [100,101]. Indeed, the above
approximation (o > A) can be performed starting from the original NLS equation (1), which is thus reduced to a local
and linear Schrédinger wave equation,

i, +aViy + y NUR)Y = 0. (25)
This equation describes the evolution of an optical beam trapped in an effective waveguide structure whose profile is given
by the nonlocal response function U(x). Because this equation is linear, it does not describe modulational instability, or
the generation of new frequency components. It is in this highly nonlocal limit that the incoherent solitons reported in
Ref. [112,26,155] were studied. These incoherent solitons may thus be viewed as a random superposition of the linear
eigenmodes of the potential U(x), which are preserved during the linear propagation of the incoherent beam. We finally
note that the Vlasov equation with the effective potential (24) can also be readily derived from the linear Schrédinger
equation (25).

2.3.4. Incoherent modulational instability

Modulational (or Benjamin-Feir) Instability (MI) refers to the phenomenon in which an initially plane- (or continuous-)
wave tends to break up spontaneously into periodic modulations while it propagates through a nonlinear medium. In the
frequency domain, this phenomenon can be interpreted as a phase-matched partially degenerate four-wave mixing process
in which an intense pump wave yields energy to a pair of weak sideband waves. In the following we shall see that an
incoherent field that exhibits a homogeneous statistics may become modulationally unstable with respect to the growth of
weakly statistical inhomogeneities, i.e., the incoherent field thus becomes statistically inhomogeneous [115,15,16,18].

The phenomenon of incoherent MI was originally described in the context of plasma physics [156,157]. More recently,
incoherent MI has been the subject of a detailed investigation in the optical context with an inertial nonlinear response
[15,16,10,17,158], a feature that will be discussed in Section 4.3 in more details. We present here the phenomenon of
incoherent MI in the framework of the long-range Vlasov formalism, which provides an ‘exact’ description of the random
nonlinear wave, as discussed here above in Section 2.3.2.

For the sake of simplicity, we limit the incoherent MI analysis to the one-dimensional case. We assume that the incident
field exhibits a homogeneous statistics, except for small perturbations that depend on x and z. Note that any homogeneous
stationary distribution, n, is a solution of the Vlasov equation, that is, 3,n) = 0. We perturb this stationary solution
according to ny(x, z) = ng + dny(x, z), with [§ng(x, 2)| K nff, and linearize the Vlasov equation

9, 8n(x, ) + 2akdSng(x, 2) + Laknﬁ /dx/axU(x —X) / dkéni(x',z) = 0. (26)

This equation can be solved by a Fourier-Laplace transform, Snk(K A = fo dz f dx exp(—Az — iKx) 8ny(x, z), which
gives the dispersion relation

a1< U(K) / = 2a1<k)2 dk, (27)

where U(I() = f U (x) exp(—iKx) dx. Assuming that the initial spectrum is Lorentzian-shaped, ng = 2Ny Ak/ (K + (Ak)?)
lie, 27)~" [ nldk = Nol, Eq. (27) gives

AK) = =20 AKIK| + |K|y/ 20y NoU (K), (28)

where the incoherent MI gain reads gy (K) = 2R [A(K)].
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Fig.4. Spatial incoherent MI: Plots of the MI gain given by Eq. (28), gmi(K) = 2R[A(K)], for an exponential response function, U(x) = exp(—|x|/0)/(20):
(a)o = 10A (dashed), o = 254 (continuous), for Ak = 0.5A7". (b) Ak = 0.4A~" (dashed), Ak = 0.6 A~ (continuous), for & = 10A.

First of all, we can note that incoherent MI requires a focusing nonlinearity, y > 0, as for the usual coherent MI. However,
contrary to coherent MI, a focusing nonlinearity is not a sufficient condition for the occurrence of incoherent MI. Indeed,
we remark in the MI gain expression (28) the existence of a damping term, which introduces a threshold for incoherent
MI [10,15,92]. Note that, the existence of a threshold for incoherent MI was shown to be formally related to the existence
of an effective Landau damping [96,10,17,97]. In this way, the stabilizing effect of the partial coherence does not refer to a
genuine dissipative damping, but rather a self-action effect analogous to Landau damping of electron plasma waves [159]
that causes a redistribution of the spectrum ny(x, z). This effective damping effect significantly reduces the MI gain and the
optimal MI frequency, Ky, as illustrated in Fig. 4. We note here that incoherent MI has been the subject of lot of interest, in
relation with experiments performed in photorefractive inertial nonlinearities [17,160-162] (see Section 4.3), or in optical
fiber systems [163-165,18].

It is interesting to note that in the limit of a local response (f](K) = 1), Eq. (28) reduces to a straight line. This leads to
an unphysical result: The MI gain increases with the modulation frequency K. This pathology stems from the fact that the
derivation of the Vlasov equation with a local nonlinearity is constrained by the assumption of quasi-homogeneous statistics.
However, as discussed above in Section 2.3.1, the assumption of quasi-homogeneous statistics is automatically satisfied in
the presence of a long-range nonlocality. Accordingly, the incoherent MI gain curve (28) is bell-shaped, with a maximum
growth-rate at some optimal frequency, Ky;.

2.3.5. Incoherent solitons

The Vlasov equation describes the evolution of the averaged spectrum of a random wave. Hence, a spatially localized and
stationary solution of the Vlasov equation describes an incoherent soliton state. The mechanism underlying the formation
of an incoherent soliton is schematically explained in Fig. 5. We consider here the case of bright solitons with a focusing
nonlinearity (¥ > 0), and again we limit the study to the pure one-dimensional situation. Let us consider the stationary
Vlasov equation

20k 3 (x) — 3,V (x) it (x) = 0 (29)

where the self-consistent potential is given by V(x) = —y f U(x—x)N(x') dx' [see Eq.(22)]. Let us now recall an important
observation originally pointed out in the seminal paper [85], namely the fact that the solution to Eq. (29) can be expressed
as an arbitrary function of the effective Hamiltonian, h = ak? + V (x). To find an explicit analytical solution to Eq. (29), we
make use of this observation by following the procedure outlined in Ref. [86]. In this work, Hasegawa obtained an analytical
soliton solution of the Vlasov equation in the limit of a local nonlinear interaction, U (x) = &(x). This solution has been recently
generalized to a nonlocal interaction in Ref. [27]. The idea of the method is to argue that the ‘particles’ that constitute the
soliton are trapped by the self-consistent potential V (x) provided that their energy is negative, h < 0. This determines a
specific interval of momenta for the trapped particles, —k. < k < k., where k. = \/—V /a (note that V < 0 in the focusing
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V(x)

Fig. 5. Schematic representation of the self-trapping mechanism underlying the formation of an incoherent soliton solution of the Vlasov equation. A
soliton forms when the optical beam induces an attractive potential V(x) < 0 (waveguide) owing to a focusing nonlinearity (y > 0). In turn, the optical
beam is guided in its own induced potential V (x).

regime, see Fig. 5). According to Eq. (14), the intensity profile of the soliton solution thus reads N (x) = (277) ! :Lk’f ' (x) dk.

By means of a simple change of variables, this integral can thus be expressed in the form of a Fredholm equation
_ 1 0 nst (h)
- 2 1% h—V

A solution to this equation can be obtained under the assumption that U(x) and N(x) are Gaussian-shaped [27]. Assuming
U(x) = 2ro?)~"? exp[—x%/(20%)] and N(x) = N (2o2)~ /% exp[—x?/(202)], and making use of the Laplace convolu-
tion theorem, we have

dh. (30)

1
2

1_
(%) = Q [¢,N"(x) — BK*]" 2, (31)
where
1
2B (' + 1)
Q= - n (32)
'(n='+1/2)r(1/2)c,
I’ (x) being the Gamma function, and
27)3 " 2y0)
¢ = (”)—VUN (33)
N1 o2 + 0,3
with
1
n=-——-. (34)
1+ (0 /on)?

This analytical solution is self-consistent, in the sense that it verifies the condition (30), and it is straightforward to check
by direct substitution that it is indeed a solution of (30).

Local limit

The fact that this solution generalizes the solution obtained by Hasegawa [86] becomes apparent by remarking that
Eq. (31) can be expressed as

1

1

n (h) ~ (=h)"" 2. (35)
In the limit of a local potential, U(x) = §(x), the parameter n — 1, and (35) recovers the solution n* (h) ~ /—h [86]. Note
however that for a local nonlinearity [86], the analytical solution is valid for any form of the intensity distribution, N(x),
a property that was subsequently interpreted in the framework of a ray-optics approach [166]. Conversely, for a nonlocal
nonlinearity, the analytical solution (31)-(34) refers to a Gaussian-shaped intensity profile.

Vlasov simulations: Incoherent soliton turbulence

The phenomena of incoherent MI and subsequent incoherent soliton formation can be visualized by means of a direct
numerical integration of the long-range Vlasov equations (11) and (22). This is illustrated in Fig. 6, which reports the
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Fig. 6. Incoherent soliton turbulence: Numerical simulation of the long-range Vlasov equations (11) and (22), showing the evolution of the local spectrum,
ny(x), during the propagation. The initial homogeneous spectrum exhibits incoherent MI: The four modulations excited by the initial condition lead to the
generation of four incoherent structures, which slowly coalesce into two, and then into one incoherent soliton state. (a) z = 300, (b)z = 1000, (c)z = 1500,
(d)z = 3000, (e) z = 4000, (f) z = 10* (in units of L), o = 10% A. (g) Corresponding evolution of the spatial intensity profile, N(x, z). (h) Corresponding
spectrum S(k, zo) at zo = 700Ly;, in log,y-scale.

Source: From Ref. [27].

evolution of the spectrum of the incoherent wave during its propagation. The simulation starts from a homogeneous
spectrum, ng(x,z = 0) =~ ng, which is periodically perturbed to seed the incoherent MI. Because of the nonlinear
Hamiltonian flow, particles following different orbits travel at different angular speeds, a process known as ‘phase-mixing’.
Each MI-modulation thus starts spiraling in the phase-space (x, k), which leads to the formation of four localized incoherent
structures, which are mutually attracted and coalesce into two, and eventually into a single incoherent structure. Note
that this process is analogous to the soliton turbulence scenario that occurs for coherent solitons [113], as discussed in
Section 5.2.1. The phase-mixing then leads to a smoothing and homogenization of the perturbations on the incoherent
structure, which thus slowly tend to relax towards a stationary incoherent soliton state. Note that the asymptotic evolution
of inhomogeneous Vlasov states is a long standing mathematical problem (see, e.g., [167-169]).

3. Temporal domain

In this section we study the longitudinal temporal evolution of a partially coherent wave that propagates in a nonlinear
medium characterized by a noninstantaneous response. As discussed in Section 1 through Fig. 3, the structure of the kinetic
equation depends on the nature of the statistics of the field. The main difference with respect to the spatial nonlocal
nonlinearity considered in the previous section relies on the fact that in the temporal case the response function is
constrained by the causality condition. We will see below that a noninstantaneous nonlinearity leads to a kinetic description
which is formally analogous to the weak Langmuir turbulence equation, irrespective of the nature of the fluctuations
that may be either stationary or non-stationary. In the presence of a temporal long-range response and a stationary
statistics of the incoherent wave, the weak Langmuir turbulence reduces to singular integro-differential kinetic equations
(e.g., Benjamin-Ono equation) that describe incoherent dispersive shock waves. Conversely, when the wave exhibits a non-
stationary statistics still in the presence of a highly noninstantaneous response, the dynamics is ruled by a non-Hamiltonian
temporal version of the long-range Vlasov equation, whose self-consistent potential is constrained by the causality condition
of the noninstantaneous response function. It is interesting to note that, in the temporal domain, the WT kinetic equation
turns out to be only relevant for an instantaneous nonlinear response and a statistically stationary incoherent wave, as will
be discussed in Section 5.4 in the framework, e.g., of supercontinuum generation.

In this section we first discuss the WT Langmuir equation in the framework of spectral incoherent solitons and incoherent
shocks. Next we the present the temporal version of the long-range Vlasov equation through the description of incoherent
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modulational instability and incoherent solitons. The presentation of this section is structured along the lines of Refs. [29,
92,119,120,170,18].

3.1. Noninstantaneous response

3.1.1. NLS model

A noninstantaneous nonlinear response of the medium arises in several problems of radiation-matter interaction [171].
A typical example in one dimensional systems is provided by the Raman effect in optical fibers, which finds its origin in the
delayed molecular response of the material [ 138]. We consider the standard one-dimensional NLS equation accounting for
a noninstantaneous nonlinear response function

+00
i3z11f+/38rrw+w/f/ Rt =) [y Pz, ) dt' =0, (36)

where the response function R(t) is constrained by the causality condition. In the following we use the convention thatt > 0
corresponds to the leading edge of the pulse, so that the causal response will be on the trailing edge of a pulse, i.e., R(t) =0
for t > 0 (obviously, the physical phenomena we are going to present do not depend on the choice of the convention). We
will write the response function in the form R(t) = H(—t)R(—t), where R(t) is a smooth function from [0, c0) to (—o0, 00),
while the Heaviside H(—t) ensures the causality property. As we will see, this convention will allow us to easily compare
the dynamics of temporal incoherent solitons with the corresponding spatial dynamics discussed in Section 2. Because of
the causality property, the real and imaginary parts of the Fourier transform of the response function

R@) = U() +ig(w), (37)
are related by the Kramers-Kronig relations, U(w) = %!P f f)f—‘fg do', and g(w) = —%!P f Zf—f’g de', where # denotes the
principal Cauchy value and k(a)) = f R(t) exp(iwt)dt[note that g(w) = —Im (fooo R(t) exp(iwt)dt)]. We recall in particular
that the real part U (w) is an even function, which will be shown to lead to a conservative dynamics, in a way similar to
the nonlocal potential U(x) in the spatial domain. On the other hand, the imaginary part g(w) is an odd function, which is
known to play the role of a gain spectrum that leads to a spectral shift of the wave, a well-known feature in the example

of the Raman effect in optical fibers [ 138]. The causality condition breaks the Hamiltonian structure of the NLS equation, so
that Eq. (36) only conserves the total power (‘number of particles’) of the wave

N = / [w12(t, z) dt. (38)
The typical temporal range of the response function R(t) denotes the response time, tz. In Eq. (36), 8 denotes the (second-
order) dispersion coefficient of the material, 8 = —%Bjk(a)) [138]. We recall that 8 > 0 (B8 < 0) denotes the regime

of anomalous (normal) dispersion—in this way the parameter § plays the same role as the diffraction parameter « in the
spatial case.

The dynamics is ruled by the comparison of the response time and the ‘healing time’, 7ty = +/|8|/(ly|p), where, as
discussed previously in the spatial case, p = /T is the density of power (intensity), T being the size of the numerical
window. Moreover, as in the spatial case, the weakly nonlinear regime of interaction refers to the regime in which linear
dispersive effects dominate nonlinear effects, i.e., Ly/Ly < 1where Ly = t2/|8| and L, = 1/(]y|p) refer to the dispersive
and nonlinear characteristic lengths respectively, t. being the correlation time of the partially coherent wave.

3.2. Short-range: Weak Langmuir turbulence equation

Proceeding as in the spatial case we look for an equation describing the evolution of the auto-correlation function,
B(t,t,2) = (Y(t —t/2,2)y*(t + t/2, 2)). Exploiting the property of factorizability of moments of Gaussian fields, one
obtains the following closed equation for the evolution of the autocorrelation function

i9,B(t, ) = 2897 B(t, T) — yP(t, ) — yQ(t, 0), (39)
where we have omitted the z-label. The functions P(¢t, ) and Q (t, 7) are

P(t, ) = B(t, 7) / RO)N(t—6 —1/2) = N(t — 6 + 7/2)]db, (40)

Qt, 1) = /R(@)[B(t —6/2—1/2,—60)B(t —6/2,T+60) —B(t —6/2,T —0)B(t —6/2+7/2,0)]d6, (41)
where

N(z,t) =B(z,t,0) = ([ (z, )|) (42)

denotes the averaged power of the field, which depends on time t because the statistics of the field is a priori nonstationary.
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We consider here the case of a noninstantaneous nonlinearity characterized by a short-range response time, i.e., the
regime where the response time is of the same order as the ‘healing time’, tzx ~ 79. We look for an equation for the averaged
local spectrum defined by n,(t,z) = fj;o B(t, 7, z) exp(iwt) dr. We proceed as in the spatial case discussed above in
Section 2.2 and perform a multiscale expansion with

B(t,7,2) = B9 (et, 7, 62) + O(e),

where ¢ = t./A is the ratio of the time correlation and the characteristic time of nonstationary fluctuations. However,
contrarily to the spatial case, the response function is constrained by the causality condition in the temporal domain, an
important property which completely changes the picture. It turns out that the relevant kinetic equation describing the
evolution of the averaged spectrum of the wave is the WT Langmuir equation (see in Appendix A.3)

+00
9N, (t,2) = % N, (t, Z)f g(w— &) ny(t,z)do’, (43)

where we recall that g(w) = S[R(a))] is an odd function that refers to the imaginary part of the Fourier transform of the
response function. In the spatial case this function vanishes simply because the response function U(x) is a real and even
function, and thus U (k) is real and even too. As a matter of fact, the derivation of the short-range Vlasov equations (11)-(13)
in the spatial case requires a first-order perturbation expansion in ¢, whereas the WT Langmuir equation (43) is obtained
at zero-th order (see Appendix A.3 for details). Then the WT Langmuir equation originates in the causality property of the
noninstantaneous response function R(t).

Note that several simplified forms of this kinetic equation have been the subject of a detailed study in the literature.
A differential (‘hydrodynamic’) approximation of the integrodifferential equation (43) was derived for the first time by
Kompaneets [172]. This Compton Fokker-Planck equation has been subsequently analyzed by several authors [173-175].
The complete integral kinetic equation (43) may be derived from the Zakharov equations [176], it can also be derived
from the quantum version of the Boltzmann-like kinetic equation describing the nonlinear induced Compton scattering
[177,175]. Under certain conditions, the WT Langmuir equation has been shown to reduce to the Korteweg-de Vries
equation. This aspect will be discussed in detail in Section 3.2.2, in relation with the causality condition inherent to the
nonlinear response function, R(t).

Stationary vs. nonstationary statistics

The fact that the WT Langmuir equation (43) is relevant for an incoherent wave whose fluctuations are statistically
stationary in time has been pointed out recently in the context of optics [29,119,30], as well as in previous works in the
plasma context [118,178-183]. One would have expected that the description of a non-stationary statistics would naturally
involve a Vlasov-like kinetic equation, as discussed above in the spatial case. However, it turns out that the WT Langmuir
equation (43) s also relevant for the description of a statistically non-stationary random wave. In this respect, an initial condition,
n,(t, z = 0), localized in both the spectral and temporal domains will exhibit a nontrivial deformation in the plane (w, t)—
the temporal regions characterized by a high spectral amplitude will exhibit a fast spectral shift as compared to regions
with a lower spectral amplitude. This aspect was discussed at a qualitative level in the optical experiment reported in
Ref. [184].

Properties of the WT Langmuir equation
We briefly summarize here the essential properties of the kinetic equation (43) in the limit of a stationary statistics

y +0o0
@ = L nyt2) f 80 — ) 1y (2) da (44)

We first note that this equation does not account for dispersion effects (it does not involve the parameter 8), although the
role of dispersion in its derivation is essential in order to verify the criterion of weakly nonlinear interaction, L;/L, < 1.
The fact that the dynamics ruled by the WT Langmuir equation does not depend on the sign of the dispersion coefficient has
been verified by direct numerical simulations of the NLS equation (36) [119]. The kinetic equation (44) conserves the power
of the field

1
N = —fnw(z) do. (45)
2
Moreover, as discussed above for the Vlasov equation, the WT Langmuir equation (44) is a formally reversible equation [it

is invariant under the transformation (z, ) — (—z, —w)], a feature which is consistent with the fact that it also conserves
the non-equilibrium entropy

S= 1 / log[n,, ()] dw. (46)
2
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3.2.1. Spectral incoherent solitons

The WT Langmuir equation admits solitary wave solutions [118,179,180,182,183]. This may be anticipated by remarking
that, as a result of the convolution product in (44), the odd spectral gain curve g (w) amplifies the low-frequency components
of the wave at the expense of the high-frequency components, thus leading to a global red-shift of the spectrum.

Continuous vs. discrete spectral incoherent solitons
A physical insight into spectral incoherent solitons may be obtained by a qualitative analysis of the shape of the
gain spectrum g(w). To be concrete, we consider the useful example of a damped harmonic oscillator response R(t) =

% sin(nt/tg) exp(—t/tg), which has been normalized in such a way that fR(t)dt = 1. The parameter n denotes the
ratio between the response time 7z and the time related to the resonant frequency, wg =~ 7n/tz. We reported in Fig. 7 two
examples of gain spectra g(w) that correspond to different ratios of the response times, n = 1(a),and n = 32/12.2 >~ 2.6
(d). The latter case (d) is of particular interest since it corresponds to the example of the Raman response in silica optical
fibers, i.e., g = 32 fs, tg/n = 12.2 fs [138]. We report in Fig. 7(c) and (f) the corresponding evolutions of the optical spectra
obtained by integrating numerically the NLS equation (36). The initial condition is an incoherent wave characterized by a
Gaussian spectrum with §-correlated random spectral phases, so that the initial wave exhibits stationary fluctuations. The
Gaussian spectrum is superposed on a background of small noise of averaged intensity no = 10~>. This is important in order
to sustain a steady soliton propagation, otherwise the soliton undergoes a slow adiabatic reshaping so as to adapt its shape
to the local value of the noise background. The spectral width of the initial Gaussian spectrum has been chosen of the same
order as wg, i.e., of the same order as the maximum gain frequency of g(w). In this way the initial spectrum ‘feels’ the whole
spectral gain curve g(w).

As illustrated in Fig. 7(c), the spectrum of the wave splits into two components during the propagation: A continuous
spectral incoherent soliton emerges from the initial condition, while the remaining energy is characterized by a small-
amplitude field, which essentially evolves linearly as a radiation-like part. This soliton behavior refers to the continuous
spectral incoherent soliton. Conversely, as the parameter 1 increases, we see in Fig. 7(f) that the continuous spectral
incoherent soliton is unstable, and relaxes at z ~ 60L,; towards a discrete soliton behavior, which is subsequently conserved
for very long propagation distances.

The fact that a continuous spectral incoherent soliton may become discrete during its evolution may easily be interpreted
through a qualitative analysis of the gain curve g(w). Indeed, a comparison of Fig. 7(a) and (d) clearly shows that the gain
curve becomes narrower and more peaked as 7 is increased, i.e., as the resonant frequency wy gets much larger than the
spectral bandwidth of the gain curve, wg > Aw. As a result, the red-shift of the wave spectrum becomes discrete, because
the leading edge of the low-frequency tail of the spectrum exhibits a much higher gain as compared to the mean gain of the
whole front of the spectrum. The remarkable result is that the global spectral red-shift exhibits a genuine discrete soliton-like
behavior: The discrete soliton propagates with a constant velocity in frequency space for arbitrary long distances, without
emitting any apparent radiation.

Note that the optical field associated to spectral incoherent solitons exhibits a stationary statistics. This is illustrated
in Fig. 7(b) and (e), which report typical temporal intensity profiles associated to the continuous and the discrete solitons
considered in Fig. 7(c) and (f). Then the soliton behavior of these incoherent structures does not manifest in the temporal
domain, but exclusively in the spectral domain.

Role of the background noise level

The relative intensity of the background noise with respect to the average power of the wave plays an important role in
the dynamics of discrete spectral incoherent solitons. Indeed, the continuous spectral incoherent soliton is known to become
narrower (i.e., of higher amplitude) as the intensity of the background noise decreases. Accordingly, a transition from the
continuous to the discrete spectral incoherent soliton occurs as the relative intensity of the background noise is decreased:
As the spectral soliton becomes narrower than wg, the leading edge of the tail of the spectrum will be preferentially amplified,
thus leading to the formation of a discrete spectral incoherent soliton. This is confirmed by the numerical simulations
reported in Fig. 8, which illustrates the evolution of the spectrum of the field during the propagation for different values
of the background noise intensity.

In order to test the validity of the WT Langmuir theory, we reported in Fig. 8 a direct comparison with the NLS approach.
The numerical simulations of the NLS equation (36) involving a stochastic function ¥ (t, z) have been realized with the
same parameters and the same initial conditions as those of the WT Langmuir equation (44). We underline that an excellent
agreement has been obtained between them, without using any adjustable parameter. This good agreement has been
obtained with a reasonable value of the weakly nonlinear parameter, Ly/L, ~ 0.02.

Strong background noise: Incoherent spectral oscillations

We finally note that if the background noise level increases in a significant way and becomes of the same order than
the amplitude of the spectral soliton, the incoherent wave enters a novel regime [185]. This regime is characterized by
an oscillatory dynamics of the incoherent spectrum which develops within a spectral cone during the propagation. Such
spectral dynamics exhibits a significant spectral blue shift, which is in contrast with the expected Raman-like spectral red
shift. In the presence of a strong noise background, the Langmuir WT equation (44) can be linearized, so that an explicit
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Fig. 7. Continuous vs. discrete spectral incoherent solitons: Influence of the gain spectrum g(w) on the dynamics of spectral incoherent solitons. Gain
spectrag(w) for n = 1(a), and n = 2.6 (d), corresponding to a damped harmonic oscillator (Raman-like) response function (see the text). Evolutions of the
spectra of the field, |/ |?(z, ) (in dB-scale), obtained by solving numerically the NLS equation (36) for = 1(c), and = 2.6 (f). The inset in (f) represents
the spectrum of the field at zy = 88L,;. Temporal intensity profile |1/ |?(zo, t) for n = 1(b), and n = 2.6 (e) at zy = 88L,, showing that the optical field is
not localized in the time domain (the random wave exhibits a stationary statistics). Note that the dots in the discrete spectral incoherent soliton in (f) are
separated by (the Raman-like spectral shift) wy in frequency space (8y < 0).

Source: From Ref. [119].

analytical expression for the spectral evolution of the incoherent wave can be obtained, in quantitative agreement with the
simulations of the NLS equation [185].

Spectral incoherent solitons: Analytical solution

The WT Langmuir equation admits soliton solutions. More precisely, it is possible to compute the width and velocity of
the soliton given its peak amplitude n,, in the regime n,,, > ngy, where ny denotes the spectral amplitude of the background
noise. This was done in Ref. [182] for the particular case where the gain spectrum g(w) is the derivative of a Gaussian. As
discussed below in Section 3.2.2, this kind of gain spectrum is not relevant to optical waves. However, this solution can be
generalized for a generic form of the gain spectrum g(w) [92].
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Fig. 8. Transition from discrete to continuous spectral incoherent soliton. Left column (a)-(c): Evolution of the non-averaged spectrum of the optical field,
|¥1%(z, ®) (in dB-scale), obtained by integrating numerically the NLS equation (36) for three different values of the noise background, np = 1077 (a),
ny = 107> (b), ny = 1073 (c). Right column (d)-(f): Corresponding evolution of the averaged spectrum, n(z, w) (in dB-scale), obtained by solving the
Langmuir WT Eq. (44): The comparison reveals a quantitative agreement, without using adjustable parameters. We considered n = 2.6 in the Raman-like
gain spectrum g(w) (By < 0).

Source: From Ref. [119].

We introduce the antiderivative of the spectral gain

G(w) = — / oog(w/)da)’. (47)

The gain spectrum g(w) is characterized by its typical gain amplitude g; and its typical spectral width w;. Regardless of
the details of the gain curve g(w), g and w; can be assessed by two characteristic quantities, namely the gain slope at the
origin d,,g(0) and the total amount of gain G(0) = — f0°° g(w)dw. Note that, by integration by parts, we have g(w) = — %

+ é Jo R (t) sin(wt) dt, where R?)(¢) is the second time derivative of R(t). This shows that G(0) is finite if and only if
R(0) = 0. A dimensional analysis allows us to express g; and w; in terms of these two quantities

i e " [~ J;* gw)de]
i = —=|—0,8(0 - d , = V2 . 48
5= 5[-080]" |- [ g@io] o=V 50" (48)

With these definitions, the function G(w) can be written in the following normalized form

G(w) = giwih(%>,

i
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where the dimensionless function h(x) verifies h(0) = 1, i’(0) = 0, and h”(0) = —2. Proceeding as in [182], the profile of
the soliton in the regime n,; >> ng is of the form [92]:

oo(*5,7) = () (),

nm\ (0 — Vz)?
() — no = (Mm — no) exp[— log(—m>72], (49)
No (©OF
where the velocity of the soliton is
2
My — 1N 10;
= Py (50)
log (ﬁ) JT
and its full width at half maximum is
2log'/?2 (51)
Wsol = 7577 Wi
log!/ (’r’l—o)

The structure of discrete spectral incoherent solitons can also be interpreted with an analytical soliton solution of the
discretized WT Langmuir equation derived in Ref. [ 180]. In this way, discrete frequency bands of the soliton are modeled as
coupled Dirac §-functions in frequency space (5-peak model). However, the simulations show that, when injected as initial
condition into the WT Langmuir equation with a Raman-like gain spectrum, the analytical soliton solution rapidly relaxes
during the propagation towards a discrete spectral incoherent solution [119]. This property reveals the incoherent nature
of discrete spectral incoherent solitons. It also distinguishes these discrete structures from the cascaded Raman soliton
solutions reported in Refs. [186-188] or their recent generalizations [189-191], which involve several phase-locked Raman
lines. Since these Raman solitons are inherently coherent localized structures, they are of a different nature than discrete
spectral incoherent solitons.

We finally note that the emergence of continuous and discrete spectral incoherent solitons has been identified
experimentally owing to the Raman effect in photonic crystal fibers in the context of supercontinuum generation (see
Section 5.4.5).

3.2.2. Korteweg-de Vries limit

Let us consider the case of a highly noninstantaneous nonlinear response of the material. This case is interesting because,
as the response time ty increases, the typical bandwidth of the gain spectrum g(w) decreases, and can thus become much
smaller than the spectral bandwidth of the incoherent wave. Assuming furthermore that the wave spectrum evolves in the
presence of a strong noise background, it can be shown that the WT Langmuir equation reduces to the Korteweg-de Vries
(KdV) equation. This aspect was already discussed in Ref. [180]. Here we provide a rigorous derivation of the KdV equation
from the WT Langmuir equation.

We start from the WT Langmuir equation (44) and introduce the small parameter ¢ = Aw,/Aw < 1, where we recall
that Awg is the bandwidth of the spectral gain curve g(w) and Aw the bandwidth of the incoherent wave. The incoherent
wave is assumed to evolve in the presence of a high level of constant spectral noise background of amplitude ng. In this way
the gain curve can be written g(w) = g (w/¢) and we look for the spectrum in the form

N,(z) = ng + Ny, (2),

with i, (z) = ezﬁfj’) (%2) +0(&%). In these conditions a multiscale expansion shows that fi,, satisfies the Korteweg-de Vries
equation (see Appendix A.4)
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&z—/ wg(w)dw, &z—/ w’g(w)do.
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The soliton solutions of this integrable equation have been used to interpret the formation of jets in the frequency space in
the study of weak Langmuir turbulence [ 180]. Note however that the KdV equation considered in [ 180] differs substantially
from Eq. (52). In particular, it is important to note that the validity of the KdV equation (52) is constrained by the convergence
of the integrals g; and g3, i.e., the gain spectrum must decay as or faster than g (w) ~ 1/w’ as w — Foo. However, in general,
a response function does not lead to such rapidly decaying spectral gains. To comment on this aspect, we first remark that,
because of the causality condition of the response function R(t), its Fourier transform necessarily decays algebraically at
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infinity.? In the example of the damped harmonic oscillator response the spectral gain decays as g () ~1 /a)3,_while for a
purely exponential response g(w) ~ 1/w. A decay as or faster than g(w) ~ 1/w° happens if and only if R(0) = R®(0) = 0,
which thus requires a quite artificial expression of the response function R(t). We also remark in Eq. (52) that g; = 7RM(0)
and g5 = —7R®(0).

Actually, the reduced KdV equation is relevant in plasmas because a different physics is considered in this context. In
many cases, the kernel function that plays the role of g(w) has been approximated by the derivative of a Gaussian in
plasma [118]. For instance, when one considers stimulated Compton scattering, photons are scattered from thermalized
electrons, and g(w) can be approximated by the derivative of a Maxwellian [182]. In this case g(w) does not decay
algebraically. This discussion reveals that the KdV equation does not appear as the appropriate reduced equation of the
WT Langmuir equation in the context of optics.

3.2.3. Singular integro-differential kinetic equations: Incoherent shock waves

In this section we present the procedure which allows one to derive appropriate reduced kinetic equations from the WT
Langmuir equation in the long-range limit, i.e., the limit of a highly noninstantaneous nonlinear response. As discussed here
above, the causality condition leads to a gain spectrum g (w) that decays algebraically at infinity, a property which introduces
singularities into the convolution operator of the WT Langmuir equation (44). The mathematical procedure consists in
accurately addressing these singularities (for details see Appendix A.5). It reveals that, as a general rule, a singular integro-
differential operator arises systematically in the derivation of the reduced kinetic equation [120]. The resulting singular
integro-differential kinetic equation then originates in the causality property of the nonlinear response function.

These singular integro-differential kinetic equations find a direct application in the description of dispersive shock
waves, i.e., shock waves whose singularity is regularized by dispersion effects instead of dissipative (viscous) effects [121].
Dispersive shock waves have been constructed mathematically [192] and observed in ion acoustic waves [193] long ago,
though it is only recently that they emerged as a general signature of singular fluid-type behavior in areas as different
as Bose-Einstein condensed atoms [ 193-197], nonlinear optics [198,199,102,103,200-206], oceanography [207], quantum
liquids [127,128], nonlinear chains [208] or granular materials [209], and electrons [210]. We remark that dispersive shock
waves have been also recently studied in the presence of structural disorder of the nonlinear medium [211,200,203].

These previous studies on dispersive shock waves have been discussed for coherent, i.e., deterministic, amplitudes of
the waves. Through the analysis of the WT Langmuir equation, we will see that incoherent waves can exhibit dispersive
shock waves of a different nature that their coherent counterpart. They manifest themselves as a wave breaking process
(“gradient catastrophe”) in the spectral dynamics of the incoherent field [ 120]. Contrary to conventional shocks which are
known to require a strong nonlinear regime, these incoherent shocks develop into the weakly nonlinear regime. This WT
kinetic approach also reveals unexpected links with the 3D vorticity equation in incompressible fluids [ 122], or the integrable
Benjamin-Ono equation [ 123,124], which was originally derived in hydrodynamics [ 125,126] and recently considered in the
field of quantum liquids [127,128].

Damped harmonic oscillator response: Incoherent shocks

(a) Without background

The derivation of singular integro-differential kinetic equations has been developed for a general form of the response
function (see the Supplemental of Ref. [ 120]). Here we illustrate the theory by considering two physically relevant examples
of response functions, which, respectively, induce and inhibit the formation of incoherent shock waves.

Let us first consider the example of the damped harmonic oscillator response, R(t) = 1;;22 sin(nt/tg) exp(—t/g).
Fig. 9 reports a typical evolution of the spectrum of the incoherent wave obtained by numerical simulations of the NLS
equation (36). As discussed above in Section 3.2.1, when the spectral bandwidth of the initial wave is of the same order as the
gain bandwidth, Aw ~ Awg (t. ~ ), the field rapidly evolves towards a spectral incoherent soliton. Considering the highly
incoherent limit, Aw > Aw, (t. < 13), one would expect that the initial broad spectrum would split into several spectral
incoherent solitons of typical width ~Aw,. However, the initial broad spectrum exhibits a global collective deformation on
a spectral scale much larger than Aw,, which means that the system exhibits a kind of ‘long-range interaction in frequency
space’. The behavior of the system then changes in a significant way when t. < tz: The low-frequency front of the spectrum
exhibits a pronounced self-steepening, whose spectral wave breaking is ultimately regularized by the development of large
amplitude and rapid spectral oscillations.

To describe the properties of these incoherent dispersive shock waves, we derive a singular integro-differential equation

from the WT Langmuir equation [ 120]. The convolution integral in Eq. (44), N, = fj;o g(w —u) n, du, can be written in the

2 The algebraic decay of g(w) is determined by the smoothness of the response function R(t) at 0. If R(t) can be expanded R(t) = ijo %Rf(o) as
t — 07, then g(w) can be expanded as ijo(—l)j“w’zf”l_?w)(O) as w — +o0. If R(0) # 0 (e.g., exponential response), then g(w) ~ 1/w. IfR(0) = 0
but R2(0) # 0 (e.g. damped oscillator), then g(w) ~ 1/w>. If R(0) = R® (0) = 0, then g(w) decays at least as 1/w°.
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Fig. 9. Incoherent dispersive shock waves with a damped harmonic oscillator (Raman-like) response function: ( ) Numerical simulation of the NLS
equation (36): The stochastic spectrum |v/|%(w, z) develops an incoherent shock at z =~ 1200Ly (g = 37o,n = 1). Snapshots at z = 1040Ly (b),
z = 1400Ly; (c): NLS (36) (gray) is compared with WT Langmuir equation (44) (green), singular kinetic equation [Eq. (56)] (dashed-red), and initial condition
(solid black). (d) First five maxima of n,, vs. z in the long-term post-shock dynamics: The spectral peaks keep evolving, revealing the non-solitonic nature
of the incoherent dispersive shock wave. Insets: (b) Gain spectrum g(w), note that Aw, is much smaller than the initial spectral bandwidth of the wave
[black line in (b)]. (c) Corresponding temporal profile |y (t)|> showing the incoherent wave with stationary statistics. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Source: From Ref. [120].

following form without approximations (see Appendix A.5)

NS = "o,n, —}(32 o+ —/ [90n0s & + 05m,a ]Gy(u)du, (53)
TR

where N, = (1+ nz)Ng/(nrR). We have defined foru > 0

G, () =/u (Fao — g) dv, (54)
and
F, (1) = ? - %[v arctan(v) — %log(l n vz)]w. (55)
u—y

The operator # refers to the Hilbert transform,

1 +oo —u
Hf (@) = L / flo-w 4,

T oo u
where we recall that & denotes the Cauchy principal value. Considering the limit tg/7p > 1 in Eq. (53), we obtain the
singular integro-differential kinetic equation

1
Tgaznw =y(1+ 772) <nwaa)nw - ?nwﬂaina)>~ (56)
R

This kinetic equation describes the essence of incoherent dispersive shock waves: The leading-order Burgers term describes
the formation of the shock, which is subsequently regularized by the nonlinear dispersive term involving the Hilbert
operator.
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Fig. 10. Incoherent dispersive shocks with a Raman-like response function in the presence of a spectral background noise: The shock is regularized by
the emission of incoherent Benjamin-Ono solitons. NLS (36), gray; WT Langmuir equation (44), green; Benjamin-Ono equation (57), dashed-red; initial
condition (dark). (g = 579, 7 = 1,(a)z = 3 x 10°, (b)z = 7 x 10° in units of L,;). The inset in (b) shows a zoom on the first three spectral peaks.
Source: From Ref. [120].

(b) With background: Benjamin—Ono kinetic equation
When the incoherent wave evolves in the presence of a significant background spectral noise, n,,(z) = ng+,(z), a scale
expansion of the convolution operator (53) with n,,(z) ~ ng/ 1z, leads to the singular integro-differential kinetic equation

- - s 1 -
Tlgazna) - J/(l + nz)noawnw = V(l + 772) <nwawnw - ?Rnoﬂaina))- (57)

The second term in the lhs of this equation can be removed by a change of Galilean reference frame in frequency space,
with ‘velocity’ c = —y (1 + n*)ng/ t,%. Eq. (57) then recovers the integrable Benjamin-Ono equation, which admits soliton
solutions and an infinite number of conserved quantities [124,123]. We just give here the simpler conserved quantities
N = [#,dw, Q = [ 72 dw, and the Hamiltonian structure

SH
2 ~
N, = 58
fR zlw (Sﬁw>w ( )
with
ng . 1. ng . -

The Benjamin-Ono equation was originally derived to model internal waves in stratified fluids [ 125,126]. Here, it provides
the deterministic description of the averaged spectral dynamics of incoherent waves. Then the incoherent shock in Fig. 10
is regularized by the emission of genuine incoherent BO solitons in the stochastic wave spectrum.

A quantitative agreement (without adjustable parameters) has been obtained between the numerical simulations of the
singular kinetic equations (56) and (57) and those of the WT Langmuir equation (44) for large values of /7o, consistently
with the scaling expansion underlying the derivation of singular integro-differential kinetic equations. A remarkable
agreement is also obtained for moderate values of tz/7o. The singular kinetic equations (56) and (57) thus provide a detailed
deterministic description of the incoherent shocks observed in the simulations of the NLS (36) with a stochastic function
¥ (z, t), as illustrated by the good agreement between the corresponding simulations in Figs. 9-12.

Exponential response: Inhibition of incoherent shocks

(a) Without background
Contrarily to what one may expect from the reduced KdV equation (52), the formation of dispersive shocks does not
constitute a generic feature of the WT Langmuir equation (44). We will illustrate this by considering the example of a purely
exponential response function, R(t) = exp(—t/tg)/z. In the limit /7y > 1, the singular kinetic equation reads (see
Appendix A.5)
TR Ny = —Y Ny HN, — anawnw + LGwﬂ’af)nw. (60)
TR 27y
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Fig. 11. Inhibition of incoherent shocks with an exponential response function. Without background spectral noise the spectrum exhibits a collapse-like
behavior: NLS (36), gray; singular kinetic equation (60), dashed-red (zz = 579). The dark continuous line denotes the theoretical behavior ~ 1/[z?n°(w =
€z)], with ¢ = —yN /1, predicted from the first term of Eq. (60) and the corresponding analytical solution (61).

Source: From Ref. [120].
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Fig. 12. Inhibition of incoherent shocks with an exponential response function. Instead of the collapse-like behavior (see Fig. 11), the presence of a
background noise turns the dynamics periodic: NLS simulation of Eq. (36) (a), plot of the analytical solution (63) (b), 7z = 21o.
Source: From Ref. [120].

Note that the second-order Burgers term produces a shock towards the high-frequency components (w > 0), so that the
leading-order term is the only one liable to produce a shock.

On the other hand, the second perturbative Burgers term produces a shock towards the high-frequency components
(w > 0), so that the first term is the only one liable to produce a shock. Interestingly, the first term of (60) was considered
as a one-dimensional model of the vorticity formulation of the 3D Euler equation of incompressible fluid flows [ 122]. In this
work, the authors found an explicit analytical solution to the equation 7zd,n,, = —yn,#n,. For a given initial condition
n,(z=0) = ng) the solution has the form

0
n,(z) = 4n;, . (61)
(2+ (yz/m)H#nd)” + (yz/R)2(n%)?

There is blow up if and only if there exists @ such that "2) = 0 and J(ng < 0. Then the blow up distance z. is given

by ze = —2w/[y#nl_, ], where wy is such that nf = 0. If the initial condition is Lorentzian: nf, = :fifgz with
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No = 2m)~! f n(a’)da), then the solution propagates with constant shape and constant velocity

2N00

") = W aR

with ¢ = —Npy /. However, if the initial condition decays faster than a Lorentzian, the spectrum exhibits a collapse-like
dynamics, which is ultimately arrested by a small background noise. In this process, the spectrum moves at velocity ¢, while
its peak amplitude increases according to ~4r,§ /ly%z°n°(w = €2)]. This property is confirmed by the simulations of the NLS
equation, as illustrated in Fig. 11.

(b) With background

This collapse-like behavior changes in a profound way when the incoherent wave evolves in the presence of a significant
spectral background. A scale expansion of the convolution operator in the WT Langmuir equation (44) with n,(z) =
ng + i, (z) and 11, (z) ~ ng/x (see Appendix A.5), leads to the singular kinetic equation

8,f1,, = i) ity — Ly + i) Bty + Lo G2 62
TROzN, = —)’(”0 + nw)](nw - ?(nO + na)) e + ﬁ% LE ( )
R TR

Since ny > 1, (z), the spectral dynamics of the incoherent wave is dominated by the first linear term in the rhs of (62),
which admits the following analytical solution,

flw(z) = cos(ynoz/tR)S, — sin(ynoz/r) H1D, (63)

where ﬁg = n,(z = 0) refers to the initial condition. This periodic behavior of the incoherent spectrum has been found in
quantitative agreement with the simulations of the whole singular kinetic equation (62), as well as with those of the WT
Langmuir equation (44) and the NLS equation (36), as illustrated in Fig. 12.

3.3. Long-range: Non-Hamiltonian Vlasov equation

In the previous Section 3.2.3 we have considered the role of long-range temporal responses for an incoherent wave
characterized by a stationary (homogeneous) statistics. Here we will study statistically nonstationary random waves in the
presence of a highly noninstantaneous nonlinear response. We will see that the dynamics of the incoherent wave is ruled
by a long-range Vlasov-like kinetic equation, whose self-consistent potential is constrained by the causality condition of the
response function, which breaks the Hamiltonian structure of the Vlasov equation.

In analogy with the study of long-range responses in the spatial domain (Section 2), we study here a long-range
noninstantaneous response R(t) in the regime 7z/t9 > 1. We assume that the response function has the form R(t) =
eR©(st) and we look for the autocorrelation function in the multiscale form B(t, t,z) = B@(et, 7, ez) + O(¢), with
BO(et, 1,62) = 2m)~! f ng’) (et, £z) exp(—iwT) dw. In these conditions, we derive in Appendix A.6 the temporal version
of the long-range Vlasov equation

3N (t, 2) + koo (£, 2) 3y (t, Z) — Bk (t, 2) BNy (£, 2) = 0, (64)

where the generalized dispersion relation reads

ko (t, 2) = k(w) + V(t, 2), (65)

with k(w) = Bw? and the effective potential

V(t,2) = —y/R(t —tHN(t', 2) dt’. (66)
The intensity profile of the incoherent wave is N(t,z) = B(t,t = 0,z) = 27)! j n,(t, z) dw. Eq. (64) conserves

N =Qr)"! // N, (t, z)dwdt, (67)
and more generally M = fff[n]dwdt where f[n] is an arbitrary functional of n.

Non-Hamiltonian structure of the Vlasov equation
Because of the causality property of R(t), Eq. (64) is no longer Hamiltonian. However, one can decompose the
Vlasov equations (64)-(66)into a Hamiltonian contribution and a non-conservative contribution. Indeed, according to the
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decomposition given in (37), R(a)) =U(w) + ig (w), the response function splits into the sum of an even contribution, U(t),
and an odd contribution, G(t), i.e., R(t) = U(t) + G(t), where

u(t) = % / U(w) exp(—iot) do, (68)

G(t) = i /g(w) exp(—iwt) dw. (69)

Accordingly, the Vlasov equation (64) can be written in the following form
021 (t, 2) + ke (t, 2) 0Ny (t, 2) — 0 Vy(t, 2) Dunu(t, 2) = 8V (t, 2) dunu(t, 2), (70)

where Vy(t,z) = —y [U(t — t)N(t',z)dt' and V¢(t, z) = —y [ G(t — t')N(t’, z) dt’. The lhs of Eq. (70) thus refers to a
conservative Vlasov equation, while the rhs of (70) may be viewed as a non-conservative ‘collision’ term, which leads to
a spectral shift of the wave. More precisely, it can be shown that the total Hamiltonian, # = ﬁ ff k(w) n,(t, z) dtdw +

% f V(t,z)N(t, z) dt, evolves according to

0, H(z) = —gfatVG(t,z)/wnw(t,z)da)dt. (71)

It becomes apparent that #¢ becomes a conserved quantity in the spatial case (see Section 2.2.1), where the odd contribution
to the response function vanishes, G(t) = 0, so that V;(t, z) = 0. The spectral shift of a wave-packet can be determined
through the analysis of the total momentum, £ (z) = (27)~" [ wn,(t, z) dt dw, which is related to the barycenter of the
spectrum, (w) = & /N. An equation for the momentum can easily be obtained from the Vlasov equation (70)

3, P(2) = / Ve(t,z) 9N(t, z) dt, (72)

which confirms that only the non-conservative potential contribution, V¢(t, z), leads to a spectral shift. Remarking
furthermore that G(t) can expressed in terms of the response function, G(t) = %[R(t) — R(—t)], it becomes easy to see
that a focusing (defocusing) nonlinearity leads to a spectral red-shift, d, < 0 (blue-shift, 3, > 0). We can remark that
this dependence of the spectral shift on the sign of the nonlinearity is also apparent in the WT Langmuir [see Egs. (43)
or (44)]. Note that a spectral blue-shift induced by a defocusing delayed nonlinearity is known to occur, e.g., in plasma
[32,212], in which, however, the total power of the wave is no longer conserved.

It is also interesting to analyze the position of the wave-packet in the time domain, 7 (z) = (27)~! f f tn,(t,z)dt dow,
which is related to the barycenter by (t) = 7 /.~. The evolution of 7 (z) can easily be obtained from the Vlasov equation (70)

9,7 (z2) =2BP(2), (73)

so that 7(z) = 7(0) + 28 foz P(z') dz'. Accordingly, propagation in the normal (anomalous) dispersion regime in the
presence of a focusing (defocusing) nonlinearity leads to an acceleration of the wave-packet towards t > 0. Eq. (73) also
reveals that there is a close relation between the spectral shift and the temporal shift of a wave-packet. This can easily be
interpreted by remarking that a spectral shift combined with group-velocity dispersion leads to an acceleration of the wave-
packet. These aspects will be discussed in detail in Section 3.3.4 through the analysis of the dynamics of incoherent soliton
states.

We finally remark that, in spite of this spectral shift of the incoherent wave given in Eq. (72), the Vlasov equa-
tions (64)-(66) predicts the existence of a genuine incoherent MI in the temporal domain [18], a property that will be
discussed in Section 3.3.3.

3.3.1. Instantaneous limit

To be complete, we briefly comment here the limit of an instantaneous response function. Making use of the assumptions
that the incoherent wave exhibits a quasi-stationary statistics and that it evolves into the weakly nonlinear regime, one
obtains the traditional form of the Vlasov equation (64) with the self-consistent potential

V(t,z) = —2yN(t, 2). (74)

This self-consistent potential is nothing but the temporal counterpart of the spatial potential discussed above in Section 2.2.2
in the limit of a purely local nonlinear response. In particular, the factor 2 in the effective potential (74) has the same origin
asin Eq. (19).

3.3.2. Highly noninstantaneous response: Linear limit
The limit of a highly noninstantaneous response function corresponds to the temporal counterpart of the highly nonlocal
limit discussed above in the spatial case (see Section 2.3.3). Indeed, in the limit tz > A, the response function can be
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extracted from the convolution integral in the effective potential (66), which thus leads to the temporal Vlasov equation (64)
with the potential

V(t) = —yNU(@). (75)

As for the highly nonlocal limit, the temporal response function U(t) plays the role of the effective potential, so that the
Vlasov equation recovers a linear kinetic equation. We remark that the dynamics of coherent optical waves in a highly
noninstantaneous response nonlinear medium has been recently explored theoretically in Ref. [213], in the framework of
gas- or liquid-filled photonic crystal fibers. By deriving a linear Schrédinger wave equation analogous to that discussed above
in Eq. (25) in the spatial domain, the authors of Ref. [213] predicted that a highly noninstantaneous responding medium can
support the existence of coherent soliton solutions. These soliton solutions are the temporal counterpart of the so-called
‘accessible solitons’ in the spatial case [111,100,101].

3.3.3. Incoherent modulational instability

According to the Vlasov equation derived here above, we will see that the incoherent wave exhibits an incoherent Ml in
the presence of a highly non-instantaneous nonlinear response, i.e., 7g /7o > 1. This result seems to be completely analogous
to the spatial case considered in Section 2.3.4. However, contrary to the spatial case, we will see that, because of the causality
condition of the response function, temporal incoherent MI can also take place in the normal dispersion regime.

Let us note that this result of temporal incoherent MI is in some sense an unexpected result. Indeed, as discussed in
detail above in this section in the framework of the WT Langmuir formalism, one would expect that a statistically stationary
incoherent wave exhibit a spectral red-shift during its propagation. This is a well-known fact when one considers the
example of the Raman effect in optical fibers. However, we will see that a highly noninstantaneous response leads to a
genuine process of incoherent MI of the wave, which is characterized by the growth of two symmetric MI bands within the
spectrum of the incoherent wave.

Proceeding in a way completely analogous to the spatial incoherent MI, we linearize the Vlasov equation with n,(t, z) =
nd +38n,,(t, z). Then assuming a Lorentzian-shaped initial spectrum, n? = 2NoAw/(w?+(Aw)?) [i.e,No = 27) "' [ nldw],
one obtains

M) = —2A0|BR2| + |21/ 2By NoR(£2), (76)

where the incoherent MI gain reads gy (§2) = 20[A(§2)]. This expression of MI gain is formally analogous to the expression
considered in the spatial case in Eq. (28). However, because of the causality property of the response function R(t), its
Fourier transform is complex, ﬁ(w) = U(w) + ig (w). Recalling that U(a)) is even and g(w) odd, the Ml gain gy (§2) is always
even, which means that incoherent MI is characterized by the growth of two symmetric sidebands. Another consequence
of the fact that R(w) is complex is that incoherent MI can also occur in the normal dispersion regime, i.e., for y8 < 0.
This is illustrated in Fig. 13, which reports the incoherent MI gains in the anomalous and normal dispersion regimes. In

- 2
this example we considered a damped harmonic oscillator response, R(t) = % sin(nt/tg) exp(—t/tg), with the value of

n = 2.6 corresponding to the Raman effect in optical fibers. We remark that the MI gain curves are of a different nature
in the normal dispersion regime as compared to the usual MI gain in the anomalous dispersion regime. In particular, in the
normal dispersion regime, incoherent MI develop within a narrow spectral band, a feature that may favor the formation of
temporal incoherent solitons (see Section 3.3.4).

Difference with incoherent MI in instantaneous response nonlinear media

To conclude this discussion on temporal incoherent MI, we underline its fundamental different nature with respect to
incoherent MI considered in instantaneous response Kerr media [165]. In the limit 7z — 0, incoherent MI can only take
place if the spectral width of the incoherent wave is smaller than the MI frequency, Aw < wyy [165]. This means that
temporal modulations associated to MI are more rapid than the time correlation, t. > 1o, i.e.,, Ml modulations take place
within each individual fluctuation of the incoherent wave. This is in contrast with the MI spectral gains reported in Fig. 13,
in which the optimal MI frequency gets much smaller than the spectral bandwidth, wy; < Aw as the nonlinearity becomes
noninstantaneous (i.e., as 7 increases). This means that incoherent MI manifests itself by a slow modulation of the whole
random wave profile, i.e., the modulation frequency is smaller than the spectral bandwidth, wy; << Aw. This feature has been
confirmed by the numerical simulations of the NLS equation (36) and the corresponding long-range Vlasov equation (64) in
Ref. [18].

3.3.4. Incoherent solitons in normal dispersion

In this section we study temporal incoherent solitons in highly noninstantaneous response nonlinear media by
considering the temporal version of the long-range Vlasov equations (64)-(66). We will see that, contrarily to the usual
temporal soliton, which is known to require a focusing nonlinearity with anomalous dispersion, a highly noninstantaneous
nonlinear response leads to incoherent soliton structures which require the inverted situation. In the focusing regime (and
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Fig. 13. Temporal incoherent MI: Contrarily to the spatial case, incoherent MI occurs in both normal and anomalous dispersion regimes. Plots of incoherent
MI gains given by Eq. (76). (a) Anomalous dispersion regime (8y > 0): g = 207, (continuous), tg = 407, (dashed); (b) normal dispersion regime
(By < 0): g = 2071p (dashed), 7 = 407, (continuous). In both cases Aw = 0.5‘[(;1.

anomalous dispersion) the incoherent wave-packet experiences an unlimited spreading, whereas in the defocusing regime
(still with anomalous dispersion) the incoherent wave-packet exhibits a self-trapping [170]. These counterintuitive results
are explained in detail by the long-range Vlasov equations (64)-(66).

Numerical simulations

In order to make the comparison with spatial nonlocal effects easier, we assume that the wave propagates in the
anomalous dispersion regime (8 > 0), so that the diffraction parameter « in Eq. (1) plays the same role as the dispersion
parameter B in equation (36), and we consider separately the focusing (y > 0) and defocusing (y < 0) regimes of
interaction. We report in the left columns of Figs. 14 and 15 the evolutions of the spectrograms of an initial super-Gaussian
incoherent wave-packet which has been obtained by integrating numerically the NLS equation (36). The corresponding
spectral and temporal FWHM are A, = 1.257 and A; = 200, respectively. In Fig. 14, z is in units of L, = 1/(]y|p), where
p = N/T, T being the size of the numerical temporal window, as introduced in Section 3.1.1. Note however that, since
the initial condition is localized in time (non-stationary statistics), L, no longer denotes the familiar nonlinear length scale.
We considered in Fig. 14 a Gaussian-like response function, R(t) = 2 exp[—tz/(Zt,%)]/(t,?«/n/2), while similar results are
obtained with an exponential-shaped response function. As we will see, the prefactor t? plays a role in the formation of
incoherent solitons. It also avoids discontinuities in the derivative of R(t) at t = 0, which is important in order to accurately
simulate the Vlasov equation (64).

We remark in Fig. 14 that in the focusing regime (y > 0), the incoherent wave-packet exhibits a delocalization process
characterized by an unlimited temporal spreading of the pulse and a slow process of spectral broadening. In contrast with
this dispersive behavior, in the defocusing regime (y < 0, see Fig. 15) the incoherent wave-packet exhibits a phenomenon
of self-trapping, which is very robust and thus preserved for long propagation distances. In the example of Fig. 15 the
incoherent soliton loses less than 0.1% of its power while it propagates over a propagation distance of more thanz = 10°Ly,.
As thoroughly discussed in this section, the spectral shift of the optical wave simply results from the causality property of
the response function, and manifests itself as a red- (blue-)shift in the focusing (defocusing) nonlinear regime, a feature that
has been discussed through Eq. (72). We will see below that, as a result of group-velocity dispersion, this spectral-shift leads
to an acceleration of the incoherent wave-packet, which in turn is responsible for its self-trapping.

Vlasov interpretation

This phenomenon of incoherent self-trapping is explained in detail by the long-range Vlasov equation. We report in the
right columns of Figs. 14 and 15 the simulations of the Vlasov equation (64) starting from the same initial condition as
the NLS equation (36). We underline that a quantitative agreement is obtained between the NLS and Vlasov simulations
without using adjustable parameters, which corroborates the fact that the ‘long-range’ Vlasov equation (64) provides an
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Fig. 14. Spreading of a localized initial incoherent wave-packet: Numerical simulations of the NLS equation (36) (left column) and of the Vlasov
equations (64)-(66) (right column) with a focusing nonlinearity in the anomalous dispersion regime, 8y > 0 [tz = 2007, z is in units of L,]. The
temporal numerical window is T = 25607, t and w are in units of 7y and T(;l’ respectively.

Source: From Ref. [170].

‘exact’ statistical description of the random nonlinear wave, as discussed above in Section 2.3.2. Fig. 16 reveals that, after
a transient (z ~ 300L,), the wave-packet adopts an invariant profile characterized by a linear spectral shift, which in
turn induces a constant IS acceleration (parabolic trajectory) in the temporal domain. More specifically, let us denote by
o the soliton velocity in frequency space—the parameter o will appear to have a specific meaning below in Eq. (81). As
discussed above through Eq. (72), the momentum evolves linearly as #(z) = N aoz. Then Eq. (73) explicitly shows that,
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Fig. 15. Temporal incoherent solitons: Numerical simulations of the NLS equation (36) (left column) and of the Vlasov equations (64)-(66) (right column)
with a defocusing nonlinearity, in the anomalous dispersion regime—parameters and initial conditions are the same as in Fig. 14, except that we are now
in the defocusing regime (8y < 0). After a transient (z ~ 300L,;), the incoherent wave-packet evolves into an incoherent soliton state (see Fig. 16).
Source: From Ref. [170].

when combined with group-velocity dispersion, this linear spectral shift induces an acceleration of the incoherent soliton
in the temporal domain given by Eq. (73)

7 (2) = 7(0) + BNapZ>. (77)
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Fig.16. Constant acceleration of temporal incoherent solitons: Parabolic trajectory of the intensity profile N(t, z) = (27)~! f n,(t, z)dw(a),and evolution
of the spectral profile S(w, z) = f n, (t, z)dt (b), corresponding to the simulation of the Vlasov equation (64) reported in Fig. 15 (right column). The linear
increase of the incoherent soliton velocity w (constant acceleration) (c), results from the linear spectral shift of the incoherent soliton (d): The slope of the
dashed red line in (c) is twice the corresponding slope in (d), as expected from the group-velocity dispersion law, d,,k(w) = 2Bw (note that § = 1 when k
and w are expressed in units of L,j,l and r[,’l respectively). z, t, w are in units of Ly, 7o, ro’l, respectively.

Source: From Ref. [170].

Both phenomena of linear spectral shift and constant acceleration of the incoherent soliton are clearly visible in the
numerical simulations, as illustrated in Fig. 16.

Temporal vs. spatial incoherent solitons

To discuss the mechanism underlying the formation of the incoherent soliton, it is instructive to comment first an analogy
with a nonlocal spatial response. Contrary to temporal effects, nonlocal spatial effects are not constrained by the causality
condition, so that the spatial response function U (x) is even. Assuming that the beam intensity is approximately symmetric
(N(x) is even), then the self-consistent potential V(x) = —yU * N is also even. Then as discussed above in Section 2.3.5,
in the focusing regime (y > 0), the optical beam induces an attractive potential V(x) < O, so that the beam is guided
by its own induced potential. Conversely, in the defocusing regime (y < 0) the repelling potential leads to the expected
beam spreading. This is illustrated schematically in Fig. 17(a)-(b), in which the beam intensity N(x) has been obtained by
integrating the spatial Vlasov equation with a Gaussian response function U (x) (see Ref. [27] for details).

Vlasov approach: Noninertial reference frame

As a result of the causality property of R(t), the self-consistent potential V (t) is shifted towards t < 0 in the temporal
domain (see Fig. 17(c)-(d)). Moreover, as commented above through Fig. 16, the spectral-shift of the wave-packet, with
spectral velocity «, leads to a constant acceleration of the IS. It thus proves convenient to study the dynamics of the wave-
packet in its own accelerating reference frame

£ =1z, T=t—afz’ 2 =w-—oaz (78)
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Fig. 17. Mechanism underlying the formation of temporal incoherent solitons: Intensity profile N(x) (continuous dark line) and corresponding self-
consistent potential V(x) = —yU * N (dashed red line), in the case of a spatial nonlocal nonlinearity in the focusing (a), and defocusing (b), regimes.
Intensity profile N(t) obtained by integrating numerically the Vlasov equation (79) (continuous dark line), corresponding self-consistent potential
V() = —yR x N (dashed red line), and effective potential Veg(7) [Eq. (80)] (continuous red line) in the accelerating reference frame, in the case of a
temporal noninstantaneous nonlinearity in the focusing (c), and defocusing (d), regimes. The arrows indicate the ‘particle motions’ in the effective self-
consistent potentials Ve (7): The non-inertial fictitious force inhibits (c) (induces (d)) the self-trapping in the defocusing (focusing) regime.

Source: From Ref. [170].

In this non-inertial reference frame the Vlasov equation (64) reads

0eng(t,8) +2P820:n0(7, &) — 3 Verr(7, §) done(r, §) = 0. (79)
This equation remarkably reveals the existence of an effective self-consistent potential

Veii(7,8) = V(1,§) +art, (80)
where V(t,§) = —y fj;o R(t — t/)N(7/, &) dt’ just refers to the self-consistent potential of the original Vlasov

equation (64) written with the new variables (78). The linear part of the potential in (80) finds its origin in the fictitious force
which results from the non-inertial nature of the reference frame. It is this fictitious force which prevents the IS structure
from dispersing towards the direction of increasing . Note that this force is analogous to the effective gravity mimicked by
an elevator, an analogy that was commented in Ref. [214].

This fictitious force due to the accelerating reference frame explains both phenomena of self-trapping with a defocusing
nonlinearity, as well as the inhibition of self-trapping with a focusing nonlinearity. Let us first discuss the defocusing regime.
Recalling that the potential is induced by the wave-packet itself, an IS can only form provided that the self-induced potential
Vese(T) has a local minimum at the pulse center, i.e., at T = 0 in the accelerating reference frame of the IS. Contrary to the spatial
case (Fig. 17(a)), it seems that this condition cannot be satisfied in the temporal case, since the causality condition shifts
the potentials towards T < 0. However, in the defocusing regime, a local minimum can be restored at ¢ = 0 thanks to the
fictitious force due to the non-inertial reference frame, as illustrated in Fig. 17(d). More precisely, one can Taylor expand
the effective potential Ve (t) = a4+ (b + a)t + ct? + O(r3) at T = 0, where b < 0 in the defocusing regime and ¢ > 0
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if the nonlinear response is slow enough (see Fig. 17(d)). In these conditions the particular choice g = —b guarantees that
Vese(7) has a local minimum at ¢ = 0 (see Fig. 17(d)). In other words, the system spontaneously selects the amount of spectral
shift,

0o = _afv|r:03 (81)

and hence the amount of soliton acceleration, 2 S«, in such a way that the effective self-consistent potential V. (t) admits a local
minimum at T = 0. This is confirmed by the numerical simulations of the Vlasov equation (79) reported in Fig. 17(d), in
which the value of «g = 0.01325 used to plot V() = V(t) 4+ apt has been determined from the spectral shift measured
in Fig. 16(d).

Note however that the potential barrier in the negative t axis is characterized by a limited depth, so that highly energetic
particles can overcome such barrier to escape from the localized incoherent soliton. Then depending on the initial condition
and on the particular form of the response function, the phenomenon of incoherent self-trapping can be more or less
efficient. In particular, if one assumes N(t) approximately Gaussian with variance A? and R(t) ~ t" exp[—t?/ (2r,§)], the
condition ¢ > Oreads g > A/4/v. This indicates that, as v decreases, incoherent solitons are no longer generated, a feature
that has been confirmed by the numerical simulations of the NLS equation (36).

Let us now discuss the focusing regime, which is characterized by a red-shift of the wave-packet, « < 0. Following the
same reasoning as above and remarking that we now have b > 0 and ¢ < 0, the choice oy = —b still leads to an extremum
of Vege(T) at T = 0. However, contrary to the defocusing regime, this extremum refers to a local maximum, as illustrated in
Fig. 17(c). Note that, in order to clearly differentiate the focusing and defocusing regimes, the incoherent soliton profile N(7)
of Fig. 17(d) has been used in Fig. 17(c) to calculate V(t) and Veg(7) in the focusing case. Actually, in the focusing regime,
there is no value of « such that Veg(7) has a local minimum at t = 0. The local maximum around t = 0 then plays the role
of a repelling potential, which explains the temporal broadening of the incoherent pulse: The ‘unstable particles’ located
near by T = 0 are either attracted towards the local minimum at 7 < 0, or either pushed towards r > 0 by the non-inertial
force (see Fig. 17(c)).

3.3.5. Spectral long-range interaction due to a highly noninstantaneous response

As discussed above in this section through the WT Langmuir formalism, one may expect that the spectral dynamics of
an incoherent wave should be described by the (Raman-like) spectral gain curve, g(w). This is indeed what happen when
one deals with a short-range interaction, Tz ~ 7. In particular, the typical bandwidth of g(w), say Aws ~ 1/7z, denotes
the characteristic interaction range in frequency space. However, as described by the long-range Vlasov formalism, the
spectral dynamics of incoherent waves is no longer captured by the spectral gain function g(w) in the presence of a highly
noninstantaneous response of the nonlinearity. Indeed, a long-range interaction in the temporal domain, tz > tp, should
lead to a short-range interaction in frequency space, Aw; ~ 1/1z < 1/70. Conversely, we will see here below that a long-
range interaction in the time domain implies a long-range interaction in the spectral domain, i.e., an interaction whose
spectral range is of order Awj,e ~ 1/79 > Aw, [215].

This spectral long-range behavior can easily be discussed through a qualitative analysis of the temporal Vlasov equation.
Let us denote by Awi,e and At ~ 13 the typical spectral and temporal widths of an incoherent wave-packet, such as e.g., an
incoherent soliton. We consider a typical (soliton-like) evolution in which linear and nonlinear effects [i.e., second and third
terms in (64)], are of the same order of magnitude: 28wd;n,,(t, z) ~ 9;Vo,n,(t, z),or Awizm ~ |V|/1B] = |y /BIR* N,where
* denotes the temporal convolution product. To qualitatively assess the potential V(t), it proves convenient to rescale the
functions by introducing the small parameter ¢ = 1/7x << 1, R(t) = €Ry(et) and N(t) = pTeNy(et), where the numerical
temporal window T scales as 1/& = z. We have |V|(t) ~ |y|pRo * Ny. Introducing the reduced time, f = t/1z, we have
[ No(t)dt = 1and [ Ro(f)dt = 1, so that the typical amplitudes and widths of Ry(t) and No(£) are now of order one, which

thus readily gives Aw?, ~ 1/7¢. In other terms we have

A Tk > 1, (82)
Awg To

which means that the typical spectral width of the wave-packet (incoherent soliton) is tg / to larger than the spectral width of the
gain curve g (w). We remark that such broad spectral width of the wave-packet is clearly visible in the numerical simulation
reported in Fig. 15, where the typical spectral bandwidth of the incoherent soliton is of the order Awj,s ~ 1/79 > Awg.
Note that this reasoning does not involve the spectral gain function g(w), nor the causality property of R(t), so that the
spectral long-range interaction appears as a property inherent to the long-range Vlasov formalism, i.e., it also applies to the
spatial version of the long-range Vlasov equation considered in Section 2.3.

This qualitative analysis reveals that temporal incoherent solitons considered in the previous Section 3.3.4 exhibit a
spectral long-range interaction, a feature confirmed by the numerical simulations reported in Ref. [215]. More specifically,
incoherent solitons exhibit a non-mutual phase insensitive interaction, which can be either attractive or repulsive depending
on their relative initial distance [215]. This anomalous interaction originates in the combined effects of the causality
condition of the nonlinear response function and their constant acceleration in the temporal domain. We refer the interested
reader to Ref. [215] for more details regarding the interaction of temporal incoherent solitons.
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We conclude this section by remarking that optical hollow-core fibers and waveguides (see, e.g., [216]) turn out to be
ideal test beds for the experimental verifications of the predictions related to highly-noninstantaneous nonlinearities, such
as incoherent MI, incoherent solitons or shock waves. This is thanks to the easily tailorable non-instantaneous response via
the well-known Raman effect, as well as other recently investigated mechanisms involving liquid-cores or photo-ionizable
noble gases and surface plasmon polaritons [217-224].

4. Spatio-temporal domain: Inertial nonlinearity

In the previous two sections we considered separately the spatial and temporal coherence properties of an optical
wave that propagates in a nonlinear Kerr medium that exhibits a nonlocal and a noninstantaneous response, respectively.
A generalized WT theory of the spatio-temporal coherence properties of the optical wave which unifies the previous
formalisms still needs to be developed. In this section we discuss an important example of such a spatio-temporal
generalization that has been the subject of lot of interest in the past after the pioneering experimental studies of incoherent
optical solitons, as discussed in Section 1.1.

4.1. Averaged NLS equation

We consider the spatial coherence properties of an optical beam that propagates in a Kerr medium characterized by a
response which is local in the spatial domain, but very slow in the temporal domain. In the following this nonlinearity will
be termed ‘inertial’. An immediate generalization of the NLS equations considered in the previous two sections reads

iazw+aV21/f+y1///R(t—t/)|1//(z,x, th?dt' = 0. (83)

The first assumption is that the coherence time is much shorter than the nonlinear response time, t. < 7. As a consequence,
the medium averages out the fast oscillations of the incoherent wave. Then the nonlinear index of refraction depends
only on the locally time-averaged intensity, which is equal by ergodicity to the local statistical average of the intensity,
SRt — ) [z x t)[2dt' ~ [R(t —t') (|¥|?) (z &, t')dt’. Notice that this reasoning is analogous to that discussed
in the framework of a nonlocal nonlinearity in the presence of a long-range interaction (see Section 2.3.2). Furthermore,
assuming that the pulse duration of the incoherent wave is much longer than the nonlinear response time, we have
(lv?) @, &, t') = (|¥[?) (z, %, t), for [t —t'| < 7g.In this way, the spatio-temporal NLS equation (83) reduces to the following
averaged NLS equation

i,y +aV2y +y (¥ °) ¥ =0. (84)

We remind an important property of this averaged NLS equation, namely that it preserves Gaussian statistics under nonlinear
evolution [91]. This property is consistent with the fact that the averaged NLS equation (84) does not lead to an infinite
hierarchy of moment equations. In other terms, thanks to the inertial nonlinearity, we do not need additional assumptions
to achieve a closure of the hierarchy, which is automatically satisfied through the averaging of the nonlinear term in (84).
This considerably simplifies the theoretical developments we are going to present, whose validity is no longer restricted to
the weakly nonlinear regime inherent to the WT theory.

In this section we will study the coherence properties of an optical wave governed by averaged NLS equations of the form
(84). The presentation will also points out some recent developments related e.g., to dynamic solutions of the Vlasov and
Wigner-Moyal equations (see Section 4.5). The interested reader can find previous reviews on this vast subject in Ref. [5,6].

4.2. Theoretical methods and their equivalence

As discussed below in Section 4.7, the self-trapping of a partially coherent beam was first experimentally demonstrated
by M. Segev’s group in 1996 using an inertial photorefractive nonlinearity [3]. The experimental observation of partially
coherent solitons spurred much research activity and led within a few years to the development of several theoretical
formalisms for modeling the evolution and dynamics of partially coherent beams. The first formalism to be developed
was the coherent density theory [9], which was later followed by the self-consistent multimode theory [8], the mutual
coherence function approach [225] and the Wigner transform method [10]. All of these formalisms show good agreement
with experimentally observed results and were later shown to provide equivalent descriptions of the partially coherent
field [11,12].

Closed form analytical soliton solutions of these localized incoherent states were first demonstrated to exist for saturable
media of the logarithmic type, which admits self-similar solutions with a Gaussian intensity profile. Soliton families were
later also identified in other types of media using the self-consistent multimode approach. The equivalence of the different
formalisms has been found to hold for a general inertial nonlinearity, regardless of character, as long as the nonlinear
response is a function of the averaged intensity. The theoretical formalisms are therefore not restricted to different kinds
of saturable media but can be used for studying any type of inertial nonlinear media where the nonlinearity is an arbitrary
function of the noninstantaneous intensity, with the inertial Kerr medium being the simplest case.
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Each of the different formalisms have their own evolution equations and display their own particular properties with
certain advantages and disadvantages, e.g. being more suited for describing the evolution of partially coherent fields or for
identifying soliton families. One of the main differences between the formalisms lies in how the initial field is determined
for given initial conditions of the source. All formalisms may in some sense be considered as nonlinear generalizations of
previous methods for linear propagation and the choice of the most suitable representation of the partially coherent field
depends on the physical problem to be investigated.

It has been found that the 1D nonlinear evolution equations governing partially coherent wave propagation in inertial
Kerr type media, are in fact integrable using the method of inverse scattering [226]. This has important implications for the
stability of partially coherent soliton solutions since it is well known that integrable solutions will interact elastically so
that solitons will retain their identity even after collisions. The integrability of the evolution equations implies moreover
the existence of an infinite number of invariant quantities associated with the field, with the first three corresponding to
conservation laws for energy, momentum and Hamiltonian, and enables the explicit analytical construction of partially
coherent solitons solutions, see [227,228].

Below we will separately present each of the four main theoretical formalisms used for describing self-trapping of optical
beams and the propagation of partially coherent fields in inertial nonlinear media. The presentation demonstrates both
the equivalence of the different formalisms and shows how each approach can be derived starting from the averaged NLS
equation (84).

4.2.1. Mutual coherence function approach

The mutual coherence function approach [225] describes the evolution of the autocorrelation function in the presence
of an inertial nonlinearity. This formalism is in some sense the simplest theory that can be obtained from the NLS equation
(84). However, due to the difficulties involved in solving its corresponding evolution equation, it was historically not the
first formalism to be used in the description of self-trapping of partially coherent optical beams, although it was used as
early as 1974 to treat incoherent beams in a cubic medium [7]. We recall that the mutual coherence function is defined as
the autocorrelation of the field envelope

B(x1,%2,2) = (Y (%1, 2) V™ (%2, 2)), (85)
and gives a measure of the correlation between different points of the beam. The coherence properties are easily extracted
from the mutual coherence function by normalizing it to obtain the complex correlation function, defined as

B(X],XZ,Z) _ B(xl7X25Z)

VB®1. %1, 2)B(xy, %5, 2)  /N®&1,2)N(%y,2)’
where N(x,z) = B(x,x,z) = {|¥|?)(x, z) is the beam intensity. This function takes on values belonging to the interval
(X1, x2),z| < 1, with u(x1,%1,z) = 1 indicating that the field is perfectly correlated and fully coherent. Another

frequently used measure of the coherence is the correlation length A, which is obtained using the complex correlation
function via

1/d
re(®,2) = (/ [ (x, x’,z)|2dx/) ) (87)

The evolution equation for the mutual coherence function is obtained by following the procedure outlined in Section 2.1.
Starting from the NLS equation (84), one readily obtains

/"(’(xhxz’z) = (86)

i0;B + o (Vg — Vi) B+y [N(®1.2) = N(%2,2)]B = 0. (88)

As discussed above in Section 4.1, this equation is exact for an inertial nonlinearity since the application of averaging on the
already time-averaged intensity does not result in additional higher-order moments, which permits a closure of the moment
hierarchy without additional assumptions about the statistics of the field.

The evolution equation (88) is however complicated to solve in the general case, even using numerical methods, since
it involves both derivatives of the correlation function and the intensity taken at two different points. An important
simplification occurs by introducing the set of independent spatial variables defined in Eq. (4). The evolution equation for
the correlation function B(x, &, z) = (Y (x + /2, )y *(x — /2, z)) then reads

i0,B+2aVy - VeB+y[N(x+&/2,z) —N(x—&/2,2)]B=0. (89)

The mutual coherence function approach has been applied to study self-similar soliton solutions in logarithmically saturable
media [225,229] and also to investigate the MI of partially coherent optical waves [15].

We shall later see that the mutual coherence function B(x, &, z) forms a Fourier pair together with the Wigner distribution
function. The mutual coherence function approach has been the method of choice used to establish the equivalence between
the different formalisms [11,12], and is frequently used as an intermediate function in order to extract the coherence
properties of the field.
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4.2.2. Coherent density theory

The coherent density formalism was the first theory to be applied to the description of incoherent soliton self-trapping
and propagation of partially coherent beams in inertial nonlinear media [11,9]. The coherent density can be understood as
a decomposition of the partially coherent field into an infinite set of coherent components that are weighted with respect
to the angular power spectrum and are incoherently coupled with one another. We will now consider the derivation of this
formalism following the presentation given in Ref. [230].

The decomposition of the field takes the form of a projection onto an orthogonal basis ¢

v (X, 2) :/C(O)ga(x, 0,2z)de. (90)

The most familiar such decomposition is the Fourier transform where the basis functions take the form ¢(x,0,z) =
exp(if - x).

From the definition of the mutual coherence function Eq. (85) we see that it can be expressed using the newly introduced
basis functions as

B(x1,%;,2) = //A(91»92)§0(X1s91,Z)§0*(X2,02,Z) d6,dé,, (91)

with the correlation properties for the general case given by the function A(6, #,) = (C(6,)C*(0,)). By diagonalizing this
function so that A(64, 6,) = J(01)5(01 — 0,), where J(0) is the angular power spectrum, we find that Eq. (91) simplifies to

B(x1, %, 2) = / JO)9(x1, )" (x5, 0) d6. (92)

If we now introducing an auxiliary function f (x, 8, z) = /J(@)¢(x, 0, z) exp(if - x — i022/2) we arrive at a modified version
of the Van Cittert-Zernike theorem [231] where the mutual coherence function is expressed as

B(x1,%,,2) = /f(xl, 0,2)f*(x2, 0, 2) exp[if - (x; — x,)] d. (93)

The function f (x, @, z) is known as the coherence density function and its governing equation is obtained by substituting
its definition p(x, 0, z) = (f(x, 0, z)/«/](ﬂ)) exp(—if - x + i022/2) into Eq. (90) whose evolution is in turn determined by
the NLS equation (84). The resulting evolution equation for the coherent density function is then found to take the form of
a modified NLS equation

i (gé +0- w) +aV’f +yN@&,2)f =0, (94)

where the intensity is given by the integral relation N(x, z) = B(x, X, z) = f If|? d. Eq. (94) is thus an integro-differential
equation. This equation is the closest in form to the ordinary nonlinear Schrédinger equations for the different formalisms.
Thus it can easily be simulated numerically using standard split-step Fourier methods, making it well suited for studying
the dynamical evolution of partially coherent beams [232]. The first analytical solutions of partially coherent solitons were
also obtained using this formalism for the case of a saturable nonlinearity of the logarithmic type, which allows exact soliton
solutions having a Gaussian intensity profile and a Gaussian angular power spectrum [233]. This method has been also used
to study beam collapse in Ref. [234].

The difficulty with this method lies in determining the initial coherent density function for given source conditions.
This can be accomplished by inverting the relation Eq. (93), which is generally non trivial unless the stochastic variation is
spatially homogeneous [11]. The source conditions can in this case be written as the product of the source angular power
spectrum and a complex modulation function i.e. f (%, 8, z = 0) = /J(#)M (), since

Y(x,z=0) =M(x) / C(0) exp(if - x) dO, (95)

and (C(#,)C*(6)) = J(0,)5(0; — 6,). The initial coherent density function can alternatively be constructed by using
the above procedure, i.e. starting with the orthogonal decomposition Eq. (90) and diagonalizing the matrix A(#4, 6,), see
Ref. [230] for examples.

4.2.3. Modal theory

The self-consistent multimode theory has frequently been the method of choice for investigating partially coherent
soliton solutions [8]. The idea behind the model theory is conceptually similar to the coherent density theory but relies
on a decomposition of the partially coherent field into a discrete rather than continuous set of coherent modes that are
mutual orthogonal to one another. The eigenmodes in the multimode theory are also defined to be uncorrelated with one
another which implies that they interact incoherently, with each mode seeing a superposition of the total averaged intensity
due to the inertial nonlinearity.
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The self-consistent multimode theory can, following Ref. [230], be derived analogously to the coherent density theory by
making a discrete expansion of the field using a set of basis functions ¢,

YX2) =) Capn(X. 2). (96)
n
The basis functions of the expansion equation (96) are related to the mutual coherence function by the relation

B(x1,%2,2) = (Y (%1, DY" (%2, 2)) = ) Aum@n (X1, 2) 0} (%2, 2), (97)

mn

which follows directly from the definition of the mutual coherence function Eq. (85). The Hermitian matrix Apn, = (CaCp)
is known as the correlation matrix and the summation on the right hand side can be significantly simplified if the basis
functions are chosen to be orthogonal to one another, in which case the correlation matrix is diagonal.

This is exploited in the self-consistent multimode theory which relies on using a set of orthogonal basis functions in the
expansion equation (96), that is also known as a Karhunen-Loeve expansion [231]. The mutual coherence function is then
given by

B(x1,%2,2) = Y dnon(%1,2)9} (%, 2), (98)
n

with A, = {|c;|?) being the modal occupancy coefficient, corresponding to the eigenvalue of the correlation matrix. The
basis functions of the self-consistent multimode theory are the concomitant set of orthogonal eigenfunctions, that can be
found by solving the following Fredholm integral equation

dn@n(x,2 =0) = /B(x, X, 0)p,(x',0) dx/, (99)

that is obtained from Eq. (98) by multiplying it with ¢, (x,, 0) and using the orthogonality condition.
Since the field in Eq. (96) is given by a weighted sum one find that the eigenmodes of the self-consistent multimode
theory will evolve according to an NLS equation similar to Eq. (84), i.e.

10,00 + «Vgy + yN(X, 2)p = 0, (100)
with the intensity provided by the relation
N 2) =B®%2) =Y hilgal* . 2). (101)
n

The eigenmodes will remain orthogonal to one another during propagation given that they were so initially. The difficulties
with using this method lies mainly in determining how the input eigenfunctions will excite the incoherent soliton modes.
The eigenmodes, for given initial conditions, can either be obtained by solving the integral equation (99) or by beginning
with an arbitrary basis as in Eq. (96) and diagonalizing the correlation matrix A, using a unitary transformation, see [230].

The self-consistent multimode theory is particularly well suited for identifying and studying the existence of incoherent
soliton families, as has been demonstrated both for logarithmic and Kerr nonlinearities [235,236]. Besides the requirement
that the nonlinearity should be of the inertial type in order to respond only to the smooth averaged intensity profile, it
can intuitively be understood that when a partially coherent beam propagates through a nonlinear medium it will induce a
multimode waveguide in that medium. This waveguide can allow soliton formation, if it is self-consistent with that required
for self-trapping of the optical beam.

Let us finally underline that a generalization of the modal and mutual coherence theories, which accounts for the
contribution of pronounced intensity fluctuations of, e.g., white-light sources, has been developed in Ref. [237]. When
such fluctuations are significant, the generalized theory shows that the properties of partially coherent solitons in saturable
nonlinear media can be qualitatively different from those predicted by the conventional modal theory [237].

4.2.4. Wigner-Moyal approach

The Wigner transform method has its origins in quantum mechanics and is the most recent of the formalisms to
be developed [10,238,239,12,94]. The Wigner distribution function n;(x, z) was introduced in Section 2.2 as the Fourier
transform of the mutual coherence function according to

ne(x,z) = /B(x, £ z)e *EdE = /(1/1(x+§'/2,z)1/1*(x—‘g'/Z,z))e’"“Eds, (102)
and
_ ; ik-&
B(x,&,2) = @) fn,‘(x, z)e™s dk, (103)
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where we remind that d denotes the dimensionality for the transverse coordinates. It is possible to obtain an exact evolution
equation for the Wigner transform for the case of an inertial nonlinearity with closure of the evolution equation for the
mutual coherence function. The evolution equation can most easily be obtained from the evolution equation for the mutual
coherence function Eq. (89) by multiplying it with exp(—ik - &) and integrating over &. The diffraction term is partially
integrated using V; — —ik which yields

3,k (X, 2) + 20k Veng (%, 2) = iy / [N+ £/2) — N(x — £/2)| B(x, £)e " * dE. (104)

The intensity terms in the nonlinearity are handled by Taylor expanding them around the mean position x to enable the &
dependence to be replaced by & — V). The result is an integro-differential equation known as the Wigner-Moyal equation

1
Mk (X, 2) + 2ak - Ving(x, 2) + 2y N(x, 2) sin ({v_x - ﬁ) ne(x, 2) = 0, (105)
with the intensity given by the integral relation
1
N, 2) = (P (x,2) = / (e, 2) dle (106)
(2m)d

The trigonometric sine function in the nonlinear term is an operator that is defined by its Taylor series expansion, and where
the arrows indicate the direction of application of the gradient operators. There are thus an infinite number of nonlinear
terms in the full Wigner-Moyal equation. However, in the limit of a quasi-homogeneous statistics (see Section 2), the
condition Ak - Ax > 2m holds, where Ak is the local width of the Wigner spectrum and Ax is the local width of the
intensity. Then it is convenient to truncate the infinite series after the second-order (‘paraxial approximation’), and the
resulting evolution equation simplifies to the following Vlasov equation

0Nk (X, Z) + 20k - Ving(x,2) + y ViN(X, 2) - Vieng(x,2) = 0. (107)

This Vlasov equation almost coincides with the Vlasov equation derived in the limit of a local nonlinearity in Section 2.2.2,
where the so-called self-consistent potential now reads V(x,z) = —yN(x, z). Note however the presence of a factor 2 in
the expression of the self-consistent potential in Eq. (19). In Section 2.2.2, such a factor of 2 was shown to originate from
the closure of the hierarchy of moments equations and the underlying expansion of the fourth-order moment into two
products of second-order moments. As commented in Section 4.1, the inertial nonlinearity leads to an automatic closure of
the hierarchy through the averaged NLS equation (84), which explains the absence of the factor 2 in front of the nonlinear
term in the Vlasov equation (107).

The Wigner-Moyal approach can easily seen to be equivalent to the other formalisms by virtue of the definition of the
spectrum ny (X, z), as the Fourier transform of the mutual coherence function [12]. The Wigner-Moyal formalism has been
applied, in particular, to study incoherent MI [238,17].

4.3. Incoherent modulational instability

Incoherent MI has already been discussed in the spatial (Section 2.3.4) and temporal Section 3.3.3 domains in the
presence of a long-range nonlinear response. In the presence of an inertial nonlinearity, incoherent MI was first considered
theoretically in [15] using the mutual coherence formalism, and subsequently demonstrated experimentally in [16]. In the
following we consider the MI process described by the Wigner formalism in one spatial dimension [10,239,238]. A similar
treatment using the mutual coherence function approach can be found in [15,240]. The coherent continuous wave solution
of the Wigner-Moyal equation (105) is homogeneous in space and is given by n2 = 2w Nyé(k), which satisfies the intensity
relation (277) ! f n‘,z dk = Ny (see Section 2.3.4). This continuous wave solution generalizes to k dependent function for a
partially coherent wave, where the width in k-space of the Wigner distribution function can be seen as a measure of the
degree of coherence. To analyze incoherent MI we proceed in a way similar to Section 2.3.4. We consider the stability of the
background Wigner distribution with respect to plane wave perturbations of the form

ne(x,z) = ng + ny.1 exp(Az + iKx), (108)
where we assume that the perturbation amplitude n;; < ng. Linearizing the Wigner-Moyal equation (105) around the
steady-state solution we find that the perturbation satisfies the equation

. . y (K =)
iQakK —iX)ng 1 + ;N1 (x, z) sin 5 o |n,=0 (109)

with N{(x,z) = f k.1 dk, and where we have used that the background intensity is independent of x.
A general dispersion relation for the background distribution is obtained by dividing the above expression by the factor
(2akK — i)) before integrating over k, while utilizing that the action of the sine operator on the background distribution
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can be written as the difference of the Wigner function taken at two different points in a way similar to the derivation of
the Wigner-Moyal equation. The dispersion relation is then found to take the form

v nd(k+K/2) —nd(k —K/2)
Ao Kk —ir/(2aK))

1+ dk = 0. (110)
It should be emphasized that the above dispersion relation is valid for arbitrary background distributions nz, and consists of
both a principal value and a residue contribution. Eq. (110) is a generalization of the corresponding dispersion relation for
the Vlasov (geometric optics) limit, which is found either by considering the second-order expansion of the sine operator or
equivalently by taking the limit K — 0, in which case it reduces to

/ dnk/dk
dk = 0. (111)
471a (k —ix/aK))

By means of an integration by parts, this dispersion relation recovers the dispersion relation obtained in Section 2.3.4,
provided that one takes the limit of a local nonlinearity in Eq. (27), i.e., U(k) = 1.

Closed form solutions of the dispersion relation (110) cannot easily be found for the most common background
distributions since the residue integral of e.g. a Gaussian distribution diverges as z — ioo. However as dlscussed in

Section 2.3.4, a closed form solution can be obtained for a Lorentzian distribution of the form nf = 2Ny-2%— k2+ i Ak)z' where
the spectral width Ak is related to the coherence length. Eq. (110) can then be explicitly evaluated as [15,10]
A(K) = =20 AK|K| 4 |K|y/2ay Ny — a2K2. (112)

Note that in the long-wavelength limit, K — 0, this expression of incoherent MI growth-rate coincides with that obtained
in Section 2.3.4, provided that one considers the limit of a local nonlinearity in Eq. (28), i.e., fI(k) = 1. Then in complete
analogy with incoherent MI considered in Section 2.3.4, Eq. (112) shows that the MI growth rate is affected by the coherence
properties of the field, with a decrease in coherence leading to a damping of the MI growth rate. Indeed, Eq. (112) shows
that a threshold exists such that the MI can be suppressed entirely if the partial coherence is large enough. This is in marked
contrast with the coherent case that is obtained in the limit of Ak — 0, which is always unstable.

It is important to note that the above analysis applies only to the initial linear stage of the instability growth and that the
instability will eventually saturate as the amplitude of the perturbation becomes appreciable. This saturation phenomena
has been found to lead to a redistribution of the background Wigner distribution function which is described by a quasi-
linear diffusion process [241,158]. The effects of higher-orders of dispersion on the incoherent MI has also been studied using
the Wigner formalism [17]. It was found that the third-order dispersion does not affect the MI growth rate similarly to the
coherent case, however, the influence of fourth-order dispersion depends on its sign and relative magnitude as compared to
second-order dispersion term, a feature which leads either to an enhancement or to a weakening of the instability growth
rate.

4.4. Incoherent solitons

4.4.1. Bright incoherent solitons

Soliton solutions can be thought of as behaving as distinguishable entities not only because they exist as a balance
between diffraction(-dispersion) and nonlinearity, but also because they interact elastically, and are able to remain as
stationary solutions even after collisions. It was by no means obvious before the mid 90s that partially coherent solitons
could exist. However, much interest in these new objects followed after the experimental demonstrations of self-trapping of
partially coherent beams and soliton formation in biased photorefractive media, leading both to the development of different
formalisms and investigations of soliton properties [242]. The early works naturally focused on providing descriptions of
the experimental observations and considered primarily saturable media with a nonlinearity proportional to 1/(1+41(x, z)),
where I (x, z) is the intensity [8]. An other work focused on a logarithmic approximation log(1+1(x, z)) =~ logI(x, z), which
is analytically convenient since it allows explicit solutions having a Gaussian intensity profile to be found [235].

A partially coherent beam of light will exhibit stronger diffraction effects than its coherent counterpart of the same
width. Random phase fluctuations across a partially coherent beam will additionally lead to a speckled intensity pattern
that would have generated filaments and fragmented the beam had the nonlinearity been instantaneous and not inertial.
Therefore the necessary conditions for self-trapping and soliton formation are that the nonlinearity is stronger than for the
coherent case and that the response time of the medium zzx must be much longer than the characteristic timescale for the
random phase fluctuations t., so that the medium responds only to the smooth averaged intensity profile of the beam and
not to the instantaneous speckle pattern. The beam must additionally be able to induce its own waveguide by changing the
refractive index profile through the intensity dependent nonlinearity and this waveguide must in turn be stationary so that
the beam self-consistently traps itself.

The multimode formalism introduced above in Section 4.2.3 has frequently been used for studying the existence and
coherence properties of partially coherent solitons. In this formalism a soliton is thought of as populating multiple modes
that are mutually incoherent with one another and where the total intensity is the incoherent superposition of the intensities



A. Picozzi et al. / Physics Reports 542 (2014) 1-132 41

from the individual modes. Each mode is thus able to support a completely coherent field with the partial coherence arising
from the incoherent interaction of multiple modes. The existence of soliton solutions for an arbitrary nonlinearity can be
investigated in an iterative manner using the modal theory by starting from an arbitrary intensity profile and solving the
multimode equations to obtain guided modes. The modes which are thus obtained are then used to construct a new intensity
profile which is once again used to obtain the modes that are guided, and the whole process is repeated until convergence is
obtained and the intensity profile remains stationary. This procedure was first applied numerically to construct the existence
range for bimodal solution in a saturable medium, see [8].

We will now illustrate a similar procedure by using the multimode theory to construct a one dimensional partially
coherent bright soliton solution for an inertial nonlinear Kerr medium. This particular solution was derived by Carvalho et al.
in [236]. The starting point is to assume that the evolution equation for the multimode theory Eq. (100) has a self-consistent
solution with an intensity profile that generalizes the coherent soliton solution so that N(x, z) = N&sech2 (x/x0), with Ng
being the peak intensity and x the soliton width. The eigenmodes ¢, should thus satisfy the following linear equation

i0,0m + ad2@m + yNgsech? (x/Xo)gm = 0. (113)

To find a stationary solution of this equation one looks for a solution similar to the coherent NLS soliton by using the
ansatz ¢, = up(x) exp(iBnz), where B, is a mode dependent phase-constant. Eq. (113) will then simplify to an ordinary
differential equation for each mode

adiuy, + (yNgsech® (x/Xg) — Bm) tm = 0. (114)

This equation can be rewritten in a different form by introducing the transformation s = tanh(x/xo) and defining ,Bm =
Bmx3/(2a) and ¢ = Y NZx3 /e, in which case one finds the following familiar equation for the associated Legendre functions

2 22
(1 — s%)d?uy + 2sdsuy, + <q - ﬁ”s‘z) u, = 0. (115)
The solution of this equation that satisfies the physical boundary conditions which require the field to vanish at infinity is
given by up, (s) = PJ'(tanh(x/xo)) where P} are the associated Legendre functions for ¢ = n(n + 1) with m < n an integer

and Bm = m? /2. Note that these functions form a suitable basis since they satisfy the orthogonality condition on the interval
[—1, 1] where the argument s takes its values.
For the solution to be consistent the spatial width xo will need to be related to the number of guided modes n and the peak

intensity Ng asxp = % which agrees with the coherent soliton width for the coherent case n = 1 and shows that
0

the spatial width increases with an increase of the incoherence, i.e. the number of guided modes n. It should be noted that
this solution only exists for a discrete set of widths, corresponding to integer n, which is an artifact of the assumed intensity
dependence. The general solution has a more complicated shape than the assumed symmetric sech-squared intensity profile
unless the above condition is satisfied [227].

If the soliton solution is self-consistent it must also satisfy the intensity relation equation (101), which requires finding
modal coefficients c,, so that the relation

N(x.2) = Y _(lcnl*) [P} (tanh(x/x0))]* = Ngsech’ (x/xo), (116)

m

is satisfied.

The lowest order solution with m = 1 is found to be given by ¢, = NOPl1 (tanh(x/xp)) and corresponds to the coherent
bright soliton which involves only a single mode. The case m = 2 which involves two modes is the first partially coherent
solution and is given by ¢ = (NO/Q)PQ (tanh(x/xq)) and ¢, = (N0/9)P22 (tanh(x/xg)). Expression for higher-order solutions
can be found in [236].

The coherence properties of the soliton solutions can be investigated by calculating the complex coherence function Eq.
(86), which takes the form

(117)

(%1, %9, 2) i (lcm|?) Py (tanh(x /x0)) Py (tanh(x, /xo))
1,X2,2) =
= sech(x/xg)sech(x,/xg)

An example of the coherence function for the case n = 2 is shown in Fig. 18. This function is identical to unity for the
coherent soliton solution but has a more complicated structure when the solution is partially coherent. A common feature
of this function is that there is a large degree of coherence far from the center of the beam. The reason for this is that fact that
each mode is coherent with itself but incoherent with the other modes. There are several different modes that contribute to
the field close to the center, thus resulting in a lowering of the degree of coherence. However, only the highest order mode
will contribute towards the edges, which implies that the coherence in this region will be large.
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Fig. 18. Spatial coherence function given by Eq. (117) for the bright incoherent soliton solution with n = 2 as a function of n = (x; +x2)/2and § = x; —x3.
Source: From Ref. [236].
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Fig. 19. Coherence properties of incoherent bright and dark solitons: Propagation of (a) bright incoherent soliton, (b) coherence length [ of this bright
soliton, (c¢) dark incoherent soliton, (d) coherence length of this dark soliton.
Source: From Ref. [232].

4.4.2. Dark incoherent solitons

Not only bright but also dark solitons have been found to exist in the presence of partially coherence. Dark solitons were
originally predicted from numerical simulations using the coherent density method [232]. Incoherent dark solitons display
certain properties which differ from their coherent counterparts. A distinct property of these incoherent structures is that
they are always gray, meaning that their intensity never reaches zero at the center. The grayness of the soliton is a function
of its incoherence with the ordinary dark (black) soliton representing the coherent limit. Partially coherent dark solitons
have also been found to be very sensitive to the initial conditions and particularly to the phase shift at the center of the
beam. For instance, a phase shift of 7 at the center is needed for a single soliton to appear, while a continuous phase will
give birth to two separating solitons [232]. An example showing the propagation of both bright and dark incoherent solitons
is shown in Fig. 19 together with plots of their coherence lengths.
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We will now consider the construction of one dimensional dark incoherent solitons in inertial Kerr media using a variant
of the self-consistent multimode approach. This method of solution, see [13], differs somehow from that considered above
for the bright incoherent soliton case but is still relying on the idea that the intensity induces a stationary waveguide in the
material through the nonlinearity. This waveguide supports both bound states and radiation modes which together make
up the dark incoherent soliton solution and that must additionally satisfy the self-consistency condition of being able to
produce its own waveguide through its intensity profile.

We first make the assumption that the intensity profile of the dark incoherent soliton can be written as

N(x,z) = Ng [1 — e?*sech®(x/xo) ] (118)

where Ng is the background intensity, x, is the soliton width and the parameter €2 < 1 determines the amount of grayness,
with the limit € = 1 corresponding to the coherent dark soliton case.
We will expect that the electric field E (x, z) of the beam should satisfies a Helmholtz’s equation

V2E + I3n’E =0 (119)

with the refractive index for the self-defocusing nonlinearity given by n?> = n% — n,N. Looking for a stationary solution for
the electric field of the form E = U(x) exp(iBz) we thus find that the mode function U satisfies

d?U + [g + fsech®(s)]U = 0 (120)

where s = x/Xo, g = [k3(n3 —nyNZ) — B21x3 and f = kZn,e2NZx2. This equation will have bound states whenever g = —¢?

is negative which occurs for 82 > k3(n2 — n,Ng), and will similarly have radiation modes whenever g = Q? is positive.
We limit ourselves to consider the case when f = 2 which implies that the soliton width x3 = 2/(k3n,e?Ng). For this case
there will be only a single bound mode corresponding to g = —g?> = 1, which takes the form U, = sech(s). However
there will also be a continuum of both even and odd radiation modes satisfying Eq. (120) with g = Q2 and given by
U, = Q cos(Qs) — tanh(s) sin(Qs) and U, = Q sin(Qs) + tanh(s) cos(Qs). The total electric field for the dark beam can
therefore be written as superposition of these modes

E = cyUp(s) exp(iBpz) + / [ce(Q)Ue(s) + ¢, (Q)Uy(s)] exp(ifr(Q)z) dQ (121)
0

with ¢, denoting the modal coefficients. The different modes should be uncorrelated with one another for incoherent
excitations, except for the autocorrelations which we define as (|c;|?) = A? and (ce(Q)cr(Q)) = (c(Q)ci(Q)) =
D(Q)8(Q — Q). This implies that the intensity N o< (|E|?) can be written as

[o¢]
NG = Asec’s) + [ DQIQ? + tant’(9) Q. (122)
0
With the function D(Q) being a distribution function that characterizes the population of the radiation modes.

For the solution to be self-consistent the intensity must agree with the ansatz Eq. (118), requiring that

N§=/ D(Q)(Q* + 1) dq, A2=f D(Q)[1 —€*(Q* + 1] dQ. (123)
0 0

This solution shows that dark incoherent solitons do indeed exist in inertial media and that they consist of both a set of
bound modes as well as a continuum of radiation modes. The gray nature of the incoherent dark soliton is found to be due
to the presence of even bound states and radiation modes. It should be noted that the soliton solution is not unique since
the radial-mode distribution function D(Q) is arbitrary. Assuming e.g. that D(Q) = Dy exp(—Q/Qo) allows Eq. (123) to be
evaluated explicitly with the result Dy = N3 /(Qo(2QZ + 1)) and A> = N2(1/(2QZ + 1) — €?). The width Qy is found to be
related to the correlation length of the soliton at its tail, i.e. as s — Z00. Expressions for a higher-order solution with two
bound modes (f = 6) can be found in Ref. [13].

4.4.3. Antidark solitons

Another class of incoherent solitons that are present in self-focusing inertial nonlinear media is that of antidark
solitons [243,244]. The antidark solitons can be seen as bright soliton solutions that sit on top of a constant but nonvanishing
background. Antidark solitons cannot be observed for instantaneous nonlinear Kerr media governed by the ordinary
nonlinear Schrédinger equation since the continuous wave background is modulationally unstable. However, due to the
presence of a threshold for the MI when the nonlinearity is noninstantaneous one finds that antidark solitons are possible
for inertial nonlinear media given that the background is sufficiently incoherent to suppress the instability. The antidark
solitons are, similarly to the dark incoherent solitons considered above, composed of both a discrete set of bound states and
a continuum of even and odd radiation modes, and are the only stationary solutions for a self-focusing nonlinearity that has
a non-zero intensity everywhere.
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Fig. 20. (a)Propagation of an unstable multicomponent antidark soliton when the background is coherent. (b) Intensity evolution of a partially incoherent
antidark soliton when initially A, &~ 5.5 mm. For both cases, the initial intensity FWHM of the beam is 10 mm, €2 = 2, n,Ng = 6.1552 x 1074, ny = 2.3,
and Ap = 0.5 pm.

Source: From Ref. [244].

The antidark soliton can be analyzed in a manner similar to that considered for the incoherent dark soliton solution.
Assuming that the intensity profile takes the form

N(x,z) = N§ [1+ €’*sech®(x/xo)] , (124)

we find that the mode function U again satisfies Eq. (120) but with g = [k3(nj + n,N3) — B%]x3, while s = x/xo and
f= k(z,nzezNgxfJ remains the same. Considering once again the case of f = 2 we find as before that there is only a sin-
gle bound mode U, = sech(s) and a continuum of even and odd radiation modes satisfying g = Q?, viz. U, = Q cos(Qs)
— tanh(s) sin(Qs) and U, = Q sin(Qs) + tanh(s) cos(Qs).

Assuming the correlations of the modal functions to have the same functional dependence as before we see that Eq. (122)
still hold but the second of the self-consistency equations (123) will need to be modified due the difference in sign in the
intensity of Eq. (124). The new solution will instead satisfy the relations

o0 o0
N§ =/ DWQ)(Q*+1dq, A :/ D(Q)[1+ €*(Q*+ D] dQ. (125)
0 0

These results shows that antidark solitons do exist and that there is no upper limit to the incoherence of the background,
thus making it possible to increase the incoherence to a point above which the MI will be suppressed in order to allow the
antidark soliton to propagate as a stable entity in a self-focusing inertial medium. (See Fig. 20.)

4.5. Dynamic solutions of the Vlasov and Wigner-Moyal equations

The evolution equations of the different formalisms for treating partial coherence are generally difficult to solve explicitly.
Exceptions to this have been found for the integrable Kerr nonlinearity and when the analytically simplifying saturable
logarithmic nonlinearity is considered. Exact soliton solutions were first found in a closed form for this approximate and
special type of nonlinearity [233]. In this section we will present a different type of analytical solution to the Wigner-Moyal
equation in the form of a dynamical self-similar paraboloid with a parabolic intensity profile. This solution is similar to
the Gaussian solutions for the logarithmic nonlinearity in the sense that all higher-order derivatives in the nonlinear terms
vanish identically beyond the second-order so that the evolution is effectively governed by a Vlasov type equation. We
restrict the analysis to one spatial dimension were the Vlasov equation takes the form

0,k (X, z) + 2akdyni(x, z) + y 04N (x, z) dny(x, z) = 0. (126)

We first note that if Eq. (126) is considered as a linear equation for ny = ny(x, z) with the intensity N(x, z) = ﬁ f ne(x, z) dk

held constant, then it will also be satisfied by any integer power nZ of this solution. It is thus possible to make an additive
ansatz for a solution

ny = a(2) + b2)f2 (%) + c(2)g2(k) + d@)f (X)g1 (k), (127)

where f, (x), g2(k), f1(x) and g1 (k) are unknown functions of the spatial coordinate x and the conjugate variable k while a, b,
¢ and d are coefficient functions dependent on the evolution variable z. This ansatz generalizes the stationary solution of the
Vlasov equation which must be a function of the Hamiltonian invariant, as discussed explicitly in the case of the long-range
Vlasov equation in Section 2.3.5. Specifically, one has n(x, z) = @ (ak* — yN(x, z)), with the self-consistency requirement
provided by the intensity relation [238]. Following the same procedure with a separable multiplicative ansatz one can also
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produce the dynamic soliton solution for a logarithmic saturable nonlinearity, c.f. [162]. Substituting the ansatz Eq. (127)
into Eq. (126) leads to the following expression:

d'(z) + b'(2)f2(x) + ' @)g2(k) + d' (2)f1(x)g1 (k) 4 2ab(2)f; (x)k 4 2d(2)f{ (X)kg1 (k) + y c(2) N (x, 2)g} (k)
+ yd(2)9N(x, 2)f1 (x)g; (k) = 0. (128)

By considering which combinations of terms depend on each independent variable one can further subdivided this
expression into four separate equations

d(z) =0, (129)

b'(@)f2(x) + yd(@)3:N(x, 2)f1(x)g; (k) = 0, (130)

¢'(@2)g2(k) + 2ad(2)f{ (X)kg1 (k) = 0, (131)

d'(2)fi (x)g1(k) + 2ab@)f; (x)k — yc(2)3xN (x, 2)g' (k) = 0. (132)
For this system to have a dynamical solution we must have a(z) = ay = const., f>(x) o x, g2(k) o< k2, f1(x) o x, g1 (k) o< k
and 0,N (x, z) o x. The solution thus takes the form

nl = ap — b@)x* — c(2)k* +d(z)xk,  N(x,2) = e(z) — f(2)x* (133)
with the coefficient functions satisfying

b'(z) — 2yd(2)f (z) =0, c'(z) = 2ad(z) =0, d'(z) — 4ab(z) + 4yc(2)f (z) = 0. (134)

One may easily find that this system has an invariant of the form 4b(z)c(z) — d?(z) = Cy = const., that will be helpful in
simplifying the remaining calculations and reduce the number of independent parameters.

Since the Wigner function must decay to zero at infinity we make the assumption that the solution is defined only where
the Wigner function is positive and that the solution is identical to zero otherwise. This allows a continuous solution to
be constructed, even though the derivatives are discontinuous at the boundary. This requirement is however necessary to
ensure a physically reasonable solution. It remains to satisfy the intensity relation

1 1
N(x,2) = o / ne(x, z) dk = o / (a0 — b(@)x* — c()k* + d(z)xk)l/q dk = e(z) — f(2)x*. (135)
T T
To simplify the evaluation of this integral we note that aqy — b(z)x* — c(2)k* + d(Z)xk = ay — sz -

2 , 2
c(z) (k - 2dc((zz)) x) =ay— 2% —c (k - 4;§2)x) , which shows that the solution depends only on the parameter function

c(z) and its derivative. The limits of the integration are given by the condition that the argument of the inner function is

zero, i.e. k = 4i£2)x + ./ % (ao — 45&)"2)- By considering that the highest power of k in the integrand goes as k*/9 and that

the integration limit gives k o x, enables one to deduces that ¢ = 2. Assuming c(z) to be positive will then allow the integral
to be evaluated as

N, 2) = —20 <1 __G x2> = Iy(2) (1 - XZ) . (136)
4./c(2) 4ayc(z) 1%(2)

To relate the function c(z) and the different constant in this expression to physical quantities, instead of e(z) and f(z),

it is convenient to define the beam width function L(z) = 2./agc(z)/Co and the peak intensity Ip(z) = 2;%2(2). It is

also convenient to introduce a constant parameter A = 4w./ay/Cy which has been found to characterize the degree of
coherence [245]. The full solution can then be written as

B L(2)Ip(2) x2 12(2) L'(z)
i) = (3 0 (1) PO (5 VO (137)

defined where the argument is positive and with the evolution of the beam width function satisfying

@’L@) _ 8aly@)A (1 L@2)

dz2 ~  I2(2) 24 )7
We emphasize that this is an exact dynamical solution of both the Vlasov equation (126) and the full Wigner-Moyal
Eq. (105), by virtue of the fact that the nonlinearity truncates after the second order.

The solution (137) was analyzed in [245] where it was found that the nonlinear focusing effect is generally counteracted
by the incoherence while the defocusing effect is enhanced. The paraboloid solution was found to reduce to a previously
known approximate parabolic solution in the coherent limit of high field intensity. The beam width function L(z) governed
by Eq. (138) was, for a focusing nonlinearity, further shown to either oscillate between two limits or to monotonically
approach an asymptotic value at a rate depending on the degree of coherence.

(138)
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4.6. Subsequent developments

In this section we briefly comment several important developments of the theoretical approaches discussed above.

4.6.1. Extension to nonlocal nonlinearities

The theory of incoherent solitons in inertial nonlinear media has been extended to account for a nonlocal nonlinearity.
The main motivation for these studies was the experimental observation of incoherent solitons in nematic liquid crystals [23,
24]. Besides their strong noninstantaneous saturable Kerr-like nonlinearity, liquid crystals are known to exhibit a nonlinear
response which is also inherently spatially nonlocal, because the molecular reorientation induced by a light beam in a
particular place will affect the orientation of molecules far beyond this point. In this way, different theoretical approaches
have been developed to study incoherent solitons with a nonlocal and inertial nonlinearity. On the one hand, the
mutual coherence function approach has been extended by considering the particular example of a nonlocal logarithmic
nonlinearity [246]. Analytical formulas for the evolution of the beam parameters and conditions for the formation of
nonlocal incoherent solitons are thus derived. On the other hand, the self-consistent multimode theory has been applied
to the coupled equations governing wave propagation with the orientational nonlinearity of the nematic crystal taken into
account [247]. A family of partially coherent soliton solutions is obtained, which is characterized by a relation between the
power of the optical beam and the number of guided modes. The complex coherence factors are also obtained in closed
form. We also note that incoherent surface solitons in a noninstantaneous and nonlocal nonlinear medium have been
demonstrated theoretically and experimentally [248]. These incoherent surface waves are located at the interface between
a nonlinear medium with long-range nonlocality and a linear dielectric medium.

4.6.2. Extension to white light

An other important generalization of the previous studies is the extension of the theory of incoherent solitons and MI to
the propagation of both spatially and temporally incoherent light [4]. It should be noted that, owing to the slowly responding
nonlinearity, the temporal dynamics the incoherent wave is averaged out by the inertial nonlinearity, as discussed above in
Section 4.1. In other words, the induced nonlinear index of refraction is unable to follow fast phase fluctuations of incoherent
light but responds only to the time-averaged intensity, (I), which is independent of time, d; (I) = 0 - the time average being
taken over the response time of material, 7z. The four different formalisms discussed above can thus be extended by including
a dependence of the relevant functions (coherent density function, modal functions, or mutual coherence functions) on the
frequency w - though the equations governing the evolutions of such functions do not involve temporal dynamics. It should
also be underlined that a generalized theory accounting for the contribution of pronounced intensity fluctuations of white-
light-like sources has been developed in Ref. [237].

On the basis of these extensions of the four theoretical formalisms, white-light incoherent solitons [249,250] and white-
light incoherent MI [251] have been theoretically predicted and observed experimentally [252,4]. In this way, characteristic
features of the temporal power spectrum and the spatiotemporal coherence properties of white-light solitons have been
described. For instance, the spatial intensity profile of light within some specific frequency interval [w, w + dw] is wider
(lesslocalized) at lower frequencies and narrower at higher frequencies. Furthermore, the spatial correlation distance (across
the soliton) is always larger for lower frequencies and shorter for higher frequencies [249]. Regarding white-light MI, it was
shown that the frequency spectrum directly affects the strength of the MI gain, and can destabilize or stabilize the beam.
The MI then appears as a collective effect, where all the temporal frequencies participate in the formation of the MI pattern
by self-adjusting their respective contributions [251].

4.6.3. Extension to periodic lattices

Nonlinear systems with inherent periodicity are abundant in nature and examples can be found in such diverse fields as
biology, chemical physics, nonlinear optics, Josephson-junctions or Bose-Einstein condensates. Soliton solutions in periodic
media have been widely studied and we refer the reader to the recent comprehensive reviews for details [253,254,6].
Actually, nonlinear waveguide arrays have been mostly treated with the coupled mode theory, where the dynamics is well
approximated by the discrete NLS equation [255]. In a more general approach, the Floquet-Bloch theory is used to analyze a
continuous differential equation with a periodic potential term. The main feature of wave propagation in periodic systems
is the interference of waves reflected by the lattice — a property which is responsible for the richness of the dynamics in
periodic media. These interference effects obviously depend on the coherence properties of the waves. However, in nonlinear
periodic lattices, most studies have been essentially limited to the dynamics of coherent waves. This is justified provided
that the coherence length of the waves is much larger than the characteristic dimension of the system (e.g., the lattice
spacing). However, when the two length scales become comparable, the interference effects affect the interplay between
the statistical (coherence) properties of the waves and the lattice periodicity.

This regime of incoherent nonlinear wave evolution in periodic media was studied theoretically [19], and subsequently
experimentally [20], in the limit of a slowly responding (i.e., inertial) nonlinearity. The authors considered the NLS equation
in the presence of a periodic potential along the direction of propagation of the wave. By making use of the modal expansion
theory discussed above for the homogeneous case, the authors have constructed incoherent soliton states. These incoherent
solitons are characterized by an intensity profile, a power spectrum, and coherence properties which conform to the
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periodicity of the lattice. Subsequent theoretical studies predicted the existence of incoherent gap solitons in waveguide
arrays, i.e., gap solitons constructed from partially spatially incoherent light [256,257]. The experimental observation of
these entities has then been reported in Ref. [258]. It should be underlined that incoherent MI and white-light solitons in
periodic lattices have been also investigated with an inertial nonlinearity [259,260].

4.6.4. Pattern formation in cavities

The dynamics of incoherent optical waves in an optical system with feedback is the subject of growing interest in recent
years, in relation with the phenomena of optical wave thermalization and condensation in passive optical cavities or in
different kinds of laser systems. These aspects will be discussed in more detail in Section 7. Here we briefly comment on
some interesting works in optical cavities which are closely related to the spatio-temporal inertial nonlinearity discussed
in this Section 4.

The spatial dynamics of a partially coherent wave circulating in a passive cavity that exhibits an inertial nonlinearity has
been studied both theoretically [261] and experimentally [262-264]. The system consists of a passive ring cavity of length
L., containing a nonlinear medium of length L << L. The light wave coupled into the cavity is partially incoherent, with a
‘temporal’ coherence length, A., much shorter than the cavity length, L < A, < L.. The cavity is characterized by a low-
finesse, a property which is in contrast to the passive cavity considered in Section 7.3. The response time of the nonlinearity
is much longer than (i) the characteristic time of phase fluctuations across the beam and (ii) the average time of phase
fluctuations between the beams from different cycles.

The main result of these studies was to show that, in spite of the spatial incoherence of the optical wave, the optical
cavity exhibits pattern formation dynamics. The slowly responding (inertial) nonlinearity is the key physical mechanism
responsible for the pattern formation in this incoherent cavity. By making use of the mutual coherence function formalism
discussed above, a stability analysis of a uniform intensity beam in the cavity was performed in [261]. It was shown that
the pattern formation process is always associated with two consecutive thresholds, which are determined by the degree
of spatial coherence, the strength of the nonlinearity, and the cavity feedback parameter. At the first threshold the beam
becomes unstable, as the nonlinear self-focusing overcomes the diffusive tendency of spatially incoherent light. The second
threshold occurs when the nonlinear gain overcomes the loss in a single pass. The first threshold does not depend on the
cavity boundary conditions, a property which is in contrast with coherent cavities [265,266], whereas the second threshold
is an inherent feature of the cavity.

4.6.5. Interaction between incoherent solitons

The interaction between incoherent solitons has been studied within various contexts. An important case is the 1D
interaction of partially coherent solitons in Kerr type inertial nonlinear media, which has been investigated using the self-
consistent multimode theory [267], for which the governing system of equations can be written in the form of a Manakov
system of integrable NLS equations [268]. This allows partially coherent solitons to be analytically found, and understood
not only as linear mode solutions of their own self-induced multimode waveguides, but as multisoliton complexes made up
of individual, but incoherently interacting, coherent soliton solutions for each mode. The partially coherent solitons does not
even have to be symmetric like the bright soliton solutions considered in Section 4.4.1 but can have a more general shape,
which depends both on free parameters for each component and on the number of modes involved, and are nevertheless able
to propagate as stationary intensity profiles. It has been found both theoretically and experimentally that partially coherent
solitons can change their shape during collisions while still remaining as stationary solitons even after the collision, see
[267,269]. An example of this is shown by the collision of a symmetric and an asymmetric partially coherent soliton in
Fig. 21, where the two partially coherent solitons consist of two modes each. It should be emphasized that this collision
occurs elastically, without the emission of any radiation, due to the integrability of the inertial Kerr type model.

Besides the inverse scattering transform, different methods have been also developed to study the richness of the problem
associated with the interaction of incoherent solitons. From a general point of view, if one considers the incoherent nature
of the soliton interaction, one might expect the interaction to be phase-insensitive and thus always attractive [270,271,6].
However, theoretical work revealed that incoherent solitons can exhibit a phase-sensitive interaction. This phase-sensitive
interaction can be understood from the point of view of the modal theory. Each mode will experience an incoherent and thus
attractive interaction with the other mode and will separately conserve mode energy. However, if two partially coherent
solitons populate the same modes then the different components of each mode will be able to interact coherently with
one another. This coherent interaction can be either attractive or repulsive depending on the relative phase between
the components. The character of the overall interaction, which depends on the complicated combined interaction of all
components both within and between the different modes, can therefore also be attractive or repulsive. In Ref. [272], the
authors showed both theoretically and experimentally that the interaction dynamics of two closely spaced solitons that are
made incoherent as a whole is fundamentally different from the case when the solitons are mutually coherent. It was shown
that the interaction strength and the associated interaction length can be controlled by the amount of incoherence in the
solitons. The interaction can change from attractive to repulsive near a certain threshold in the coherence parameter. In a
subsequent theoretical study [273], it was shown that the problem of interaction of partially incoherent soliton stripes can be
transformed into a form equivalent to that of (coherent) vector soliton interaction, where however the state of polarization
corresponds to and is determined by the incoherence properties of the solitons. A variational approach was used to study
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Fig. 21. Collision of a symmetric and an asymmetric partially coherent soliton consisting of two linear modes.
Source: From Ref. [267].

the interaction dynamics and analytical expressions for the change in the soliton parameters were obtained. These showed
among other the variation of the relative distance between the solitons, with the possibility of a change from attractive to
repulsive interaction at a certain critical degree of incoherence. The analysis revealed that the interaction may even change
several times between attractive and repulsive and vice versa as the degree of incoherence of the solitons increases.

Also notice that the interaction of nonlocal incoherent spatial solitons in strongly nonlocal Kerr media has been
investigated numerically [274]. The role of important parameters, such as the relative phase, the separation, the extent of
nonlocality and the input power, has been found to be very similar to the case of nonlocal coherent soliton interactions.
Interactions of incoherent white-light solitons in the presence of a logarithmic saturable nonlinearity has been also
investigated [275], revealing that all the frequencies participate in the interaction (see Section 4.6.2).

We finally remark that the interaction of elliptic incoherent solitons has been also investigated. Contrarily to conventional
2D coherent solitons which are known to be always circular in isotropic self-focusing nonlinear materials, incoherent
solitons can exhibit an elliptic structure provided that their correlation function is anisotropic [276]. During a collision event
of two such elliptic incoherent solitons, their intensity ellipse rotates, and at the same time as their centers of gravity tend
to revolve around each other. This type of elliptic incoherent solitons has been observed experimentally in Ref. [277].

4.7. Experiments

Although this review article focuses on the theoretical formulations of the dynamics of incoherent nonlinear waves, we
will here also briefly comment on some major experimental results, and refer the reader to the following review for a more
complete discussions [5]. As discussed in the Introduction Section 1, the remarkable simplicity of experiments performed
in photorefractive nonlinear crystals allowed for a fruitful investigation of the dynamics of incoherent nonlinear optical
waves in the presence of an inertial nonlinearity. Most of these experimental works were conducted by M. Segev and his
collaborators [5].

4.7.1. Incoherent solitons

Bright incoherent solitons

The first experimental demonstration of self-trapping of partially coherent light and the generation of a partially coherent
spatial soliton was performed by Mitchell et al. [3] in 1996 (see Figs. 22-23). This experiment showed that by imposing
random phase fluctuations onto a two-dimensional continuous wave beam it could self-trap and then propagates through
a biased nonlinear photorefractive crystal without changing its width. As already discussed in Section 1, a key requirement
for the existence of partially coherent solitons is that the nonlinearity is inertial, i.e. slowly responding. The experiment
was cleverly designed to make use of the photorefractive nonlinearity of a Strontium-Barium-Niobate (SBN) crystal which
allowed both the strength and the response time of the nonlinearity to be controlled by the application of an external
voltage and by the beam intensity, respectively. Photorefractive crystals have properties that enables them to exhibit a very
long response time for low intensities, allowing them to respond on a timescale which is long with respect to the random
phase fluctuations of the beam, and thus fulfilling the requirement of being sensitive only to the smooth averaged intensity
profile. The photorefractive nonlinearity relies on the optical excitation of electrons in the lit region of the medium into the
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Fig. 22. Experimental setup for the observation of bright incoherent solitons. See the text for more details on the experiment.
Source: From Ref. [3].
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(a) Self-trapped beam.
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(b) Regular diffracting beam.

Fig. 23. Photographs of the beam self-trapped by the nonlinearity (above) and the normally diffracting beam in its linear regime of propagation (below).
The setup used in the experiment is reported in Fig. 22.
Source: From Ref. [3].

conduction band, which locally increases the conductivity. As a consequence there will be a larger voltage drop in the dark
regions as compared to the lit regions in the medium, with a concomitant space-charge field of greater magnitude. This
space-charge field will in turn cause a change in the refractive index through the electro-optic (Pockels’) effect, with the
refractive index change being proportional to the position dependent field, which will effectively manifest itself as a graded
index waveguide.

A bright self-trapped soliton beam should maintain a constant width while propagating through the medium, with the
nonlinear self-focusing effect being exactly balanced by diffractive broadening. In the experiment [3] a partially coherent
beam was launched into the photorefractive crystal with an initial width of 30 wm at the input face (see Fig. 22). This beam
would have broadened to a width of 102 wm after propagating through the 6 mm long crystal in the absence of a nonlinear
self-focusing effect. This large amount of diffractive broadening is a direct consequence of the incoherent nature of the
beam, since a fully coherent beam of the same initial width would broaden to only 36 pm when propagating through the
same medium. Self-trapping was achieved after applying a voltage of 550 V to electrodes that were attached parallel to
the direction of polarization of the beam and separated by 6 mm. The result was a non-diffracting, self-trapped, beam that
had the same width at the output face as at the input, as illustrated in Fig. 23. The partial coherence of the spatial beam
was imposed by scattering it off a rotating diffuser, which produced random phase fluctuations and associated intensity
speckles on a time scale associated with the mechanical rotation (about 1 ps). The crystal medium had a response time
that was slow enough that the nonlinearity could be considered to be inertial, and thereby respond only to the smooth time
averaged intensity of the beam and not to the instantaneous speckle pattern.

Experiments in nematic liquid crystals

It is important to note that, besides photorefractive nonlinear crystals, the existence of incoherent bright solitons
[23,24] and subsequently incoherent MI [278], has been also demonstrated in nematic liquid crystals. We refer the reader
to the above three articles for details (also see the review [145]). As discussed above in Section 4.6.1, besides their strong
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noninstantaneous saturable Kerr-like nonlinearity, liquid crystals are known to exhibit a nonlinear response which is also
spatially nonlocal as a result of the molecular reorientation. This motivated different extensions of the theoretical methods
developed to describe incoherent solitons (see Section 4.6.1).

White light solitons

Soon after the first experimental demonstration of self-trapping of partially coherent light beams followed another
demonstration of self-trapping of a white light beam from an incandescent source by Mitchell et al. [4] in 1997. The source
used was a quartz-tungsten-halogen incandescent bulb that generated white light with a temporal coherence time in the
order of a few femtoseconds. Since this light source was already incoherent there was no need to impose any additional
incoherence onto the beam, and the rotating diffuser was consequently left out of the experimental setup. The light from
the bulb was spectrally filtered to a wavelength range of 380-720 nm and collimated to a beam before entering the
photorefractive SBN crystal used as the nonlinear medium. The input beam had a width of 14 pwm and would have diffracted
to 82 nm after propagating through the 6 mm long crystal in the absence of self-focusing. This should be compared to its
coherent counterpart which would have diffracted to only 35 jum at a wavelength of 380 nm or to 63 pm at a wavelength
of 720 nm, respectively. The application of 600 V to the electrodes resulted similarly to the previous experiment in the self-
trapping of the beam at a width of 12 wm. This experiment clearly shows that the presence of a coherent (laser) light source
is not required for soliton formation as long as the nonlinear medium is of the inertial type allowing other types of light
sources such as e.g. incandescent bulbs or LEDs to be used instead. We also note that, as discussed above in Section 4.6.2,
white-light incoherent MI has been theoretically predicted [251] and observed experimentally [252], as well as white-light
solitons in periodic lattices [259].

Dark incoherent solitons

Incoherent dark solitons have also been experimentally observed. A 1998 experiment [ 14] provided the first experimental
demonstration of self-trapping of a dark notch in a spatial light beam that was partially incoherent. Dark incoherent
wavepackets were observed both in the form of one dimensional dark stripes and two dimensional dark holes, that were self-
trapped to form dark solitons (see Fig. 24). The experimental setup was similar to the one described above that was used
to observe bright incoherent solitons. A biased photorefractive crystal was used but with the polarization of the applied
electric field reversed to provide a self-defocusing instead of a self-focusing effect. The initial input profile for the one
dimensional case consisted of a dark notch in a broad partially coherent background. The initial width of the notch was 18 um
which would have diffracted to 38 um after propagating 11.7 nm through the crystal in the absence of the self-defocusing
nonlinear effect which could be controlled by the applied voltage. The notch was self-trapped to preserve its initial width
by applying a voltage of —440 V across the transverse dimension of the beam using electrodes separated by 5.3 nm. The
experimental results confirmed the theoretical predictions that incoherent dark solitons are always gray [13,279], and
that a larger degree of incoherence requires a higher intensity for self-trapping to occur. The need for a slowly responding
nonlinearity was moreover demonstrated since the beam was found to fragment due to the stationary speckle pattern when
the rotation of the diffuser was stopped and the crystal was allowed to reach its steady-state response. The extension to two
dimensional beams was further considered with the demonstration of self-trapping of a dark soliton hole using a vortex-type
beam [14].

An incoherent dark soliton also gives rise to interesting behaviors when it interacts with a bright soliton. Indeed, similar
to the case of bright solitons, a dark soliton also changes the refractive index of the medium and thus induces a graded-
index waveguide. In this way, it was shown that a coherent light beam can be guided through the waveguide created by an
incoherent dark soliton [280]. Another interesting study revealed that the degree of coherence of a bright incoherent soliton
can be strongly affected through its interaction with a dark coherent (or incoherent) spatial soliton [281]. Indeed, during
the nonlinear interaction of the dark and bright beams, only a part of the incoherent bright beam is trapped (guided) by the
dark beam, thus leading to the formation of a sharp intensity spike. In this region, the correlation length of the incoherent
bright beam increases by at least two orders of magnitude. This constitutes a remarkable simple mechanism for increasing
in a significant way the coherence of a localized incoherent optical beam.

Influence of the initial phase profile

The impact of the initial phase profile at the beam center of an incoherent dark stripe has been shown to play an
unexpected and remarkable role on the propagation dynamics [279,282]. Experimental results show that an initial phase
shift at the center of the stripe is essential for the evolution of dark incoherent solitons. If the phase jumps by 7, a single gray
incoherent soliton emerges. Conversely, if the phase is continuous across the input dark stripe, then two gray incoherent
solitons emerge but they separate from each other with propagation [282]. Note that this behavior is similar to that occurring
for coherent dark solitons [283]. The dynamics of these incoherent dark entities are associated with strong “phase-memory”
effects that are otherwise absent in the linear regime.

4.7.2. Incoherent modulational instability

Modulational instability of a partially coherent beam has been also experimentally observed, as illustrated in Fig. 25. In
a 2000 experiment Kip et al. [16] showed that the nonlinearity does indeed has to exceed a threshold depending on the
coherence properties of the beam in order for MI to occur, in accordance with theoretical predictions. The experiment used
the by now familiar setup with a photorefractive SBN crystal as the nonlinear medium. The extraordinary polarization was
used as a signal beam while the ordinary polarization was used as the background and served to tune the saturation of
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Fig. 24. Self-trapping of a dark stripe carried by a partially spatially incoherent beam. Shown are photographs and beam profiles of (a) the input beam,
(b) diffracted output beam, and (c) the self-trapped output beam. The last photograph (d) shows the output beam in the presence of nonlinearity when the
diffuser is stationary, illustrating the fragmentation of an incoherent dark stripe in an instantaneous self-defocusing medium.

Source: From Ref. [14].

the photorefractive nonlinearity. The incoherence was imposed by passing the beam through a rotating diffuser and the
intensity profile at the output face was captured on a CCD camera. The experiment showed that the MI caused the optical
beam to disintegrate above a certain threshold depending on the coherence properties, and resulted in the formation of one
dimensional spatial filaments. A further increase of the strength of the nonlinearity resulted in a second transition and the
formation of a two dimensional array pattern of self-ordered spots. The distance between the adjacent filaments and spots
were much longer than the correlation length of the beam. The experiment demonstrated that both one and two dimensional
spatial patterns can form spontaneously from noise for partially coherent waves in inertial nonlinear media due to the MI
process, which is a known precursor to soliton formation. The experiment showed good agreement when compared with
the one dimensional theory, predicting among others the dominant spatial frequency with the largest growth rate [240].
We note that induced incoherent MI has been also investigated experimentally in [284].

The possibility of suppressing MI using partial incoherence has been exploited in different circumstances. For instance,
it has been used to form stable one dimensional soliton stripes in inertial bulk Kerr media [285,286]. Normally these
stripes are unstable in the coherent case in the other spatial dimension. However, one may consider a stripe that is fully
coherent in the self-trapping dimension, but partially incoherent and uniform in the other transverse dimension. Owing
to incoherent MI suppression, such stripes become transversely stable when the amount of incoherence is above a certain
threshold.

Following a similar idea, incoherent antidark solitons have been studied theoretically and experimentally [244]. The
idea that bright solitons can exist on top of a nonvanishing background received lot of interest in the literature, see, e.g.,
[287-289]. As discussed above in Section 4.4.3, the instability of antidark solitons is usually triggered by the MI of the
coherent background needed to confine the bright part of the antidark soliton. However, this MI can be suppressed owing
to an incoherent background. In this way, incoherent antidark solitons have been shown to propagate in a stable fashion,
provided that the spatial coherence of their background is reduced below the incoherent MI threshold [244].

5. Wave turbulence approach

In the previous Sections 2-3 we considered the Vlasov and WT Langmuir equations which are quadratic nonlinear
equations whose derivations refer to a first-order closure of the hierarchy of moments equations. These kinetic equations
are formally reversible and describe, in particular, the spontaneous formation of incoherent soliton structures. Let us now
consider the following two limits. (i) In the spatial domain the limit of homogeneous statistics of a broadband incoherent
wave, so that the Vlasov equation becomes irrelevant, as commented through Fig. 2 in Section 1. (ii) In the temporal domain
the limit of stationary statistics and instantaneous response of the nonlinearity, so that the WT Langmuir equation becomes
irrelevant, as commented through Fig. 3. In both limits, we thus need to close the hierarchy of the moments equations to
the second-order. The analysis reveals that in this case the appropriate formalism for the description of the random wave is
provided by the Hasselmann WT kinetic equation, which is a cubic nonlinear equation.

In this section we discuss the WT kinetic equation in the spatial and the temporal domains. In the spatial domain, we
present the WT formalism in both the waveguide configuration (in a ‘trapping potential’) and in infinite space through the
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Fig. 25. Experimental observation of incoherent MI: The intensity structure of a partially spatially incoherent beam at the output plane of the nonlinear
crystal. The sample is illuminated homogeneously with partially spatially incoherent light with a coherence length of 17.5 wm. The displayed area is 1.0
by 1.0 mm (A through D) and 0.8 by 0.8 mm (E and F), respectively. The size of the nonlinear refractive index change of the crystal is successively increased
from (A) to (F). The plots (B through D) show the cases just below threshold (no features), at threshold (partial features), and just above threshold (features
throughout) for 1D incoherent MI that leads to 1D filaments. Far above this threshold, the 1D filaments become unstable (E) and become ordered in a
regular 2D pattern (F).

Source: From Ref. [16].

phenomena of optical wave thermalization and condensation (Section 5.2). In the temporal domain, the one-dimensional
WT kinetic equation is discussed in the framework of a phenomenon of velocity-locking (Section 5.3), and more generally
in the context of supercontinuum generation (Section 5.4).

5.1. Hasselmann wave turbulence kinetic equation

5.1.1. Wave turbulence in a waveguide

The WT description of a random wave has been essentially developed in the ideal situation in which the random
wave is supposed ‘infinitely extended in space’, an assumption that may be considered as justified when its correlation
length is much smaller than the size of the whole beam. However, the propagation of an incoherent localized beam is
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Fig. 26. Refractive index profile n(x) of an optical waveguide (graded-index fiber) (a), and corresponding confining potential V (x) in the NLS Eq. (139)
(b). The finite depth of the potential, Vy, introduces an effective frequency cut-off for the classical wave problem. The existence of an inhomogeneous
(e.g., parabolic) potential reestablishes wave condensation in the thermodynamic limit in 2D, in analogy with quantum Bose-Einstein condensation.

eventually affected by incoherent diffraction, which inevitably affects the processes of thermalization and condensation.
In the following we derive the WT Kkinetic equation by considering the propagation of the incoherent beam in an optical
waveguide. In the guided configuration, incoherent diffraction is compensated by a confining potential, thus allowing to
study the thermalization and the condensation of the optical field over large propagation distances. Accordingly, we consider
the NLS equation with a confining potential V (x) and we formulate a WT description of the random wave into the basis of
the eigenmodes of the waveguide (i.e., potential’s eigenmodes), instead of the usual plane-wave Fourier basis relevant to
statistically homogeneous random waves [V (x) = 0] [290].
The NLS equation with a confining potential V (x) reads

i,y = —aVy + V@YU — vy Py (139)

Note that in this section we deal essentially with a defocusing nonlinearity, y < 0 (so as to ensure the stability of the
homogeneous plane-wave solution, i.e., condensate). We recall that this NLS equation conserves the power of the optical
field, N = f ||? dx. The NLS equation also conserves the total energy (Hamiltonian) H = E + U, which has a linear
contribution,

E= /a|Vw|2dx + /V(x)|w|2dx, (140)

and a nonlinear contribution,

U:—%/Wﬁdx. (141)

The potential V(x) models the waveguide in which the optical beam propagates. For instance, if one considers a
multimode optical fiber, the waveguide potential exhibits a revolution symmetry with respect to the axis of propagation of
the beam. Then a direct correspondence exists between V (|x|) and the transverse refraction index profile of the waveguide.
For a graded-index multimode fiber, we have V(|x]) = q|x|? if |x|] < aand V(|x|) = Vq, if |x| > a, where q = V,/a? [290].
This potential is schematically illustrated in Fig. 26. In this way the finite depth of the potential Vo < oo introduces an
effective frequency cut-off for the classical wave. This is due to the fact that the nonlinear coupling among bounded and
unbounded modes is negligible, because of the poor spatial overlap of the corresponding modes.>

Basic considerations

We assume that the initial random field vy (x, z = 0) can be expanded into the orthonormal basis of the eigenmodes of
the linearized NLS equation [Eq. (139) with y = 0],

YXz2=0)=) cnlz=0)un(), (142)

where the index {m} labels the two numbers (m,, m,) needed to specify the mode that u,, (x) refers to. The modal coefficients

are random variables uncorrelated with one another, (cm (z=0)(z= 0)) = nyu(z = 0) 5,’fym, 8,’{ m being the Kronecker’s

3 The efficiency of the generation of unbounded modes (w < Vj)is several orders of magnitude smaller than the conversion efficiency between bounded
modes (@ < Vp), so that their excitations can be neglected [for details see appendix 4 in [290]].
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symbol. We remark that this formalism is also known as the Karhunen-Loeve expansion.* The eigenmodes u,,(x) are
orthonormal, f U (%) U (%) dx = 8K and satisfy the ‘stationary’ (i.e., z-independent) Schrédinger equation

n,m’

Brntim (%) = —aVZUp(X) + V(&) (%), (143)

with the corresponding eigenvalues f,,.
As it propagates through the waveguide the incoherent field ¥ (x, z) can be represented as a superposition of modal
waves with random coefficients ¢, (z), which denotes the respective modal occupancy:

V®2) =) cn(2) un(X) exp(—ifin2). (144)

In the linear regime of propagation y = 0, we have c,(z) = cn(z = 0). In the nonlinear regime, we will follow in
the next section the procedure of the random phase approximation underlying the WT theory [37,47]. In particular, the
modal occupancies c;,;,(z) are still random variables uncorrelated with one another, <cm @)cy (z)) = ny(2) 8,’{ m- The modal
occupancies ny,(z) satisfy a coupled system of nonlinear equations that we shall describe below.

The average local power of the field is <|1p(x, z)|2> =) m(2) |um (®)|?, and a spatial integration over x gives the total
average power of the beam

N= an(z), (145)

which is a conserved quantity. The parameter n,(z) thus denotes the amount of power in the mode {m}. It can be obtained
by projecting the field v/ (x, z) on the corresponding eigenmode u,(x),

2
Nm(z) = <V1/f(x, ) uj (x) dx >= (lem@)P?). (146)

Wave condensation takes place when the fundamental mode becomes macroscopically populated, i.e., when ng > np, for
m # 0[291,292].

In the same way, by substituting the modal expansion of the incoherent field v/ (x, z) into the expression of the linear
energy (140), one obtains

E@) =) En(@) =) n() Bn. (147)
m m
The total linear energy is the sum of the modal energies weighted by the corresponding modal occupancy n,,(z).

Wave turbulence kinetic equation in a waveguide

We now study the influence of a weak nonlinear coupling among the modes, so that the modal occupancies defined by
(146) depend on z, n,(z). This weakly nonlinear regime precisely corresponds to the regime investigated numerically in
Section 5.2.4. Substituting the modal expansion (144) into the NLS Eq. (139), one obtains

10,0, = Bmlm — ¥ Z meqsapa;as (148)
p.q.s

where a,,(z) = ¢y (z) exp(—iBnz), and the fourth-order tensor is defined by the overlap integral

Winpgs = f Uy, (R) 1 (R) 1y (X) s (%) dX. (149)
Eq. (148) conserves the total power N = )" |a,|? and the Hamiltonian

H= 2:/3,,1|am|2 - = Z Winpgs G @p @y s + Wi @@ aqas). (150)
m.p,q,s

Starting from Eq. (148) and following the procedure of the random phase approximation [37,47], we derive in the
Appendix A.7 the irreversible kinetic equation governing the nonlinear evolution of the modal occupancies. For this purpose,
we take the continuum limit of the discrete sum over the modes {m}, which is justified when one deals with a large
number of modes, i.e., Vo/Bo >> 1. The substitution of the discrete sums by continuous integrals also refers to the so-called

4 In the Karhunen-Loeve expansion, {u,(x)} are eigenfunctions of the integral equation, f B(xq, X)) U (%2) d¥, = np uy,(x1), where n,, are the
corresponding eigenvalues and B(xq, X,z) = (¥ (X1, 2) ¥*(x,, z)) is the correlation function. The modal expansion of the correlation function reads
B(x1, %) = Y, Nm Um(X1) U}, (X). In the quantum context, the correlation function is known as the one-body density matrix, which allows one to define
the concept of long-range order (see e.g., Chap. 2 in [291], or Chap. 1 in [292]).
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‘semiclassical description of the excited states’ [292]. Its validity implies that the relevant excitation energies contributing to
the discrete sum are much larger than the level spacing By, i.e., the spreading of the modal occupancies is much larger than
Bo- In Appendix A.7 we derive the following kinetic equation governing the irreversible evolution of the modal occupancies

. 4 y? - - - L gty oy
0,11, (2) = 40 / / / dieydicydiesd (Be, + Bes — B, — B Wiy el ey s (' 4 1) — 7| — ')
0
8my? ~ oo .
+ /32 d’ﬁa(ﬁxl - ﬁK)lUICIC] (l‘l)| (nlq - nIC)’ (]5])
0
where
~ - 1 ~ ~
Usewe, (n) = E / di’ Wieke i/ T« (152)
0

The functions with a tilde refer to the natural continuum extension of the corresponding discrete functions, i.e., g (z) =
Nike/601(2) Be = Bii/ol» Wiekcrieaics = Wike/Boller /Bollica/ follics/ o] a0d S0 on, where [x] denotes the integer part of x.

The kinetic equation (151) and (152) differs from the conventional WT kinetic equation in several respects. First, we
remark the presence of the new second term in Eq. (151). Note that this term vanishes when the occupation of a mode
depends only on its energy B. Actually, this term enforces an isotropization of the mode occupancies amongst the modes
with the same modal energy. Another important property of the kinetic equation (151) is the presence of the function
Wmlxm in the collision term. We will discuss this term through the analysis of some particular examples of waveguide
configurations.

We finally note that the idea to expand the solution of the NLS equation with potential V (x) into the basis of the linearized
equation has been applied in different contexts. This approach makes sense in the weakly nonlinear regime since the
coupling terms between the mode amplitudes due to the cubic nonlinearity are small. If the cubic nonlinearity becomes
strong then the relevance of this basis to expand the solution is questionable and it could be interesting to extend this WT
approach by considering another type of nonlinear eigenmodes. The effect of the nonlinearity on the stationary eigenmodes
was discussed in the particular case of a parabolic trapping potential in Ref. [293], in relation with a similar approach used
earlier in the theory of the dispersion-managed optical solitons [294,295].

Application to specific examples

The kinetic equation (151) and (152) is general and, in principle, relevant to different types of waveguide configurations.
We briefly comment this aspect by considering different concrete examples.

We first comment the parabolic potential relevant to graded-index multimode fibers. It is also known to play an important
role in experiments involving weakly interacting Bose gases [292]. In the ideal parabolic limit (Vo — o0), un,(x) refer to the
normalized Hermite-Gaussian functions with corresponding eigenvalues Bin = Bm,.m, = Bo(my + my + 1),

Uy (X, ¥) = k (Tm ! my1 2™F™) V2 He (1eX) Hy, (k) exp[—k* (6 +y?) /2], (153)

where ¥ = (q/a)'/%. In the continuum limit, we have BK = Kx + ky + Po. This expression plays the role of a generalized
anisotropic dispersion relation, whose wave vector reads & = fy(my, m,). The parabolic potential will be discussed in more
detail below, in relation with wave condensation in a waveguide in Section 5.2.4.

An other example that can easily be illustrated is the circular waveguide of radius R, whose index of refraction is supposed
to be constant for || < R (‘step-index’ waveguide). We assume the waveguide to be of infinite depth for simplicity. The
field can be expanded into the orthonormal basis of the Bessel functions, ¥ (x, z) = Zl.s 1s(2)u; (%) exp(—ipsz), with

1
Us(X) = ————=
v ”RZJIZ_H (*15)

where J;(|x|) is the Bessel function of the first kind, x;  is the sth zero of J;(|x]), and (|x|, ) are the polar coordinates. With
these notations, the eigenvalues read f;; = ozxfs /R?.1n a similar way as above, the passage to the continuum limit can be
done by defining the wave vector k = S 1(l, s), which thus leads to the kinetic equation for the evolution of 1, (z). Note
that with this parametrization of the wave vectors k the density of states p(8) is uniform.

We finally show that Eq. (151) recovers the traditional WT equation when the field is expanded into the usual plane-wave
basis with periodic boundary conditions

Jixis|x|/R) exp(ilf), (154)

1
Uy, my (X) = I exp[2im (mx + myy)/L], (155)

where L stands for the box size and k = ZT” (my, my) the usual wave-vector. This expansion is relevant to the homogeneous
problem, i.e., in the absence of the confining potential [V (x) = 0]. It models the evolution of the random wave in the presence
of a box-shaped confining potential, V (x), whose frequency cutoff, k., = 7 /dx mimics the finite depth of the waveguide,
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Vo ~ ock?. With this plane-wave modal expansion, one obtains |W,C,(I,Q,C3 |2 = @n)? 6(ky + k3 — ky — k). Because of the Dirac

6
8-function, the second term in the kinetic equation (151) vanishes, which thus feads to the standard form of the WT kinetic
equation

0,1 (2) = Coll[R], (156)

with the collision term

Coll[fi] = ko> / / / dky dk; dkss (wr, + i, — o, — i) Sk + ks — ky — k) Q(1), (157)
where k¢ = 4 /(27)?,” the dispersion relation is w(k) = ak?, and

am) = ﬁkﬁk] ﬁkzﬁlg (ﬁ,:] + ﬁ,:; — ﬁ,;l — ﬁ,;]). (158)

As discussed in the Introduction, this kinetic equation can be derived by making use of a rigorous mathematical technique

based on a multi-scale expansion of the cumulants of the nonlinear wave, as originally formulated in Refs. [48-50], and

recently studied in more details through the analysis of the probability distribution function of the random field [52-54,40].

It is interesting to note that in the 1D case, the degenerate phase-matching conditions lead to a vanishing collision term

in Eq. (157). This aspect will be discussed in detail in Section 6.3 through the WT analysis of the 1D integrable NLS equation.

Notice that the presence of a nonlocal nonlinearity also leads to a vanishing collision term in 1D — though contrary to the

integrable NLS case, the hierarchy of the moments equations can be closed to the next order in the presence of nonlocality.

Instead of the usual four-wave resonant interaction [Eq. (156)], one obtains in this case a six-wave resonant interaction
process. We refer the reader to Ref. [84] for a detailed discussion of this interesting six-wave nonlinear dynamics.

5.1.2. Thermalization and nonequilibrium Kolmogorov-Zakharov stationary states

We will describe the essential properties of the WT kinetic equation by considering the standard version of the
homogeneous WT kinetic equation, i.e., Eq. (156)-(158) [with V(x) = 0], while the influence of the potential trap will
be discussed in Section 5.2.4. Note that, to avoid cumbersome notations, in the following we drop the tilde notation adopted
here above [in particular we substitute the notation 71, (z) with the standard notation n;(z)]. We will also generalize the
presentation of the results to a spatial dimension d = 2 or d = 3 in the framework of the dimensionless NLS equation

0,9 = —=V2¢ +aly |}y, (159)

For d = 2, the spatial variable has been normalized with respect to the healing length A = («Ly)"/? (see Section 2). In the
same way, for d = 3 the additional temporal variable has been normalized with respect to the healing time 7o = (|8|Ln)"/?
(see Section 3). The variables can be recovered in real units through the transformation: z — zLy, t — t1o, X — XA, ¥ —
¥ ./p, where werecall that p = N /L9 denotes the wave intensity (see Section 2). Note that in this section we deal essentially
with a defocusing nonlinearity, so as to ensure the stability of the homogeneous plane-wave solution (‘condensate’). The
parameter a = —sign(y) then denotes the sign of the nonlinearity, a > 0 (a < 0) for a defocusing (focusing) nonlinearity.
We keep in mind that for d = 3 the Laplacian operator in Eq. (159) accounts for both diffraction and dispersion effects,
V2 = 9 + dyy + 0y, where we implicitly assumed that the wave propagates in the anomalous dispersion regime, so
that chromatic dispersion acts in the same way as diffraction effects, and thus ensures the stability of the monochromatic
plane-wave solution in the defocusing regime [171].

Thermodynamic Rayleigh—Jeans spectrum
The WT kinetic equation has a structure analogous to the celebrated Boltzmann'’s equation, which is known to describe

the evolution of a dilute classical gas far from the equilibrium state [296]. For this reason the kinetic equation (156) exhibits
properties similar to those of the Boltzmann’s equation. It conserves the total power (or quasi-particle number) of the field

N = Ld/nk(z) dk, (160)
the momentum
P= Ld/knk(z) dk, (161)

and the kinetic (linear) energy

E= Ld/a)(k) g (2) dk. (162)

5 Note that the coefficient ko depends on the definition adopted for the Fourier transform. For instance, considering the definition, ¥ (k,z) =
(2m)792 [ (x, z) exp(—ik.x)dx, one obtains ko = 47 /(27)%.
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Let us remark that Eq. (156) does not conserve the total energy H, but only its linear contribution E. This results from the
fact that the nonlinear energy has a negligible contribution in the perturbation expansion procedure of the kinetic theory
(IU/El K 1).

In analogy with the Boltzmann'’s equation, the kinetic wave equation is not reversible with respect to the propagation
distance z. The irreversible character of Eq. (156) is expressed by the H-theorem of entropy growth, dS/dz > 0, where the
nonequilibrium entropy reads

S@z) =L¢ f log[ny (z)] dk. (163)

As in standard statistical mechanics, the thermodynamic equilibrium state is determined from the extremum of entropy,
subject to the constraint of conservation of kinetic energy (162), momentum (161) and power (160). The method of the
Lagrange multipliers thus gives the thermodynamic Rayleigh-Jeans equilibrium distribution

T
wk) —kv—pu

eq __
nk -

(164)
The parameters T,  and v are in principle arbitrary and refer to the temperature, chemical potential and mean velocity,
by analogy with thermodynamics. We underline that there exist a one-to-one correspondence between (T, u, v) and
the conserved quantities (E, N, P). This means that the evolution of the wave is described in the framework of the
microcanonical statistical ensemble, in contrast with the conventional canonical treatment using a thermal bath [292]. Note
that the equilibrium distribution (164) yields an exactly vanishing collision term (156), Coll[n®1] = 0. This means that once
the spectrum has reached the equilibrium distribution (164), it no longer evolves during the propagation, d,n, = 0.
In many cases the equilibrium distribution is spherically symmetric and the Rayleigh-Jeans distribution takes the
following simplified form
n = _r (165)
w(k) — 1
This equilibrium spectrum is Lorentzian-shaped and the chemical potential characterizes the correlation length of the field at
equilibrium, A& ~ 1/./— . However, we will see later that the Lagrange multiplier associated to momentum conservation
plays an essential role for the study of multiple interacting wave-packets (e.g., the vector NLS equation), or in the presence
of higher-order dispersion effects that lead to an asymmetric supercontinuum equilibrium spectrum (see Sections 5.3-5.4).

Hyperbolic dispersion relation

As discussed here above through the normalized NLS Eq. (159), we have assumed in this section that the incoherent
wave propagates in the regime of anomalous dispersion. Dispersion and diffraction effects then act in the same way and the
spatiotemporal spectrum exhibits a symmetric spatio-temporal structure reflecting the symmetric roles of space and time.
The situation is different in the normal dispersion regime, since in this case temporal dispersion and spatial diffraction act in
opposite ways and compensate each other for those frequencies lying along specific lines. This confers a hyperbolic structure
to the dispersion relation, a property that gives rise to a rich spatiotemporal dynamics of both coherent (e.g., nonlinear X-
waves) [297-301], and partially coherent optical fields [302-305]. The corresponding equilibrium spectrum is expected to
exhibit a spatio-temporal X-shape. This property has been only briefly discussed in Ref. [306] (see also [307]) and deserves
to be analyzed in more details in future works.

Nonequilibrium Kolmogorov-Zakharov stationary spectra

As discussed in the Introduction Section 1.2.1, the process of thermalization is physically relevant when one considers
a Hamiltonian wave system, which can be considered as an ‘isolated’ system. Conversely, when one considers a dissipative
system which is driven far from equilibrium by an external source, then it no longer relaxes towards the Rayleigh-Jeans
equilibrium distribution (164). A typical physical example of forced system could be the excitation of hydrodynamic surface
waves by the wind. In general, the frequency-scales of forcing and damping differ significantly. The nonlinear interaction
leads to an energy redistribution among the frequencies and an important problem is to find the stationary spectra of the
system.

V.E. Zakharov was the first to realize that the kinetic equation of weak-turbulence theory also admits nonequilibrium
stationary solutions [308,37]. Contrary to the Rayleigh-Jeans equilibrium distribution, these stationary solutions carry a non-
vanishing flux of conserved quantities, i.e., the energy and the particle fluxes. Such nonequilibrium stationary distributions
are the analogue of the Kolmogorov spectra of hydrodynamic turbulence proposed by Kolmogorov in his theory in 1941.
Zakharov used a clever set of ‘conformal transformations’ to show that the kinetic equation admits finite flux spectra as
exact stationary solutions.

The formation of these nonequilibrium stationary solutions requires the existence of a permanent forcing or damping in
the system, a feature that has been widely studied theoretically [37,40,39] (also see [309,310]), and experimentally, e.g., for
surface waves [311], spin waves [312], surface tension waves [313], capillary waves [314,315], or elastic waves [316-318].In
optics, an experiment aimed at observing these nonequilibrium stationary spectra has been reported in [83] and reviewed



58 A. Picozzi et al. / Physics Reports 542 (2014) 1-132

in [84]. In this case, the optical system is forced at the entry of the nonlinear medium (z = 0), and the formation of the
nonstationary spectrum was observed in the transient propagation of the optical wave. Actually, in optics the propagation
length z plays the role of time, so that the observation of a permanent nonequilibrium stationary state would require a forcing
and a damping at any z. This situation is rather artificial in optics, so that, so far, Kolmogorov-Zakharov spectra did not play
a major role in nonlinear optics experiments. For this reason, we will not discuss such nonequilibrium stationary states and
refer the reader to Refs. [37,51,40] for details. For concreteness, we just give here the expressions of the nonequilibrium
stationary solutions

Q1/3
nd =Co o (166)
b P1/3
n, = Cp @ (167)

where Q and P are the particle and energy fluxes in frequency space and Cp, Cy are prefactors. These solutions are exact
stationary solutions of the WT kinetic equation (156). The exponents oy and «p depend on the scaling of the dispersion
relation and on the explicit nonlinearities. Considering the particular example of the NLS equation (159), one obtains
aq =d —2/3and ap = d, where d denotes the spatial dimension.

It is interesting to note that the process of relaxation to a stationary spectrum can be described by means of self-similar
solutions of the WT kinetic equation. In substance, the non-stationary solution describes a self-similar front that propagates
in frequency-space and which leaves a quasi-stationary state in its wake. This self-similar relaxation solution can be obtained
for both equilibrium and nonequilibrium Kolmogorov-Zakharov stationary solutions of the kinetic equation. We refer the
reader to Refs. [46,319-321] for more details concerning the properties of these self-similar solutions. So far, these non-
stationary solutions have not been exploited in the context of optical waves.

As discussed here above through the optical experiment reported in Ref. [84], Kolmogorov-Zakharov stationary spectra
can also play a role in the description of the transient evolution of unforced systems, i.e., isolated (Hamiltonian) systems.
For instance, the nonequilibrium formation of a condensate can be regarded as an inverse cascade of particles from large to
small frequency components, i.e., towards k = 0. We remind that, as described by the WT theory, in the weakly nonlinear
regime such inverse cascade occurs irrespective of the sign of the nonlinearity, i.e., focusing or defocusing regime. However,
once the system enters the nonlinear regime in which small frequency components become highly populated, then the
system behaves in completely different fashion depending on the sign of the nonlinearity. In the defocusing regime the
coherent homogeneous wave is stable and the inverse cascade eventually leads to wave condensation (see next Section 5.2).
Conversely, in the focusing regime MI leads either to the formation of soliton-like structures, or collapse singularities [322],
depending on the spatial dimension d. As a matter of fact, the understanding of the dynamics of large scale coherent
structures in a turbulent environment is still the subject of lot of interest. In this respect, we will see how a strong condensate
coherent structure modifies the nature of the WT interaction in Section 5.2.2, while the interaction of solitons in a sea of
incoherent fluctuations will be discussed in Section 5.2.1 in the framework of soliton turbulence. The role of different types
of coherent structures, such as quasi-solitons and collapsing filaments, will be commented in Section 7.4.1.

5.1.3. Long range: Slowing down of thermalization
We have seen in Section 2 that a long-range nonlocal nonlinearity introduces interesting novel dynamical features. Here
we show that the natural process of wave thermalization slows down in a significant way in the presence of a highly nonlocal
nonlinearity [ 144]. This fact may be interpreted in analogy with gravitation and astrophysics, in which it is well-known that
the long-range gravitational potential dramatically affect the natural process of thermalization of the system (see, e.g.,[117]).
The starting point is the NLS equation (1) accounting for a nonlocal nonlinearity. Following the standard procedure
[37,51], one obtains the WT kinetic equation

2
YKo
o

0Ny =

/// Q (N, Ny My s Tiey) Teioz S (k1 + ko — ks — k) S(k3 + k5 — k3 — k?) dk; dks dks, (168)

where @ (1, Ng, , Nigy, Nigg) = Nge Npey Mgy Nie (n,:1 + n,:; — n,j; — n;11), and the tensor may be written in its symmetric form,
Tri23 = % (012 + 1713 + ka3 + Ukz), with f],j = l}(lc,- — k;). Note that in the limit of a local interaction [U(x) — §(x)], we

have Ty123 = 1 and Eq. (168) recovers the standard local equation (156).

The kinetic equation (168) exhibits properties analogous to those of the corresponding local limit of the WT kinetic
equation. Accordingly, it should describe the process of thermalization of the random wave towards the thermodynamic
Rayleigh-Jeans equilibrium state (164). However, recent numerical simulations reveal that the process of thermalization of
anonlocal system slows down in a dramatic way as the nonlocal response length o increases. This numerical observation can
be interpreted through a qualitative analysis of the kinetic equation (168). Indeed, the functions U(k), i.e., the tensor Tyy23,
get all the more narrower as the nonlocal range of the response function increases, which thus quenches the efficiency of
the four-wave resonances involved in the collision term of Eq. (168). More precisely, in the highly nonlocal limit, we use the
same scaling for the nonlocal response as that used to derive the long-range Vlasov equation [see Eq. (20), U(x) = U@ (ex)].
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The Fourier transform of the response function thus reads U(k) = U© (k /€). Using the change of variables k; = k + ¢k;
(j =1, 2, 3), we find after integration in k3 that Eq. (168) is equivalent to

2
Y Ko 24— ~ - -
ﬂéjd 2 // Q(ny, NMkterqs Mk+ery» nk+s:q+sxz)[u(0) (k1 — K2) + u© (1 + K2) + 200 (’C2)]

X 82K - ko) dicidic,.

aznk =

To interpret this expression, let us define the characteristic length of thermalization of the mode k, say A, as 3,1y /ng ~ 1/Ay.
Since the width of the function U© (k) is of order one, we see in this expression that a highly nonlocal interaction slows
down the thermalization process by a factor of order £24~2

)Lzonloc ~ M{oc (O'/A)Zd_z. (]69)

We remark that these arguments have no physical meaning in one spatial dimension, because the collision term of the
Hasselmann equation vanishes identically for d = 1, i.e., Eq. (168) is only relevant for d > 1. The slowing down of
the thermalization process due to a highly nonlocal response is an important phenomenon which will be the subject of
future investigations. We remark in this respect that in the focusing regime, the thermalization effect manifests itself by
the spontaneous generation of a coherent soliton, a process termed ‘soliton turbulence’ that will be discussed in the next
Section 5.2.1. In the long-range regime this self-organization process breaks down: Instead of leading to the generation of a
coherent soliton, the system self-organizes into an incoherent soliton state, as discussed in Section 2.3.5 [27]. In particular,
in this long-range regime, the incoherent wave does not exhibit the natural process of thermalization towards energy
equipartition, a property discussed in more detail in Ref. [27].

5.2. Wave condensation

In this section we discuss the phenomenon of wave condensation in a conservative and reversible (Hamiltonian) system.
The section is structured along the lines of Refs. [71,307,73,323]. It is important to note that the phenomenon of wave
condensation has been extended in this last decade to optical cavity systems [74-77,324,80,81], which raises interesting
questions on the relation between laser operation and the Bose-Einstein condensation of photons [325-327,82]. These
aspects will be discussed in more details in Section 7.

5.2.1. Soliton turbulence

The phenomenon of classical condensation discussed here may be regarded as a self-organization process that occurs in
a conservative and reversible wave system. Let us recall in this respect that, contrary to dissipative systems, a conservative
Hamiltonian system cannot evolve towards a fully ordered state, because such an evolution would imply a loss of statistical
information for the system that would violate its formal reversibility. However, in spite of its formal reversibility, a
nonintegrable Hamiltonian system is expected to exhibit an irreversible evolution towards an equilibrium state, as a result
of an irreversible process of diffusion in phase-space [129]. In this regard, an important achievement was accomplished
when Zakharov and collaborators reported in Ref. [113,114] numerical simulations performed in the framework of the
focusing nonintegrable NLS equation. This study revealed that the Hamiltonian system would evolve, as a general rule,
towards the formation of a large-scale coherent localized structure, i.e., a solitary-wave, immersed in a sea of small-scale
turbulent fluctuations. The solitary wave then plays the role of a ‘statistical attractor’ for the Hamiltonian system, while the
small-scale fluctuations contain, in principle, all the information necessary for time reversal. It is important to note that
the solitary-wave solution corresponds to the solution that minimizes the energy (Hamiltonian), so that the system tends
to relax towards the state of minimum energy, while the small-scale fluctuations compensate for the difference between
the conserved energy and the energy of the coherent structure. This phenomenon of self-organization was termed by the
authors of Ref. [113,114] ‘soliton turbulence’. Note that this phenomenology of energy localization as a result of nonlinear
evolution has been also extensively studied in discrete nonlinear systems, see, e.g., [328-331], in particular in relation with
the Fermi-Pasta-Ulam problem [130].

As was initially discussed in Ref. [113,114], a rigorous theoretical description of the long term evolution of the process
of soliton turbulence should require a thermodynamic approach. It is only recently that statistical equilibrium formulations
have been elaborated in the framework of statistical mechanics [57-59,55,56,60-64]. Whenever the Hamiltonian system is
constrained by an additional integral of motion (e.g., number of particles), the increase of entropy of small-scale turbulent
fluctuations requires the formation of coherent structures [57-63], so that it is thermodynamically advantageous for the
system to approach the ground state which minimizes the energy [113,114]. More precisely, it is shown that a statistical
equilibrium is reached, in which the energy not contained in the coherent structure is equally distributed among the modes
of the small-scale fluctuations, as illustrated in Fig. 27.

In analogy with wave condensation, soliton turbulence can be described as an inverse cascade of particles towards the
low-frequency components, as discussed in detail in Ref. [84] in the framework of the weakly nonlocal 1D-NLS equation.
The inverse cascade transports particles to small frequency components (nearby k = 0), thus leading to an increase of
nonlinearity in the system. As particles accumulates at spatial scales larger than MI period, then MI kicks in and solitons
form, with particles spreading along the soliton spectrum—note that spectral components of the soliton are coherent,
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Fig. 27. Long-term evolution of soliton turbulence: After a long transient, a (coherent) soliton remains immersed in a sea of small scale fluctuations.
Spectrum of the wave |/|2(k) obtained by integrating numerically the following nonintegrable 1D NLS equation 8,1 + 8w + |¥|¥ = 0, which was
originally considered in [113]. The small-scale fluctuations exhibit a slow thermalization process, characterized by an irreversible evolution towards an
equilibrium state of energy equipartition, || (k) ~ k=2 (straight line).

Source: From Ref. [58].

i.e., fully correlated with each others. The non-integrability of the system allows for the interaction of the solitons with the
surrounding small-scale fluctuations, which thus enables an energy exchange. Solitons can collide, occasionally merge or
deteriorate via random interactions, and each of these processes leads to emission of energy and particles to the incoherent
wave component. This results in a reversal of the particle flux towards high frequency components: The particles re-injected
back into the small scale fluctuations fuels the continual process of the inverse cascade. In this way, random waves and
coherent structures coexist, interact and get transformed into each other in a WT life cycle [40,84].

From a broader perspective, the phenomenon of soliton turbulence in the presence of forcing and damping at different
lengths scales constitutes a difficult fundamental problem, as revealed, e.g., by the following important contributions
[47,332,41]. From a more general perspective, soliton turbulence is also relevant to the process of optical filamentation [32],
among which we also mention the important issue of inertial confinement fusion (see, e.g., [333-335]). We finally remind
that the process of soliton turbulence breaks down in the long-range regime of nonlocal interaction [27], as discussed in
Section 5.1.3 in relation with the slowing down of thermalization.

Simple interpretation of wave condensation

Let us now refers back to the condensation process. It is important to note that the spontaneous formation of a
homogeneous solution corroborates the general rule discussed above [113,114,57-63]: because the homogeneous solution
(‘condensate’) realizes the minimum of the Hamiltonian in the defocusing case, it plays a role of ‘statistical attractor’ for
the Hamiltonian system, in a way akin to the soliton solution for the focusing regime. This analogy between focusing and
defocusing regimes reveals that the formation of a condensate may be viewed as a consequence of the natural tendency of the
system to increase its disorder (entropy). A simple explanation of this counterintuitive result may be given by recalling that
the total energy of the field has a kinetic contribution and a nonlinear contribution. The kinetic energy being proportional to
the gradient of the field, it provides a measure of the amount of fluctuations in the system. On the other hand, the nonlinear
energy reaches its minimum value for a homogeneous solution. This merely explains why it is advantageous for the field
to generate a condensate, because this permits the field to increase its disorder. In other terms, an increase of entropy
in the field requires the generation of a homogeneous plane-wave solution. This effect of wave condensation as well as
its interpretation are clearly visible in the numerical simulations of the NLS equation, as illustrated in Figs. 28-29. Then
according to this physical picture, there is a direct correspondence between the mechanisms underlying the spontaneous
generation of a solitary-wave in the focusing regime and the condensation process in the defocusing regime. In both cases,
the system tends to reach the most disordered state characterized by the presence of small-scale fluctuations in the field,
which requires the generation of a large scale coherent structure.

We remark that despite this interesting analogy, there exist important qualitative differences between wave conden-
sation and soliton condensation. A distinguished feature is that the formation of a plane-wave condensate requires a back-
ground of thermalized small-scale fluctuations, whereas a soliton is inherently a spatially localized structure that can be
generated locally in space—its stability ensuring its long-time persistence. An other important difference relies on the fact
that wave condensation exhibits long-range order and coherence [292], in the sense that the correlation function of the field
amplitude does not decay at infinity,

lim (¥ x) y* &) #0. (170)

|x—x'|— 00
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Fig. 28. Optical wave condensation: Numerical simulation of the normalized 3D NLS Eq. (159) showing the evolution of a 2D section of the spectrum of
the field in normal scale. Initial condition of the spectrum (a), and corresponding equilibrium spectrum at z = 10°Ly (b). The concentration of the power
of the field in the fundamental mode k = 0 solely results from its natural irreversible evolution towards the equilibrium state. The evolution of some
relevant quantities of the field corresponding to this numerical simulation are illustrated in Fig. 29. (The spatial discretization of the normalized NLS Eq.
(159) is dx = 1, with the number of modes N, = 64%).

Source: From Ref. [307].
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Fig. 29. Condensation induced by thermalization of incoherent waves: Evolution of the fraction of condensed power (a), entropy (b), and energy
(c,d) corresponding to the numerical simulation illustrated in Fig. 28. The fraction of condensed power irreversibly evolves towards the equilibrium value
predicted by the theory (No/N =~ 71% for a total energy of H = 1). The process of entropy growth is saturated once the equilibrium state is reached,
as described by the H-theorem of entropy growth. Figs. (c) and (d) show that a transfer of energy occurs from the nonlinear contribution U to the linear
contribution E, while the total energy H = E + U remains constant. This process of energy transfer explains why an increase of entropy in the field requires
the generation of a coherent structure (i.e., the plane-wave condensate).

Source: From Ref. [307].

This is in contrast with the localized character of a soliton, which naturally limits the range of coherence to the characteristic
width of the soliton.

As illustrated in Fig. 28, wave condensation is characterized by a significant narrowing of the spectrum of the incoherent
wave. Actually, the field exhibits an irreversible evolution towards equilibrium, as illustrated by the saturation of the process
of entropy growth (d,S ~ 0), as well as the saturation of the fraction of condensed power, i.e., the normalized power
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condensed in the fundamental mode k = 0 (see Fig. 29). In other terms, the optical field tends to evolve towards a plane-
wave. Note however that the incoherent wave cannot evolve towards a pure plane-wave solution, because such evolution would
imply a loss of information for the field, which would violate the formal reversibility of the system. Actually, the monochromatic
plane-wave remains immersed in a sea of small scale fluctuations, which contain, in principle, all the information necessary
for areversible propagation of the field. We underline here that this mechanism of self-organization in inherently associated
to the conservative and Hamiltonian nature of the considered wave system. Note however that wave condensation has been
also studied in non-conservative systems driven away from equilibrium by the presence of forcing and damping at small
and large scales, see e.g., [336-343]. In this respect wave condensation can be viewed as a result of an inverse cascade of
particles towards long-wavelengths modes.

5.2.2. Condensation in 2D and 3D

In this paragraph we provide analytical expressions of the condensate fraction at equilibrium in both two and three
dimensions. We refer the interested reader to, e.g., Refs. [40,73], for more details concerning the nonequilibrium dynamics
of condensation.

3D: Condensation in the thermodynamic limit

To describe the thermodynamic equilibrium properties of the condensation process in three dimensions it is important
to point out some preliminary observations. We remark that the distribution (165) realizes the maximum of the entropy
S[nk] and vanishes exactly the collision term, Coll[niq] = 0. However, note that Eq. (165) is only a formal solution, because
it does not lead to converging expressions for the energy E and the power N in the limits k — 00, a feature which is usually
termed ‘ultraviolet catastrophe’. The usual way to regularize such unphysical divergence is to introduce an ultraviolet cut-
off k.. Note that a frequency cut-off appears naturally in the numerical simulation through the spatial discretization (dx) of
the NLS Eq. (159), k. = 7 /dx. As will be discussed in detail in Section 5.2.4, an effective physical frequency cut-off arises
naturally in the guided wave configuration of the optical field. A physical frequency cut-off also originates in higher-order
dispersion effects in the temporal domain, a feature that will be discussed in Section 6.1.

Following the procedure of Ref. [71], one can combine Eqs. (160)-(162) and (165), which gives the expression for the
power of the field at equilibrium

N v - k
— =4nTk. |1 — K arctan < , (171)
L3 ke -
3
E 47Tk 1% A ke

An inspection of Eq. (171) reveals that u tends to 0~ for a non-vanishing temperature T, keeping a constant power density
N/L3. This means that the correlation length . diverge to infinity (see Eq. (165)). By analogy with the Bose-Einstein
transition in quantum systems, such a divergence of the equilibrium distribution at k = 0 reveals the existence of a
condensation process.

As in standard Bose-Einstein condensation, the fraction of condensed power Ny /N vs. the temperature T (or the energy
E), may be calculated by setting © = 0 in the equilibrium distribution (165). Note that the assumption u = Ofor T < T,
can be justified rigorously in the thermodynamic limit (i.e., L — 0o, N — oo, keeping N/L> constant). One readily obtains
(N — No)/L> = 4rn Tk, and E/L* = 47 Tk? /3, which gives

No/N = 1—E/E,, (173)
where the critical energy reads E. = Nk?/3. Alternatively, the fraction of condensed power may be expressed as a function
of the temperature,

No/N =1—T/T,, (174)

where T, = 3E./ (471L3k§). As in standard Bose-Einstein condensation, Ny vanishes at the critical temperature T;, and Ny
becomes the total number of particles as T tends to O.

Weakly nonlinear regime: Weak condensate amplitude

The linear behavior of ng vs. E in Eq. (173) is consistent with the results of numerical simulations. However note that
Eq. (173) is derived for a spherically symmetric continuous distribution of ny, while in the numerics the integration is
discretized. A discretization of Eq. (173) leads to a better agreement between the theory and the numerical simulations
of Eq. (159) [71]. More precisely, making use of wave turbulence theory, one may express the averaged total energy of the
field (H) in terms of the condensed particles ng, which gives [73]

4

31
@ = (n—np) +a<n2—%n3>, (175)

L
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Fig. 30. Condensate fraction ng/n vs. total energy density (H) /L%. Points (o) refer to numerical simulations of the normalized NLS Eq. (159) for
d = 3,N, = 32> modes (a),and d = 2,N, = 32% modes (b) [N/L* = 1,dx = 1 (k. = m)]. Each numerical point corresponds to a time average
over 3000 time units once the equilibrium state is reached. The red line corresponds to the condensation curve in the presence of a small condensate
amplitude [WT regime, Eq. (175)], while the blue line in the presence of a high-condensate amplitude [Bogoliubov regime, Eq. (176)]. The green line in (b)
refers to the condensation curve for a non-vanishing chemical potential, [Eqs. (177) and (178)]. The bars denote the amplitude of the fluctuations of no/n
at equilibrium. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Source: From Ref. [73].

where Z;c denotes the sum over the whole frequency space which excludes the mode k = 0 (ng = No/L% n = N/L¢). This
expression is plotted in Fig. 30 (red line), and it is in good agreement with the numerical simulations in the regime of weak
condensation (typically ny < 0.3).

Bogoliubov regime: Strong condensate amplitude

To describe the regime of strong condensation, one has to take into account the “interactions between the quasi-
particles”. To include the nonlinear (interaction) contribution, the Bogoliubov’s expansion procedure of a weakly interacting
Bose gas has been adapted to the classical wave problem. The interested reader may find the details of the analysis in Ref.
[71,73]. One obtains the following closed relation between the total energy and the fraction of condensed power

1
(H) ; ar o 2
R S L —— O] (176)
L k2+ang 2
; 4 2angk?

In the presence of high-condensate amplitudes, this expression is in quantitative agreement with the numerical simulations
of the NLS Eq. (159), without any adjustable parameter (see Fig. 30).

2D: Condensation beyond the thermodynamic limit

Let us now consider the condensation process in two dimensions. The analysis exposed above in 3D may readily be
applied to 2D, which gives N/L*> = 7T log(1 — k?/u). It becomes apparent from this expression that, for a fixed power
density N/L2, u reaches zero for a vanishing temperature T. In complete analogy with the Bose-Einstein condensation, this
indicates that condensation no longer takes place in 2D. In other terms, the critical temperature T, tends to zero because of
the infrared divergence of the equilibrium distribution niq. Actually, this result is rigorously correct in the thermodynamic
limit (i.e., L — oo, N — oo, keeping n = N/I? constant). Nevertheless, for situations of physical interest in which N and L
are finite, wave condensation is re-established in two dimensions, a property confirmed by the numerical simulations [73].
Indeed, one can calculate the critical temperature for condensation in two dimensions, T, = nlL?/ Z;‘ 1/k? [307]. This
expression reveals that the discrete sum in frequency space provides a non-vanishing value of T;, while T, tends to zero
in the thermodynamic limit, because of the (infrared) logarithmic divergence of the continuous integral f dhke /K.

In complete analogy with quantum Bose-Einstein condensation, for a finite surface of the optical beam, wave
condensation occurs for a non-vanishing value of the chemical potential, & 7 0. The condensation curve may thus be
derived without the implicit assumption ; = 0. The interested reader may find the details in Ref. [73]. One obtains

iszt
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We plotted in Fig. 30(b) the condensate fraction ng/n [Eq. (178)] vs. the energy density (H) /L? [Eq. (177)], as a parametric
function of u. It reveals that a non-vanishing chemical potential makes the transition to condensation “smoother”, with
the appearance of a characteristic “tail” in the condensation curve. Such a “tail” progressively disappears as the surface
L2 increases, so that the condensation curve ng/n vs. (H) /L? tends to the expression derived in the thermodynamic limit,
i.e., Eq. (177) with u = 0 recovers Eq. (175). Let us remark that the theory is in quantitative agreement with the numerical
simulations of the NLS Eq. (159), as illustrated in Fig. 30.

It results that the critical behavior of the two-dimensional condensation curve looks similar to that of a genuine “phase
transition”. Note however that, strictly speaking, “phase transitions” only occur in the thermodynamic limit, so that such
terminology is not appropriate for the two dimensional problem considered here. Nevertheless, if one considers the
macroscopic occupation of the fundamental mode k = 0 as the essential characteristic of condensation, one may say that
wave condensation do occur in 2D.

Let us note that finite size effects may also play a significant role in 3D for very small box-volumes (typically L < 8). The
corresponding expression of the condensation curve, ng/n vs (H) /L3, is still given by the parametric plot of Eqs. (177) and
(178), since these equations hold for any spatial dimension of the system.

5.2.3. Condensation beyond the cubic NLS equation: Nonlocal and saturable nonlinearities

The phenomenon of classical wave condensation has been essentially studied in the framework of the NLS equation in
the presence of a pure cubic Kerr nonlinearity. In many cases, however, realistic optical experiments are not modeled by a
cubic Kerr nonlinearity. In a recent work [323], it has been shown that wave condensation can take place with more complex
nonlinearities. The examples of the nonlocal nonlinearity and of the saturable nonlinearity were considered in [323], which
refer to natural extensions of the cubic nonlinearity [ 171]. It was shown that the generalized NLS equation accounting either
for a nonlocal or a saturable nonlinearity describes a process of wave condensation completely analogous to that described
in the framework of the cubic Kerr nonlinearity. Following the procedure of the previous Section 5.2.2, analytical expressions
of the condensate fraction are derived in both the weakly and the strongly nonlinear regimes of propagation [323]. For both
the saturable and the nonlocal nonlinearity, a quantitative agreement between the theory and the numerical simulations is
obtained, without using adjustable parameters. Moreover, the condensate amplitude is shown to exhibit strong fluctuations
near by the transition to condensation, while the fluctuations are suppressed in the highly condensed regime.

5.2.4. Condensation in a waveguide

In the previous Section 5.2.2 we have considered wave condensation in the ideal limit in which the incoherent wave is
expanded in the plane-wave Fourier basis with periodic boundary conditions. As discussed above, this approach of wave con-
densation requires the introduction of a frequency cut-off in the theory [71,73], so as to regularize the ultraviolet catastrophe
inherent to classical nonlinear waves. From the physical point of view, such a frequency cut-off is not properly justified for
classical waves. We will see that an effective frequency cut-off arises naturally in the guided-wave configuration of the opti-
cal beam. This frequency cut-off plays a key role in wave condensation (see Section 5.2.2), since it prevents the divergence of
the critical energy for condensation [290] [see Eq. (173)]. Moreover, we have also seen that in 2D, wave condensation does
not occur in the thermodynamic limit [71,73]. We will see that a parabolic waveguide configuration reestablishes wave con-
densation in two dimensions, in analogy with quantum Bose-Einstein condensation [292]. Accordingly, wave condensation
and thermalization can be studied accurately through the analysis of the two-dimensional spatial evolution of a guided
optical beam.

Rayleigh—Jeans distribution in a waveguide

The starting point is the WT kinetic derived in Section 5.1 into the basis of the eigenfunctions of the potential V (x). Here
we follow Ref. [290] to describe wave condensation in an optical waveguide. The kinetic equation (151) and (152) conserves
the power N = /30_2 f dkn, and the energy E = ,30_2 f drBn., where we recall that 8, = «ky + «y + Bo. Contrarily to
the homogeneous WT kinetic equation (156), the kinetic equations (151) and (152) does not conserve the momentum, a
feature which is consistent with the fact that the potential V (x) prevents momentum conservation in the NLS Eq. (139). The
kinetic equation (151) and (152) exhibits a H-theorem of entropy growth, d§/dz > 0, where the nonequilibrium entropy
reads 8(z) = B, 2 f dr In(n,). The Rayleigh-Jeans equilibrium state n§’ realizing the maximum of entropy, subject to the
constraints of conservation of E and N, is obtained by introducing the corresponding Lagrange’s multipliers,

nil = r .
Be— 1

Note that, in a way akin to the usual Rayleigh-Jeans distribution (165), the temperature denotes the amount of energy
&, that is equipartitioned among the modes of the waveguide. Indeed, in the tails of the equilibrium distribution (179),
ie. Be > ||, we have & = B, ny} ~ T [see Eq. (147)]. Also note that the equilibrium state (179) cancels both collisions
terms of the kinetic equation (151) and (152).

This equilibrium property of energy equipartition has been confirmed by the numerical simulations of the NLS Eq. (139)
with a truncated parabolic potential, as illustrated in Fig. 32. To be concrete, in the numerical simulations we considered
a realistic graded-index multimode optical fiber, with a radium of 15 um and an index difference of n; — ny = 1073

(179)
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Fig. 31. Condensation and thermalization in a trap: Initial field intensity |¥/|?(x,z = 0) (a), and corresponding intensity distribution atz = 7 m
(b) obtained by integrating numerically the NLS Eq. (139) with a parabolic potential V (x) (in 10Log,, scale). (c) Evolution of the fraction of condensed
power ng/N vs. propagation distance z. The horizontal dashed red line denotes the value of the condensate amplitude ng'/N predicted by the theory [see
Eqgs. (183) and (184)]. (d) Corresponding evolution of the nonequilibrium entropy 4. Parameters of the simulation are given in the text (see Section 5.2.4).
Source: From Ref. [290].

(see Fig. 26), and a refractive index of reference ng = 1.45. With these parameters the number of modes is N, = 66. It
is important to note that silica fibers exhibit a focusing nonlinearity, ¥ < 0 in Eq. (139). The incoherent beam may thus
exhibit filamentation effects (i.e., speckle beam fragmentation) during its propagation in the fiber. However, as revealed by
the numerical simulations, the beam does not exhibit filamentation effects because we consider the weakly nonlinear regime
of propagation, in which the linear energy dominates the nonlinear energy, U/E <« 1. The weakly nonlinear condition can
easily be satisfied in the framework of the considered optical fiber system, since the nonlinearity of silica fibers is known
to be relatively small as compared to other types of commonly used nonlinear optical media. In the numerical simulations,
the following standard value of the nonlinear silica coefficient was considered n, = —2 x 1078 um?/W, together with a
power of the beam of 94 kW. With these parameters the weakly nonlinear regime is always verified, regardless of the initial
degree of coherence of the wave injected into the fiber.

Frequency cut-off, density of states and thermodynamic limit

The number of modes involved in the dynamics with a trap V (x) is finite because of the truncation of the potential (see
Fig. 26, Vo < o0). In this way the truncated potential introduces an effective frequency cut-off for the classical nonlinear
wave, because modes whose eigenvalues exceed the potential depth, 8, > Vj, are not guided during the propagation. A more
rigorous justification of this aspect is given in the Appendix of Ref. [290]. Note that this is in contrast with the homogeneous
problem [V (x) = 0 in Eq. (139)], as discussed in Section 5.2.2. In this case, the frequency cut-off k. is introduced by the
spatial discretization (dx) of the NLS equation, i.e., k. = 7 /dx, so that in the continuous limit k. — oo (see, e.g., [71]).

Let us discuss the importance of the truncation of the potential (Vo < o0) through the example of a parabolic
potential considered in the numerical simulations (see Figs. 31-33). Considering the constraint, Sy < B(k) < Vp, as
well as the assumption 8y < V; (i.e., large number of modes N, > 1), the power of the field at equilibrium reads

N = (T/B2) [y dicy [ (s + 16y + o — 1)~ iy, which gives

Tl _a —i
- eosn()]
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Fig.32. Condensation and thermalization in a trap: Numerical simulation of the NLS Eq. (139) with a parabolic potential V (x), showing the establishment of
energy equipartition among the modes of the waveguide: Energy per mode, &, = Byny, [see Eq. (147)] vs. the mode m = (m,, m,), in the initial condition
(a), and averaged over the propagation once the equilibrium state is reached, i.e., 3,8 >~ 0 (b). The amount of power n,, in the mode m = (my, m,) is
calculated by projecting the field amplitude into the corresponding eigenmode [see Eq. (146)]. Energy almost reaches an equipartition among all modes,
except the fundamental condensed mode my = m, = 0 which is macroscopically populated [not shown in (a-b)]. Parameters are the same as in Fig. 31
(see the text in Section 5.2.4). In particular, we considered a truncated parabolic potential (Fig. 26), so that By, m, =~ Bo(my + my + 1) and only modes
whose eigenvalue verifies By, m, < Vo are guided.

Source: From Ref. [290].

where we defined i = p— fp. In order to comment expression (180), we recall that in the homogeneous problem [V (x) = 0
in Eq. (139)] wave condensation was shown to only occur in 3D, while in 2D the chemical potential was shown to reach zero
for a vanishing temperature [71,307,73]. In analogy with Bose-Einstein condensation in quantum gases, this means that
wave condensation does not occur in the thermodynamic limit in 2D. Conversely, Eq. (180) reveals that ;i — 0 for a non-
vanishing critical temperature, T, = 4aNq/V;, which indicates that the presence of a parabolic potential V (x) reestablishes
wave condensation in the thermodynamic limit in 2D. Indeed, the thermodynamic limit for a parabolic potential corresponds
to taking N — oo and ¢ — 0, keeping constant the product Nq [292]. This result is in complete analogy with the well-
known fact that a parabolic potential reestablishes Bose-Einstein condensation in 2D [292]. There is however a difference
with quantum condensation. Bose-Einstein condensation is known to be reestablished in a parabolic potential of infinite
depth, Vo — o0, while here T, tends to zero in the limit Vy, — oo. Contrary to the quantum case, one also needs to introduce
a finite depth of the potential, Vy < oo, to get wave condensation in 2D. This condition is obviously satisfied for any optical
waveguide configuration.

Note that the same conclusion is reached through the analysis of the density of states, p(8) = ﬁiz [fp PrS(B—Ky—tx—

0

Bo), where the domain of integration D denotes [, d’« = OVO dicy fOVO_K* dky. As for quantum Bose gases, the presence of a
parabolic potential leads to p(8) o B. Specifically, in the limit 8y/Vy < 1, we have p(8) = ,B/,Bg forg < Vp,and p(B) =0
for § > Vp. Note that the number of modes simply reads N, ~ fOVO p(B)dp = Vg / (Zﬁg). According to this expression of
po(B) and considering the limit ;& — 0, the infrared convergence of the integral N = fov" dg p(B) n;q =T OV" dg p(B)/B

is ensured by the linear dependence of the density of states p(8) o 8. However, the ultraviolet convergence of N requires
Vo < oo, while it is ensured by the exponential term of the Bose distribution in the quantum case.

Condensate fraction in the waveguide

We now look for a relation between the fraction of condensed power ng/N and the temperature T or the energy E, in a
way completely analogous to what has been done for the homogeneous problem (V (x) = 0) in Section 5.2.2. As in the usual
interpretation of Bose-Einstein condensation in a trap, we set u = By in the equilibrium distribution (179). Note that the
assumption it = u— By = Ofor T < T, can be justified rigorously in the 2D thermodynamic limit. Isolating the fundamental
mode, one hasN —ng = (T/B) [[, 1/(kx+ky) d*k, where ng = T/[B5(Bo — iv)]. We thus readily obtain N —ng = TVo/ 3.

2
Proceeding in a similar way for the energy, one obtains E — ngy = ;V?% (1 + 2B0/Vo). Eliminating the temperature from

0
the expressions for E and N gives the following expression of the condensate fraction

No E—Ey

N NVg/2’

(181)
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Fig. 33. Wave condensation in a trap: Fraction of power condensed in the fundamental mode at equilibrium, ny/N, vs. the energy of the field, H, for
a truncated parabolic potential (parameters are given in Section 5.2.4). The red points refer to the results of the numerical simulations of the NLS Eq.
(139) with a parabolic potential V (x). They have been obtained by averaging ny/N over the propagation distance once the equilibrium state is reached,
i.e,, 9,8 >~ 0. The ‘error-bars’ denote the amount of fluctuations (standard deviation) of ny/N once equilibrium is reached. The continuous blue line refers
to the theoretical condensation curve given in Eqs. (183)-(185), while the dashed green line refers to the corresponding thermodynamic limit [z — 0 in
Eqgs. (183)-(185)]. In these plots the eigenvalues 8, and eigenmodes u,,(x) in Eqs. (183)-(185) account for the truncation of the potential (Vo < 00).
Source: From Ref. [290].

where Ey = N refers to the minimum energy, i.e. the energy of the field when all the power is condensed, no/N = 1. The
condensate amplitude ny/N increases as the energy E decreases, and condensation arises below the critical energy

NVp ( 2,30)
E.=Eg+NVg)2=—(14—]. (182)
2 Vo

This expression deserves to be commented in two respects. First, because of the truncation of the waveguide potential
(Vo < 00), the value of E. does not diverge to infinity. This is in contrast with the homogeneous problem [V (x) = 0 in Eq.
(139)], as discussed above in 2D in Section 5.2.2. In this case the critical value of the energy behaves as E; ~ ng/ In(k.),
where k. = m/dx is the arbitrary frequency cut-off. In the continuous limit in which the spatial discretization of the NLS
equation tends to zero, dx — 0, the critical value of the energy E. diverges to infinity (see, e.g., [71,73]). A second point
that could be remarked in Eq. (182) is that wave condensation is reestablished in the thermodynamic limit in 2D. Indeed,
writing Eq. (182) in the following form, E. /S = Nq(1+ 280/Vo)/(27), where S = ma? is the waveguide surface, it becomes
apparent that the energy density E./S does not tend to zero in the thermodynamic limit (N — oo, q — 0, keeping Nq
constant). As discussed in the previous Section 5.2.4, this is again in contrast with the homogeneous problem and the plane-
wave expansion of the field, in which E. /S tends to zero logarithmically in the thermodynamic limit [307,73].

The simple analysis of Eqgs. (181) and (182) outlined above provides physical insight into the process of wave condensa-
tion. However, a direct quantitative comparison with the numerical simulations requires the derivation of the condensation
curve relating the condensate fraction to the Hamiltonian, as discussed above in Section 5.2.2 for the homogeneous problem,
V(x) = 0. For this purpose, we note that Eq. (181) can be improved along three lines. (i) The continuous integrals by a dis-
crete sum over the modes of the waveguide. One obtains ng/N = 1—(E —Ep) Z/(mx—i—my)*]/ (Eo(N, — 1)), where we recall
that N, is the number of modes of the waveguide, and Z/ denotes the sum over all modes {m = (my, m,)} excluding the

fundamental mode m = 0. In the continuous limit we have Y’ mximy =B [, K:’ZT"W = Vo/Bo and the number of modes

N, = ,30_2 ff@ d*r = Vg/(Z/Sg), so that the above equation recovers Eq. (181). (ii) A generalization of the expression of the
condensate fraction, no/N vs E, can be done beyond the thermodynamic limit [307,73], i.e., without the implicit assumption
i = 0for T < T..From the physical point of view, this means that we take into account the finite size of the optical waveg-
uide. (iii) We include the contribution of the nonlinear energy U into the expression of the condensation curve. We split the
contribution of the fundamental mode into the modal expansion of the field, ¥ (x, z) = Yo (®, z) +&(x, z), where Yo (x, z) =
co(2)ug(x) exp(—ifpz) is the coherent condensate contribution and e(x, z) = Zmﬂ Cm(z)upm (x) exp(—iByz) is the incoher-
ent contribution. This expansion can be substituted into the expression of U in Eq. (141), and making use of the random phase

approximation, we obtain (U) = —y (%nép + 210 370 MWooji + D20 k0 njnkVijkk), where p = [uj(x)dx = «?/(27).
At equilibrium, nj and ny in the above sum can be substituted by the corresponding equilibrium distributions.

The generalizations (i-ii) and (iii) finally lead to the following expression of the condensation curve beyond the
thermodynamic limit, including the nonlinear contribution of the energy

1

(183)
~ 1
K ; Pm—Fo—7i

Ny .
N(M) =



68 A. Picozzi et al. / Physics Reports 542 (2014) 1-132

Z Bm— ﬂo i
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where

W)@ =~ | o0~ 2ndc [ 1uoP (x)Z — AR — /(iW)de . (185)
2 Bm — = Bm — Bo— It

The fraction of condensed power ng/N is thus coupled to the total energy (H) through the non-vanishing chemical potential,
L = i — Po # 0.The parametric plot of (183) and (184) with respect to jx is reported in Fig. 33 (continuous line). As for the
homogeneous problem [V (x) = 0], the long tail in the condensation curve at high energies H is due to the non-vanishing
chemical potential, it # 0. In the thermodynamic limit ;t — 0, the condensation curve (183) and (184) recovers the straight
line discussed above through Eqs. (181) and (182) (see the dashed line in Fig. 33). Let us remark the good agreement between
the theoretical condensation curve and the simulations, without using adjustable parameters (see [290] for more details).

Notice that the expression of (U) in Eq. (185) is rather involved. This is due to the nontrivial modal expansion (144) of
the field v . In the usual homogeneous problem [V (x) = 0] and the plane-wave expansion, Eq. (185) recovers the simple
expression used in Eq. (175), namely (U) = —y (n* — 1n?).

We finally underline that Eqs. (183) and (184) are valid for various different types of waveguide index profiles, provided
one makes use of the appropriate eigenvalues 3, and eigenmodes u,,(x) (see Ref. [290]).

5.3. Velocity locking of incoherent waves

We have seen that the natural process of thermalization can be responsible for the phenomenon of condensation of
classical waves. Here we illustrate the thermalization effect with another remarkable phenomenon which was termed
‘velocity locking of incoherent waves’. More precisely, we analyze the role of convection (i.e., group-velocity difference) on
the thermalization of distinct wave-packets [344]. The thermalization process is characterized by an irreversible evolution of
the incoherent waves towards an equilibrium state in which they all propagate with an identical group-velocity. This effect of
velocity-locking may be interpreted as a consequence of a fundamental property of statistical equilibrium thermodynamics:
A velocity locking is required because it prevents ‘a macroscopic internal motion in the wave system’ [345]. We will see in
the next Section 5.4 that the process of velocity locking plays an important role in the thermodynamic interpretation of the
process of spectral broadening inherent to supercontinuum generation.

5.3.1. Trapping of incoherent wave-packets

We consider the interaction of several incoherent waves that propagate with different group-velocities and whose
dynamics is described by the vector NLS equation [138]

i(9; 4 U 9 Y; + Bidu s + v (I%I2 +x Z walz) ¥ = 0. (186)
i#f

This set of NLS equations generalizes the scalar temporal NLS equation considered in Section 3 for an instantaneous
nonlinearity [Eq. (36)]. The parameters u; represent the group velocity difference among the waves v;, while the dispersion
relation of ; reads kj(w) = ﬂja)z. In the following we will assume for simplicity that the dispersion coefficients have
the same sign, e.g. B; > 0. The last term of Eqs. (186) describes the cross-interaction between the fields, i.e., a phase
modulation of v; induced by the other wave-packets v [ 138]. The dimensionless constant « denotes the ratio between the
cross- and self-interaction coefficients. Eq. (186) conserve the power N; of each field v; and the total Hamiltonian H [138].
Because of the presence of convection effects, we will see that the conservation of the total momentum, P = Zi P;, with
P; =Im f ¥* 9 dt, plays an essential role in the thermalization process.

A physical insight into velocity-locking may be obtained from the numerical integration of the vector NLS Eq. (186).
Fig. 34(a) illustrates a typical evolution of the mean frequencies @;(z) = [ wnjdw/ [ njdw of M = 3 incoherent wave-
packets, nj(z, w) being the corresponding spectra. As initial condition we took three stochastic amplitudes ¥;(z = 0, t)
of zero mean, and whose fluctuations are statistically stationary in time. In the linear limit of their evolutions (y; = 0),
the components v; would propagate with their three distinct group-velocities u;. In the presence of a weak nonlinearity,
Fig. 34(a) shows that the mean frequencies w; are rapidly attracted towards some specific values J)jeq. According to the group-

velocity dispersion law v Hw) = ak; /0w = u; 14 2Bjw, such a frequency shift is naturally accompanied by a shift of the
group-velocity, as schematlcally explained in Flg. 34(e). The remarkable result is that the frequencies w 7 are selected in such
a way that the three wave-packets propagate with identical group-velocities, vj(a)jq) =v¥forj =1, 2, 3 (see Fig. 34(b)).
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Fig. 34. Velocity-locking of incoherent waves: Numerical simulations of Eq. (186) representing the evolution of the mean frequencies @;(z) of M = 3
incoherent wave packets (a) and corresponding group-velocity differences (b). The dashed lines in (a) refer to the theoretical values zbfq calculated from
Eq.(188)[uy = 1/14,u; = 1/5, u3 = 1in units of Ly 1 /70,1, where Ly j and 7o ; are respectively the nonlinear length and healing time of ;]. Simulations
showing thermal wave relaxation to equilibrium at large z: The entropy growth saturates to a constant value d, 8 >~ 0(c), and the spectrum of v; follows a
power law nj(w) ~ w~2 atlarge w (d), in agreement with the Rayleigh-Jeans equilibrium distribution. An average over 200 numerical realizations has been
taken(k = 2,N; = N, = N3, 82/B1 = 0.9, B3/B1 = 1.1, see [344] for details). Schematic illustration of the velocity-locking induced by the frequency-shift
of ¥ (e): The arrows indicate the evolution from z = 0 to equilibrium [where vj’1 (w=0)= uj’] denotes the initial group-velocity of ¢ at z = 0].
Source: From Ref. [344].

Velocity-locking induced by thermalization

In the following we will see that this effect of velocity-locking is a consequence of the natural thermalization of the waves
to thermodynamic equilibrium. The derivation of the vector kinetic equation from the vector NLS Eq. (186) can be performed
by following the same procedure as for the scalar case [47]. The resulting vector set of WT kinetic equation conserve the
power of each wave-packet, N; = Ty f nj(z, w)dw, the total kinetic energy E = Y, Ei(2), Ei(z) = Ty f ki(w)ni(z, w)dw, and
the total momentum P = ), Pi(2), Pi(z) = T f wn;(z, w)dw, where Ty denotes the numerical temporal window [see Eqs.
(160)-(162)]. The equilibrium spectrum is still given by the principle of maximum entropy, as discussed for the scalar case
in Section 5.1.2. The main difference with respect to the scalar case is that, because of the frequency-shifts of the spectra,
one has to introduce the Lagrange’s multiplier associated to the conservation of the total momentum, say A/T. One thus
obtains,

T
Bio? + O+ o —
The distribution (187) is a Lorentzian in which the M + 2 constants T, A and p; can be determined from the M + 2
conserved quantities E, P and N;. In particular, from the distribution (187) one readily finds P]-eq = -1+ uj_l)I\Jj/Zﬂj,

sothat A = — (2P + Zi N,’/U,'Oli) / Zi N,’/Olj.
We remark that the multiplier A leads to a frequency shift of the equilibrium spectrum (187), so that the selected
equilibrium frequency reads

' (w) =

(187)

@J‘?q = pjeq/Nj =—(+ ujf1)/2ﬁj, (188)

where the expression of A was given above. According to the group-velocity dispersion law vj_](a)) = uj_1 + 2Bjw, one

readily obtains, vj(w = c?)fq) = —1/A, which turns out to be the equilibrium velocity v® of the fields. This reveals that,

regardless of their initial group-velocities u;, each wave-packet 1; irreversibly evolves towards an equilibrium state, in
which it propagates with the common group-velocity

2P + ZNi/(uiai)

(189)

where the conserved momentum is fixed from the initial condition P = P(z = 0). The theoretical predictions of cbfq and v®
[Egs. (188)and (189)] have been found in quantitative agreement with the numerical simulations of the vector NLS equation,
as shown in Fig. 34(a)-(b).
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Fig. 35. Schematic illustration of the thermodynamic interpretation of velocity-locking: (a) Schematic representation of the collision between two drops
of gases (or liquids): After collision and once thermal equilibrium is established, the two species propagate with the same average velocity. This prevents
a relative internal motion between the two species: An isolated system at equilibrium can only exhibit a uniform motion of translation as a whole, while
any macroscopic internal motion is not possible at equilibrium [346]. (b) The phenomenon of incoherent trapping and velocity-locking of two different
wave-packets can be interpreted as a consequence of this general property of equilibrium thermodynamics.

5.3.2. Thermodynamic interpretation

One may wonder whether this effect of velocity locking of incoherent waves can have a simple thermodynamic inter-
pretation. To discuss this point, let us recall an important property established in equilibrium statistical thermodynamics.
Consider a macroscopic (e.g., gas or liquid) system which is divided into a set of small, but still macroscopic, sub-systems.
The postulate of maximum entropy then leads to the important conclusion that, at thermodynamic equilibrium, all sub-
systems necessarily propagate with a constant linear velocity (and a constant angular velocity). In other terms, an isolated
system can only exhibit a uniform motion of translation (and rotation) as a whole, while any macroscopic internal motion is not
possible at thermodynamic equilibrium [346].

It is instructive to illustrate this property by considering the concrete example of a collision of two drops of gases (or
liquids) that we assume to be distinguishable. The two drops initially propagate in two different directions, as schematically
illustrated in Fig. 35. Once collision has occurred and equilibrium is established, the average velocities of the two species must
be identical, so as to prevent a relative internal motion between the two species. According to this analogy with standard
thermodynamics, the process of velocity-locking identified in a wave system becomes rather natural and intuitive. In the
example of supercontinuum generation that will be discussed in Section 5.4.3, velocity-locking occurs by means of a spectral
fission of a single initial spectrum. The optical field may thus be regarded as consisting of two ‘macroscopic’ sub-systems,
which eventually relax to equilibrium by propagating with the same velocity.

5.4. Wave turbulence approach to supercontinuum generation

The phenomenon of supercontinuum (SC) generation is characterized by a dramatic spectral broadening of the optical
field during its propagation. This process has been extensively studied and different regimes have been identified, which
essentially depend on whether the highly nonlinear photonic crystal fiber (PCF) is pumped in the normal or anomalous
dispersion regimes, or with short (subpicosecond) or long (picosecond, nanosecond, and quasi-CW) pump pulses. We refer
the reader to the reviews [139,31] for a detailed discussion of these aspects.

As a rather general rule, the process of spectral broadening inherent to SC generation is interpreted through the analysis
of the following main nonlinear effects: The four-wave mixing effect, the soliton fission, the Raman self-frequency shift
and the generation of dispersive waves [139,347,348]. Due to such a multitude of nonlinear effects involved in the process,
a complete and satisfactory theoretical description of SC generation is still lacking. However, there is a growing interest
in developing new theoretical tools aimed at describing SC generation in more details. Besides the theories describing the
interaction between individual soliton pulses and dispersive waves [348], we may quote the effective three-wave mixing
theory and the underlying first-Born approximation successfully applied to describe femtosecond SC generation in different
configurations [349,350]. We also mention recent works aimed at providing a complete characterization of the coherence
properties of SC light by using second-order coherence theory of nonstationary light [351-354].

Incoherent turbulent regime of SC generation

The general physical picture of SC generation in PCFs can be summarized as follows. When the PCF is pumped with long
pulses in the anomalous dispersion regime, Ml is known to lead to the generation of a train of soliton-like pulses, which in
turn lead to the emission of Cherenkov radiation in the form of spectrally shifted dispersive waves. These optical solitons
are known to exhibit a self-frequency shift towards longer wavelengths as a result of the Raman effect. One encounters the
same picture if the PCF is characterized by two zero dispersion wavelengths. In this case the Raman frequency shift of the
solitons is eventually arrested in the vicinity of the second zero dispersion wavelengths. The SC spectrum then results to
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Fig. 36. Incoherent turbulent regime of SC generation: (a) Numerical simulations of the generalized NLS Eq. (190) using a logarithmic intensity scale (dB)
to illustrate the spectral evolution as a function of propagation distance in a 50 m long PCF, for an input CW power equal to 200W (y = 0.05 W' m~1).
The corresponding dispersion curve of the PCF used in the simulations is illustrated in (b). The optical spectrum is characterized by two main features: (i) A
broad central part governed by the four-wave mixing process that exhibits a process reminiscent of thermalization. (ii) A narrower low-frequency branch
governed by the Raman effect that self-organizes into a continuous spectral incoherent soliton and subsequently a discrete spectral incoherent soliton.
Both phenomena of optical wave thermalization and spectral incoherent solitons can be described by a nonequilibrium thermodynamic formulation of the
optical field based on the WT theory.

be essentially bounded by the corresponding dispersive waves [348,355-357,31]. The important aspect to underline here is
that in all these regimes the existence of coherent soliton structures plays a fundamental role into the process of SC generation.

This physical picture of SC generation changes in a significant way when one considers the regime in which long and
intense pump pulses are injected into the PCF. Indeed, in this highly nonlinear regime, the spectral broadening process
is essentially dominated by the combined effects of the Kerr nonlinearity and higher-order dispersion, i.e., by four-wave
mixing processes [358]. In this regime the optical field exhibits rapid and random temporal fluctuations, which prevent the
formation of robust and persistent coherent soliton structures. It turns out that in this regime the optical field exhibits an
incoherent turbulent dynamics, in which coherent soliton structures do not play any significant role. In the following we
shall term this regime the ‘incoherent regime of SC generation’ [359].

Wave turbulence approach to SC generation

In these last years a nonequilibrium thermodynamic interpretation of this incoherent regime of SC generation has been
formulated [359,184,345,119,30] on the basis of the WT theory. This WT description can be introduced through the analysis
of the numerical simulation reported in Fig. 36(a). It reports a typical evolution of the spectrum of the optical field in the
incoherent regime of SC generation. It is obtained by integrating numerically the generalized nonlinear Schrédinger (NLS)
equation [see Eq. (190)], with the dispersion curve reported in Fig. 36(b). The initial condition is a high-power (200 W)
continuous wave whose carrier frequency vy = 283 THz (A¢ = 1060 nm) lies in the anomalous dispersion regime and thus
leads to the development of the modulational instability process.

We remark in Fig. 36(a) that the spectrum of the field essentially splits into two components during the propagation:
(i) On the one hand, one notices a broad central part whose evolution is essentially governed by the dispersion effects
and the Kerr nonlinearity. These effects are inherently conservative effects and lead to a process of wave thermalization
through SC generation, a feature that has been discussed in Refs. [359,184,345] using the WT theory. Accordingly, the
saturation of SC spectral broadening can be ascribed to the natural tendency of the optical field to reach an equilibrium
state. Note however that, as will be discussed below, the phenomenon of wave thermalization through SC generation is
not achieved in a complete fashion, in the sense that the tails of the numerical spectra exhibit some discrepancy with the
corresponding expected tails of the Rayleigh-Jeans distribution. While this discrepancy can be simply ascribed to a limited
propagation length in the PCF, an other possible physical origin of such discrepancy will be discussed in the next Section 6.
This WT approach also reveals the existence of an unexpected phase-matching process whose origin can be interpreted in
a thermodynamic sense.
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(ii) On the other hand, one notices in Fig. 36(a) that a low-frequency spectral branch moves away from the central part of
the spectrum. This low-frequency branch is essentially governed by the dissipative Raman effect, whose noninstantaneous
nonlinear nature is responsible for the generation of the spectral incoherent solitons discussed above in Section 3.2.1. We
will see that both continuous and discrete spectral incoherent solitons are spontaneously generated through the process of
SC generation, irrespective of the nature of their spectral seeds, which may be either the modulational instability spectral
peak, or a spectral peak associated to the Rayleigh-Jeans equilibrium distribution.

In the following we discuss separately the two phenomena of (i) optical wave thermalization through SC generation
(Section 5.4.2), and (ii) the spontaneous generation of spectral incoherent solitons (Section 5.4.5) from the SC spectrum.

5.4.1. Generalized NLS equation
The generalized NLS equation is known to provide an accurate description of the propagation of an optical field in a
PCF [139,138],

APz, t) N PB FY(z, t) .0 fee / /
zTJrZ—JTﬂ <1+nﬁ> v (z, t)/m Rt W (z, t —t)2dt' =0, (190)

il
j=2 I

where we remind that y refers to the nonlinear coefficient and R(t) = (1 — fz)§(t) + frhr(t) to the usual nonlinear
response function of silica fibers, which accounts for both the instantaneous Kerr effect and the non-instantaneous Raman
response function hg(t) [&(a}, Z) = 2m)~1/? f Y (t, z) exp(iwt) dt] [138]. The inclusion of higher-order dispersion effects
is essential for the description of broadband optical wave propagation. More specifically, the higher-order time derivatives
originate in a Taylor’s expansion series of the dispersion curve of the PCF around the carrier angular-frequency wp [139].
The corresponding linear dispersion relation of Eq. (190) then reads

k(w) = Z’L’Z—’“ﬂ (191)

j=2

Eq. (190) also describes the self-steepening effect through the so-called optical shock term, i.e., the term proportional
to t;0/0t. This time derivative term accounts for the dispersion of the nonlinearity [138,360]. We refer the reader to
Ref. [139,138] for a detailed discussion of the different terms that appear in Eq. (190).

As discussed above through Fig. 36(a), wave thermalization is driven by the combined effects of dispersion and Kerr
nonlinearity, which are inherently conservative effects. On the other hand, the Raman effect [fy # 0 in Eq. (190)] is a
dissipative effect and prevents the establishment of a thermodynamic equilibrium state (see Section 3.1). Note that this
is consistent with the fact that the Raman effect breaks the Hamiltonian structure of Eq. (190). In this Section we will thus
neglect the dissipative Raman effect.

We report in Fig. 37(a) exactly the same numerical simulation as that reported in Fig. 36(a), except that we removed
the Raman effect, fy = 0 in Eq. (190). We also removed in this simulation the influence of the shock term (z; = 0), whose
influence will be considered later in Section 5.4.4. The comparison of Figs 36(a) and 37(a) clearly shows that the essential
role of the Raman effect is to lead to the generation of a spectral incoherent soliton in the low-frequency branch in the
SC spectrum. Besides spectral incoherent solitons, a peculiar feature revealed by Fig. 37(a) is that the spectral broadening
inherent to SC generation saturates during the propagation. We shall see below that such saturation effect is related to the
natural thermalization of the optical field.

5.4.2. Wave thermalization through supercontinuum generation
Neglecting the Raman effect and the shock term, the generalized NLS Eq. (190) reduces to

Y N B Y 2
i +j22 i g Tyl =o. (192)
We recall that, if only the second-order dispersion effect is retained (m = 2), Eq. (192) recovers the completely integrable
1D-NLS equation. The corresponding infinite number of conserved quantities prevent the thermalization of the wave
towards thermodynamic equilibrium, though the system still exhibits a relaxation towards an equilibrium state of a different
nature [361,142]. This aspect will be discussed in Section 6.3.

If one includes the influence of third-order dispersion (m = 3), the system exhibits a process of anomalous thermaliza-
tion [140,141], which is characterized by an irreversible evolution towards an equilibrium state of a fundamental different
nature than the thermodynamic equilibrium state. The wave spectrum is shown to exhibit a highly asymmetric deformation
characterized by a lateral spectral shoulder and the subsequent formation of an unexpected constant spectral pedestal [ 141].
This previous work [141] can be important to study the evolution of an incoherent wave in a PCF characterized by a single
zero dispersion wavelength, and will be discussed below in Section 6.2. We also note that third-order dispersion has been
shown to notably influence the generation of rogue waves in the evolution of the optical field [362], a feature which is in
relation with soliton turbulence and wave condensation [363,364], as commented in Section 7.5.3.
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Fig. 37. Optical wave thermalization through SC generation. (a) Same as in Fig. 36(a), except that the Raman effect and the shock term have been
neglected, fg = t; = 0: This simulations thus refers to the numerical integration of the instantaneous NLS Eq. (192). (b) Optical wave thermalization is
characterized by a process of entropy production, which saturates to a constant level once the equilibrium state is reached, as described by the H—theorem
of entropy growth. (c) Comparison of the thermodynamic Rayleigh-Jeans equilibrium spectrum n®(w) [Eq. (195)] (red line), and the numerical spectrum
corresponding to an averaging over the last 20 m of propagation. The good agreement has been obtained without using adjustable parameters. Note
however a discrepancy between the simulations and the Rayleigh-Jeans distribution in the tails of the spectrum (see the text for discussion).

If one includes dispersion effects up to the fourth-order (m = 4), the simulations reveal the existence of a phenomenon
of ‘truncated thermalization’: The incoherent wave exhibits an irreversible evolution towards the Rayleigh-Jeans
thermodynamic equilibrium state characterized by a compactly supported spectral shape. This aspect will be discussed
in Section 6.1.

Thermodynamic equilibrium spectrum

In the following we consider realistic dispersion curves of PCFs characterized by two zero dispersion wavelengths, whose
accurate description requires a high-order Taylor expansion of the dispersion relation (m > 4). Starting from the high-
order dispersion NLS Eq. (192) and following the standard procedure discussed above in this section in the spatial case,
one obtains the irreversible WT kinetic equation governing the evolution of the averaged spectrum of the field n(z, w)

(¥ (z, 0)V* (2, w2)) = n(z, ©1) §(w1 — )]
d,n(z, w1) = Coll[n], (193)

with the collision term
Coll[n] = / n(w)n(w)n(ws)n(ws) [0 (1) + 1" (wz) — 17 (w3) — 17 (wa) | W dw, dos dowy, (194)

where ‘n(w)’ stands for ‘n(z, w)’ in Eq. (194). As usual in the WT Kkinetic equation, the phase-matching conditions of

energy and momentum conservation are expressed by the presence of Dirac §-functions in W = );r—z S(w1 + wp — w3 —
wy) 8[k(w1) + k(wy) — k(ws) — k(w4)], where k(w) refers to the linear dispersion relation (191). Eq. (193) conserves the
power density N/Ty = f n(z, w) dw, the density of kinetic energy E /Ty = f k(w) n(z, w) dw and the density of momentum
P/Ty = f wn(z, w) dw, where T, refers to the considered numerical time window. It also exhibits a H-theorem of entropy
growth, 9,4 > 0, where the nonequilibrium entropy reads §(z) = f log[n(z, w)] dw. The corresponding Rayleigh—Jeans
equilibrium distribution (165) then reads in the temporal domain

T
)= ——————. (195)
k(w) + 2o —
As discussed above in Section 5.2.2 through the analysis of wave condensation, the three parameters (T, i, A) are calculated
from the conserved quantities (E, N, P) by substituting the equilibrium spectrum (195) into the definitions of E, N and P.
One thus obtains an algebraic system of three equations for three unknown parameters, which can be solved numerically.
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We always obtained a unique triplet solution (T, i, A) for a given set (E, N, P), a feature which is consistent with the fact
that a ‘closed’ (conservative and Hamiltonian) system should exhibit a unique thermodynamic equilibrium state [296].

The meaning of the parameter A was already discussed in the framework of the generalized Rayleigh-Jeans distri-
bution (164). Here, its significance becomes apparent through the analysis of the group-velocity v, of the optical field
[K(w) = 0k/dw = 1/vg(w)]. Indeed, recalling the definition of an average in kinetic theory, (#4),, = f AnYw)dw/
f n®(w) dw [296] and making use of the equilibrium spectrum (195), one readily obtains

(K @),y = =4 (196)

According to relation (196), the parameter A has a simple physical meaning, it denotes the average of the inverse of the
group-velocity of the optical field at equilibrium.

The three parameters (T, i, A) can thus be calculated from the three conserved quantities (E, N, P), which unambigu-
ously determine the thermodynamic equilibrium spectrum (195). We report in Fig. 37(c) the comparison of the theoretical
prediction (195) with the results of the numerical simulations of the high-order NLS Eq. (192). A quantitative agreement is
obtained between the simulations and the theory (195), without using any adjustable parameter. The Rayleigh-Jeans spec-
trum is characterized by a double-peaked structure, which results from the presence of two zero dispersion wavelengths
in the dispersion curve of the PCF. The relaxation towards thermal equilibrium is also corroborated by the saturation of the
process of entropy production illustrated in Fig. 37(b). Note however that a notable discrepancy is visible in the tails of the
spectrum in Fig. 37(c), as if the thermalization process were not achieved in a complete fashion. Actually, the simulations
reveal that the tails of the spectrum exhibits a very slow process of spectral broadening, which apparently tends to evolve
towards the expected Rayleigh-Jeans tails—though the required propagation length is extremely large. This aspect will be
discussed in more detail in Section 6.1 in the particular case where the dispersion relation is truncated to the fourth-order
[m =4inEq.(191)].

The good agreement between the theory and the simulations has been obtained in a variety of configurations, as discussed
in detail in Refs. [ 184,345]. For instance, we considered here the example of a cw source, which is inherently a coherent wave.
In this case the transition from the initial coherent pump towards the incoherent SC regime takes place through the process
of MI. However, a good agreement with the theory has been also obtained by considering an initial incoherent pump wave,
a feature discussed in detail in Ref. [345].

5.4.3. Thermodynamic phase-matching

The thermodynamic equilibrium spectrum given in Eq. (195) is characterized by a double peak structure, which originates
from the two zero dispersion wavelengths that characterize the PCF dispersion curve. This is illustrated schematically in
Fig. 38. It is important to underline, however, that the frequencies (w1, ;) of the two peaks of n®“(w) do not simply
correspond to the minima of the dispersion relation, i.e. k'(w; ;) # 0, as illustrated in Fig. 38(b). To further analyze this
aspect, let us write the thermodynamic equilibrium spectrum in the form n®l(w) = T/ F (w), with F (w) = k(w) + Ao — K.
Then the two frequencies (w1, @w;) which maximize the equilibrium spectrum (195) satisfy F'(w{) = F'(wp) = 0,
i.e, k'(w1) = K (w;) = —A.Inother terms, w; and w; correspond to those frequencies for which the straight line —Aw + 1t is
parallel to k(w). This simple observation reveals that the two frequencies (w1, w,) of the double peaked equilibrium spectrum
(195) are selected in such a way that the corresponding group-velocities coincide with the average group-velocity of the optical
wave,

Vg (1) = vg(wy) = 1/<k/(w)>eq =—1/x. (197)

As illustrated through Fig. 38 there exists, in principle, a unique pair of frequencies (w1, w,) satisfying the conditions given
by Eq. (197). In other terms, for a given thermodynamic equilibrium spectrum (195), there exists a unique pair of frequencies
(w1, wy) that leads to a matched group-velocity of the double peaked spectrum [345]. In this sense, Eq. (197) can be regarded
as a thermodynamic phase-matching condition.

We also note that, as revealed by Fig. 38(b), there exists a third frequency ws, located between w; and w,, which satisfies
vg(w3) = vg(w1,2). However, contrary to the frequencies w; and w, that correspond to stable equilibrium points of the
potential function F (w) = k(w) + Aw — u, the frequency ws is associated to an unstable point, £”(ws) < 0. According
to the kinetic interpretation of the potential function ¥ (w), this means that quasi-particles tend to flee away from the
frequency ws, so as to migrate towards the bottom of the potential wells ¥ (w1) and F (w;). In this way the frequency ws;
corresponds to a local minimum of the equilibrium spectrum n®¥(w), while @, and w, correspond to the maxima of n®?(w).

The thermodynamic phase-matching given by Eq. (197) then imposes a matching of the group-velocities of the two
spectral peaks of the SC spectrum. The fact that different wave-packets naturally tend to propagate with the same group-
velocity has been discussed above in Section 5.3.2. It was shown that a velocity locking is required, in the sense that it
prevents “a macroscopic internal motion in the wave system”. In this case, a set of distinct interacting wave-packets were
considered a priori, respectively in the framework of the vector NLS equation, or the resonant three-wave interaction in
Ref. [306]. Here, the process of SC generation provides a non-trivial extension of the velocity-locking effect, since velocity-
locking occurs within a single wave-packet by means of a fission of its initial spectrum.
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Fig. 38. Velocity-locking through SC generation: Dispersion relation k(w) (a), corresponding inverse of group-velocity dispersion k' (w) = 1/v,(w) (b), and
corresponding dispersion curve k” (@) that exhibits two zero dispersion wavelengths, v,pw; = —12.7 THz, vzpwz = +16.4 THz (c). The straight red-line
in (a) represents —Aw + p: The equilibrium frequencies w, , = 2w v, correspond to those frequencies for which the red-line is parallel to k(w). Effective
potential ¥ (w) = k(w) + Aw — u (d), and corresponding equilibrium spectrum n®/(w) = T/F (w) of the kinetic theory [Eq. (195)] (e). The dashed line
in (b) represents k'(w12) = —A: The frequencies w; and w, are selected in such a way that vg(w1) = vg(w2) = —1/A (v1 = w1/(27) = —22.9 THz,
V; = w,/(2w) = +27.5 THz). Note that the values of these equilibrium frequencies (v1, v, ) also differ from the MI frequencies, vy; = 4+23.5 THz.
Source: From Ref. [365].

5.4.4. Influence of self-steepening on thermalization
In this section we consider the WT theory of the NLS equation in the presence of self-steepening
B Y 3 (ly1*y)

ot

0
ia—‘f + S BV e iy

: =0. (198)
= j! ot

Here we follow Ref. [345] to present some technical details on the derivation of the WT equation because we believe that
they can be of pedagogical value. Indeed, the shock term is essentially a dispersive nonlinear term whose WT description is
in principle not immediate. However, by means of a simple transformation, we shall see that the NLS Eq. (198) recovers
an explicit Hamiltonian structure, a feature that may be exploited to derive the kinetic equation in a straightforward
manner [345]. The kinetic theory also sheds new light on the role of the self-steepening effect. In particular, it reveals that
the shock term merely introduces a spectral factor (1 4 t;w) in the equilibrium spectrum of the optical field.

Hamiltonian structure with self-steepening
It is instructive to write the NLS Eq. (198) in Fourier space,

o 5 yA+tw) [~ -, -
0,V (w, z) + k(w)¥ (w, 2) + TS / Yo, l//wz Vg S +wy—wy w1 dwy dws = 0, (199)
where ‘17/&)' stands for the Fourier transform of the field amplitude [1/7(50, z) = 2n)~ 1?2 f Y (z, t) exp(iwt) dt]. Note that

the shock term simply appears via the factor t;w in front of the nonlinear term. This equation conserves the intensity of the
field N = f [ (w, z)|? dw. However, the shock term prevents the conservation of momentum P = fa) Y (0, 2)|? do #
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const, an important feature whose consequences will be discussed later. Let us observe, however, that the following
transformation

) ¥ (,2)
w,7) = ——, 200

P.7) = = (200)
allows us to write Eq. (199) in an appropriate symmetric form

o~ - 14 Y ey~

i0;9(w, 2) + k(w)¢(w, 2) + o / Liwranws Por Py Pars Sy +wp—ws do1 dw dws = 0, (201)
where the interaction coefficient Ly, o, w30, = L(@w1, @2, @3, w4) denotes the fourth-order tensor

Loywpwsos = (14 100 ?(1 4 1502) (1 + 1503) 2 (1 + ts04) 2. (202)

Note that the transformation (200) is relevant provided that the condition 1 4+ 7; > 0 is satisfied. However, the typical
time scale of the shock coefficient is t; ~ 1/wy, wg being the carrier angular-frequency of the optical field. In this way, the
conditionw > —1/7s ~ —wy is usually verified within the slowly-varying envelope approximation. Let us also remark that,
although in Fourier space the variable change (200) appears as rather simple, in the temporal domain the transformation

(200) reads ¢(t,z) = (1+ nsa[)—% w(t z). In thls transformation, the square-root operator should be interpreted as a

Taylor’s expansion series, (1 + its0;)~ 7 = Z]_O C -3 (GAY &, where C. : refers to the corresponding binomial coefficient.
This reveals that the equation governing the propagatlon of the optlcall field in the variable ¢ no longer refers to a standard
‘nonlinear Schrédinger equation’.

The advantage of the variable ¢ relies on the fact that Eq. (201) exhibits an explicit Hamiltonian structure

~ Y O
H, = / k(w)|‘/’w|2da) + E / Loy wywswq Pooy (/):)z‘pwz‘/);48w1fwz+w37w4 dwq daw, dws dwy, (203)
with the complex canonical variables 9,¢ = i8H, /6¢*, 3,¢* = —i6H,,/3¢. Furthermore, Eq. (201) conserves two additional
quantities, N, = f |@(w, 2)|?> dw and P, = fa) |@(w, 2)|? dw, which respectively represent the power and momentum

densities of the field in the new variable ¢.
Let us remark that the conserved quantities N, P, and H, indicate the existence of three additional invariants for
the NLS Eq. (198) [or Eq. (199)] in the original variable . Indeed, one can easily verify that Eq. (199) conserves N, =

[1¥(@,2)?/(1 + tw) dw, Py = [ ¥ (0, 2)Pw/(1 + t0) do and

k(w)
1+ ;0

~ y ~ ~ ~ ~

Hy = f 17w, 2) do+ L / T T By DB 0sa i devy e v, (204)
We remark that Hy, does not refer to a Hamiltonian, in the sense that Eq. (199) does not verify 821/7 = iSHw/&/?*. Also note
that a simple relation links the above invariants of Eq. (199), Py, = rls(N — Ny ), where we recall that N = f |1/~/(w, 2)]? dw.
As regard the invariants of Eq. (199), let us remark that the so-called ‘modified’ NLS equation, 3,A + id;A + 9; (|A|?A) = 0 (or
9,A+i0zA+ilA|*A+ 3; (JA?A) = 0) belongs to the family of completely integrable partial differential equations [366-369].
In a way akin to the standard NLS equation discussed above, the integrability of the modified NLS equation is broken by
the presence of higher-order dispersion effects. Let us now discuss the thermalization process that results from the non-
integrable character of this equation.

Wave turbulence equation and equilibrium spectrum
The Hamiltonian structure of Eq. (201) allows us to derive the corresponding kinetic equation in a straightforward
manner. Following the random phase approximation approach, one obtains the following equation governing the evolution
of the spectrum n, (z, w) of the field ¢ [(¢(z, w1)9*(z, w2)) = ny(z, W1)é(w1 — W2)]:
0;1y(z, w1) = Coll[n,], (205)

with the collision term
Coll[n,] = / L2, s Mo (@D (@) (@3)1 (@4) [, (01) + 1, (@) — 0, (@3) — 1, (04)]
X W dw; dws dw,. (206)

where the function W = 7;—2 S(w1 + wy — w3 — wyg) §[k(w1) + k(wy) — k(ws) — k(wy)] still accounts for the resonant
phase-matching conditions of energy and momentum conservation. The kinetic equation (205) has the same structure as
the kinetic Eq. (193). Note however an important difference due to the presence of the interaction coefficient L, w, w30, N
the collision term of Eq. (205). This reveals that the kinetic theory still models the self-steepening effect as a collisional gas
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Fig. 39. Optical wave thermalization in the presence of self-steepening: Averaged numerical spectrum obtained by solving numerically the NLS Eq. (198)
with 7, = 0 (dark) and 7, = 2/wy (blue), in normal (a) and logarithmic (b) scales, wy = 27 vg. The dashed red lines refer to the corresponding equilibrium
spectra n®(w) predicted by the kinetic theory [see Eq. (208)]. An average over 140 spectra has been taken once thermal equilibrium was reached, 9,8, >~ 0.
We refer the reader to Ref. [345] for more details regarding the values of the parameters used in the numerical simulation.

of quasi-particles satisfying the resonant conditions of energy and momentum conservation at each collision. However, the
novel feature is that the quasi-particles interact with a non-trivial scattering cross-section LCZUICUZGBU) , at each elementary
collision.

The kinetic equation (205) conserves the intensity (density of power) N, /Ty = f 1y (z, w) dw, the density of Kinetic
energy E, /Ty = f k(w) ny(z, ) do, the density of momentum P, /Ty = f Ny (z, ) dw, and it exhibits a H-theorem of en-
tropy growth, 9,S, > 0, where the nonequilibrium entropy reads S, = f log[n, (z, w)] dw. The thermodynamic equilibrium
state that realizes the maximum of nonequilibrium entropy thus takes the same form as in Eq. (195),

n%(w) = ; (207)
¢ k(w) +ro — p°

As expected, the scattering cross-section LGwzw 04 only affects the nonequilibrium dynamics of the incoherent field, but not
the Rayleigh-Jeans equilibrium distribution (207). We remark that one encounters the same physical picture in kinetic gas
theory: The Boltzmann's equation that governs the nonequilibrium evolution of a classical gas depends on the scattering
cross-section, but not the corresponding Maxwell’s equilibrium distribution [296].

In order to analyze the role of the self-steepening on wave thermalization, let us write the equilibrium distribution (207)
in term of the original variable . According to the transformation (200), the equilibrium spectrum n®(w) of the field v in

the presence of self-steepening takes the form

T (14 tsw)

_ (208)
k(w) +ro —

n®(w) =

Note that, contrary to Eq. (207), the equilibrium distribution (208) does not refer, strictly speaking, to a Rayleigh-Jeans
distribution. The shock term thus merely introduces a linear gradient into the equilibrium spectrum (208) of the optical
field. This remarkable conclusion has been found in quantitative agreement with the numerical simulations of Eq. (198),
without adjustable parameters. This is illustrated in Fig. 39, in which the numerical and theoretical equilibrium spectra in
the presence and in the absence of self-steepening have been reported. We refer the reader to Ref. [345] for more details.
Also note that, as discussed above through Fig. 37, an appreciable discrepancy between the theory and the simulations has
been obtained in the tails of the spectrum (Fig. 39), a feature that will be discussed in more detail in Section 6.1.

To summarize, a PCF characterized by a dispersion curve with two zero dispersion wavelengths can lead to a
thermalization process characterized by a double peaked Rayleigh-Jeans equilibrium distribution. The frequencies of the
double peak spectrum are selected in such a way that the corresponding wave packets propagate with the same group
velocity, which also matches the average group velocity of the optical field. This velocity-locking effect has a thermodynamic
origin, as discussed in Section 5.3. We finally note that some experimental evidence of this thermalization process driven
by SC generation has been discussed in Ref. [184].
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Fig. 40. Emergence of spectral incoherent solitons from MI in SC generation: (Black solid line) Experimental spectra recorded after 75 cm of propagation
for three distinct values of input peak power: (a) 1.32 kW, (b) 2.22 kW, and (c) 4.52 kW. The red dashed lines with circles are the secant-hyperbolic fits
of the low-frequency MI band, which plays the role of a seed for the generation of spectral incoherent solitons. The spectral widths and powers of the
corresponding fitted functions are, respectively, (a) 3 THz, 150 W, (b) 6 THz, 250 W, and (c) 9 THz, 350 W.

Source: From Ref. [30].

5.4.5. Emergence of spectral incoherent solitons through supercontinuum generation

As discussed above through Fig. 36, an incoherent structure analogous to the spectral incoherent soliton is spontaneously
generated in the low-frequency edge of the SC spectrum. In this section we briefly comment this aspect through the analysis
of the SC spectrum at the early stage of propagation and refer the reader to Ref. [184,30] for more details.

A first important point to note is that the low-frequency MI spectral peak plays the role of a seed for the generation of
spectral incoherent solitons. This is illustrated in Fig. 40, which reports the experimental spectra recorded after 75 cm of
propagation in a PCF for three different powers of the laser. Note that the experiment is conceptually simple. In substance
a quasi-continuous (~ns) and intense laser pulse (Ao = 1064 nm) is injected in a PCF characterized by two zero-dispersion
wavelengths (at 910 and 1152 nm). We refer the reader to Refs. [ 184,30] for details concerning the experimental configu-
ration.

Transition from discrete to continuous spectral incoherent solitons

We remark in Fig. 40 that 75 cm of propagation are sufficient for a complete development of the MI bands. As in the
standard MI process, the spectral bandwidth of MI gain increases as the pump power is increased, a feature which is clearly
visible in Fig. 40. Accordingly, the spectral seed of the spectral incoherent soliton becomes larger as the injected power
increases. This spectral broadening is responsible for a transition from the discrete to the continuous spectral incoherent
soliton.

To analyze this transition in more detail, the low-frequency MI band recorded experimentally has been fitted by a
secant hyperbolic function for each of the three input powers. The corresponding fits are shown in red in Fig. 40 and their
characteristics (spectral width and peak power) are given in the figure caption. We considered these sech-fitting functions
as the initial condition, and performed numerical simulations with both the WT Langmuir kinetic equation (44) and the
reduced NLS Eq. (36) accounting solely for second-order dispersion and the delayed Raman nonlinearity. To be consistent,
an average value of the second-order dispersion coefficient (160 ps?/km) was considered in the NLS Eq. (36). This value
represents a good approximation of the dispersion value of the PCF in the frequency range swept by the spectral incoherent
soliton in the experiment. Note that, in all cases considered, we have verified that the optical field evolves in the weakly
nonlinear regime.

The numerical simulations of the NLS equation and WT Langmuir equation have been compared with the experimental
spectrum for the three input powers considered in Fig. 40, and the corresponding results are reported in Fig. 41. We observe
a qualitative agreement between the experimental evolution of the spectral incoherent soliton and the corresponding
simulations of the NLS and kinetic equations. In particular, at small power (Fig. 41(a)—(c)), the evolution of the three spectral
bands of the discrete soliton is in agreement with the experimental results [note that, because of the limited spectral window
of the analyzer (600-1750 nm), the comparison with the experimental evolution has been done over a limited spectral
range]. Also, at high power (Fig. 41(g)-(i)), we may note that soliton propagation in frequency space is almost rectilinear for
z > 6 m, as it should be for a genuine spectral incoherent soliton.

We remark that a transition occurs from the discrete spectral incoherent soliton to the continuous counterpart as the
input power is increased. This transition can be intuitively interpreted as a consequence of the broadening of the initial MI
spectral seed. Following the reasoning of Section 3.2.1, for a spectral width of 3 THz (Fig. 41(a)-(c)), the optical field exhibits
a discrete Raman shift simply because the low-frequency tail of the spectrum exhibits a higher gain as compared to the
mean gain of the whole front of the spectrum. Conversely, the Raman shift becomes continuous for the broad spectral width
(9 THz) considered in Fig. 41(g)-(i).

We finally note that, besides the low-frequency MI band, there can be different mechanisms which lead to the generation
of spectral incoherent solitons. Indeed, in certain cases, the low-frequency peak of the Rayleigh—Jeans distribution can also
play the role of a seed for the generation of a spectral incoherent soliton, a feature discussed in Ref. [365]. From a more
general perspective, we should note that research on the formation of spectral incoherent solitons through supercontinuum
generation is still at his infancy stage [138].
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Fig. 41. Emergence of spectral incoherent solitons through SC generation. First column: Experimental results illustrating the spectral evolution (in dB
scale) as a function of propagation distance in a 21 m long PCF, for an input peak power of 1.32 kW (a), 2.22 kW (d), 4.52 kW (g). Second column: Numerical
simulations of the reduced NLS Eq. (36) starting with the secant-hyperbolic fit reported in Fig. 40(a) for (b); in Fig. 40(b) for (e); in Fig. 40(c) for (h).
Third column: Corresponding evolutions of the averaged spectra of the optical field, n(w, z), obtained by integrating numerically the WT Langmuir kinetic
equation (44), with the same initial condition as in the NLS simulations (second column).

Source: From Ref. [30].

5.5. Experiments

5.5.1. Generalities

There exist a large number of nonlinear optical experiments which involve the propagation of partially incoherent waves.
Here we will only briefly comment those experiments which have been specifically designed to the study of optical WT. Let
us first note that long-range turbulent behaviors discussed above in Section 2-3 through the long-range Vlasov equation
and the singular integro-differential kinetic equations, have not yet been the subject of a specific experimental study. As
commented in the end of Section 3, hollow-cores fibers filled with liquids or gases displaying highly noninstantaneous
nonlinearities [217-219,222,224] would constitute ideal test beds for the experimental study of long-range turbulence in
the temporal domain. On the other hand, some experimental signatures of Raman-induced weak Langmuir turbulence-like
phenomena in photonic crystal fibers have been obtained through the formation of spectral incoherent solitons through SC
generation [184,30], as discussed above in Section 5.4.5. In this section, we focus the presentation on optical experiments
evidencing some features that are, or might be, related to a turbulent behavior described by the WT kinetic equation. In
Section 6, we will present different experiments in relation with a breakdown of thermalization described by the WT kinetic
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equation. Note that we will not provide here an exhaustive review of all the works made in this field but we will rather
present existing attempts, challenges and open questions.

As discussed throughout this review, the field of optics offers a large variety of systems with a great variety of nonlinear
interactions and dispersive properties. Many range of parameters (strength of the nonlinearity, sign and shape of the
dispersion curve) and many experimental configurations (single pass in a nonlinear media, passive or active optical cavity,
waveguides, . . .) can be used to investigate nonlinear propagation of incoherent waves. As an example, it has been shown
in Section 5.2.4 that two-dimensional wave condensation can occur in the thermodynamic limit in optical waveguides,
such as multimode fibers supporting a finite number of transverse modes [290]. In various nonlinear optical media (silica
fibers, photorefractive crystals, liquid crystals), the treatment of the light-matter interaction at lowest order turns out to
be relevant [370,171]. In centro-symmetric media like optical fibers, third-order nonlinearity is the dominant process and
wave propagation can be accurately described by NLS-like equations with a cubic nonlinearity.

Besides optical cavity systems such as, e.g., Raman fiber lasers that will be discussed in Section 7, so far, experimental
setups have been mainly designed to study a single-pass propagation of the incoherent wave through the nonlinear material.
As discussed below, such experiments are aimed at studying different regimes of optical wave turbulence. However, because
of the single pass experimental configuration, such regimes refer, strictly speaking, to transient regimes, since they cannot
lead to the establishment of a genuine statistically stationary state of the turbulent wave.

Following the presentation given in Section 2-3, two different types of optical experiments can be distinguished, which
respectively study the temporal or the spatial coherence properties of the optical field as it propagates in the nonlinear
medium. In ‘temporal experiments’, the initial incoherent wave is a function of the physical time which plays the role of a
1D-‘space’, as described by the temporal version of the NLS Eq. (36) in Section 3. In spatial experiments, the wave propagates
either in one or two-transverse dimensions, as described by the spatial version of the NLS Eq. (36) in Section 2. In both cases
the variable z—v,t corresponds to a ‘time’ evolution in which z is the coordinate along the propagation direction and vy is the
group velocity at the carrier wave frequency. The impact of nonlinear effects in an optical experiment is usually measured
by the nonlinear length, L;;, while linear dispersion effects (in the time domain) or diffraction effects (in the spatial domain)
are measured by the linear length, Ly, as they have been defined in Section 2-3.

The experimental observation of WT phenomena, such as wave thermalization to the Rayleigh-Jeans distribution, is a
challenging problem because of the unavoidable presence of linear and nonlinear losses in any optical media. As discussed
throughout this review, the WT theory is valid in the limit where the linear length L, is much shorter than the nonlinear
length Ly, so that dispersive linear effects dominate nonlinear effects (note however the particular case of the long-range
Vlasov equation, whose validity goes beyond the weakly nonlinear regime, see Section 2.3.2). This condition can be fulfilled in
optical experiments simply by decreasing the optical power of the beam launched as the initial condition into the nonlinear
medium. However in this case large propagation distances L are required to observe phenomena such as wave thermalization
and wave condensation. As a result, linear losses of the optical medium become non negligible and thus prevent the optical
wave system from reaching a Rayleigh—Jeans equilibrium state.

Optical fibers are known to exhibit weak linear losses (between 0.2 and 1 dB/km), so that they appear as appropriate
candidates to overcome this obstacle. Unfortunately, stimulated Raman scattering constitutes a major obstacle to the
observation of wave thermalization or condensation. As discussed in detail in Section 3, the Raman effect is a non-
instantaneous nonlinear effect which breaks the Hamiltonian structure of the NLS equation. In optical fibers, the Raman
effect refers to a nonlinear coupling between light and the vibrational modes of silica molecules at a frequency vz >~ 14 THz.
If the spectrum of the initial wave (having a carrier optical frequency vg) is much narrower than vg, spontaneous Raman
scattering is amplified, which leads to the emergence of a new optical wave (Stokes wave) at a frequency vy — vg. Therefore
stimulated Raman scattering acts as a nonlinear dissipative effect for the incoherent wave propagating in the fiber. In a
standard single-mode optical fiber, the Stokes power (and thus the contribution of stimulated Raman scattering) can be
neglected as long as L < 15L;; [138].

We illustrate the impact of the Raman effect with SC experiments reported in [184], in which the Raman effect prevents
the establishment of a thermodynamic equilibrium state for the incoherent wave. A comparison between the expected
Rayleigh-Jeans spectral distribution (see Section 5.4), the numerical integration of the NLS equation with (and without) the
Raman effect, and the experimental results is reported in Fig. 42.

5.5.2. Specific experiments

In 2006 Pitois et al. have performed experiments in optical fibers in order to observe the phenomenon of velocity locking
of incoherent waves predicted by the WT theory, as discussed in Section 5.3 [344]. An initial incoherent wave was obtained
from the amplified spontaneous emission of a dye amplifier and was equally launched along the two polarization axes of a
polarization maintaining fiber. These experiments are described by a system of two coupled 1D NLS equations, as discussed
in Section 5.3. The velocity mismatch between the two waves is calculated from the measured mean frequencies of the two
polarization components and from the values of the birefringence and group-velocity dispersion. Fig. 43 shows the group-
velocity mismatch as a function of the optical power of the waves. The interaction between the two incoherent waves leads
to a matching of their group-velocities via a change of their mean frequencies. This behavior is similar to the velocity locking
predicted by WT theory (see Section 5.3). Note however that in the experiments the group velocity dispersions on the two
axis are almost identical (8; >~ $,), so that the transient regime towards the Rayleigh—Jeans distribution may be extremely
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Fig. 42. Supercontinuum and wave thermalization through SC generation in a photonic crystal fiber with two zero-dispersion wavelength: Comparison
of the theoretical, numerical and experimental spectra plotted in logarithmic scale. (a) Plot of the equilibrium Rayleigh-Jeans spectrum neq (w) given in Eq.
(195) without adjustable parameters. (b) Spectrum obtained by solving numerically the generalized NLS Eq. (190) without Raman, loss and shock terms.
(c) Spectrum obtained by solving numerically the generalized NLS Eq. (190). (d) Spectrum recorded in experiment. 'S’ indicates the position of the spectral
incoherent soliton (see Section 5.4.5). Note the good agreement of the frequencies of the spectral peaks. (e) Evolution of the nonequilibrium entropy
during the propagation of the optical field corresponding to the simulation of the NLS equation in (b): The process of entropy production saturates as the
equilibrium state is approached.

Source: From Ref. [184].
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Fig. 43. Velocity locking experiments in a high-birefringence optical fiber. Evolution of the group-velocity mismatch as a function of the optical power of
each wave packet. Circles: Experimental measurements; solid line: Numerical simulations (P = 20 W corresponds to L = 5Ly).
Source: From Ref. [344].

long and steady states or metastable states corresponding to the process of anomalous thermalization can be expected, as
will be discussed in Section 6.2.

Spatial experiments concerning wave condensation in a photorefractive crystal have been performed by Sun et al. [371].
An initial 2D incoherent wave is ‘written’ on a coherent laser beam by using spatial light modulators. This incoherent spatial
field then propagates through the nonlinear crystal. The third order nonlinearity is defocusing and it is controlled by a high
voltage. The far field Fourier spectra of the waves (n(k, k;) = 1/~/(kx, ky)) is observed in the focal plane of a lens and the
authors consider in particular the changes in the cross section n(ky, k, = 0) (see Fig. 3d of [371]) of the power spectrum. By
increasing the strength of the nonlinearity, the authors record a spectrum that exhibits a narrowing. Moreover the tails of
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Fig. 44. Liquid crystal experiment reporting the observation an inverse WT cascade. (a) Experimental intensity distribution I(x, z). The area marked by
the dashed line is shown at a higher resolution. (b) Experimental spectrum of the light intensity, N, = |I;|? at two different propagation lengths z, where
I, denotes the spatial Fourier transform of the intensity I(x).

Source: From Ref. [84].

the power spectrum decay according to a power law n(ky, k, = 0) o< k- 2.In [371] the former observation is interpreted as
wave condensation and the latter observation is associated to the Rayleigh-Jeans distribution.

However these signatures of wave condensation and wave thermalization can arise from simple experimental artifacts.
First of all, diffraction through limited-size optical components also leads to a power—l:iw decay ~ 1 /kﬁ in the tails of the
spectrum. Indeed, the Fourier transform of a slit characterized by a size 2a is simply | (k,)|> o |sin(ka)/(kca)|> which
indeed decays according to 1/ k)z( [372,373]. We also note that the wings of the initial and output spectra exhibit roughly the
same power law (see Fig. 3d of [371]).

The nonlinearity-dependent narrowing of the spectrum may also be observed with simple nonlinear Kerr-lens effect
combined with a slight mispositioning of the detector [373]. Fig. 5b in [373] is numerically computed from the consideration
of this simple effect coupled with the diffraction by the crystal finite square aperture. Surprisingly this gives a spectrum
quantitatively very similar to the experimental one plotted on Fig. 3d of Ref. [371].

As a conclusion, the spatial experiments by Sun et al. open many challenging questions about the observation of wave
condensation and Rayleigh-Jeans spectra in nonlinear optics. Experiments may be conceived with or without waveguide.
Optical experiments with bulk media (such as photorefractive or liquid crystals) can provide very high third-order
nonlinearity without any waveguide effect. On the other hand, multimode optical fibers are good candidates to observe
wave condensation with a finite number of modes (see Section 5.2.4). However, as discussed here above, the Raman effect
limits current experiments to short propagation distances in standard silica fibers.

Bortolozzo et al. have performed 1D spatial WT experiments in liquid crystals [83,84]. An incoherent 1D wave is initially
prepared with a spatial light modulator and it is launched inside a nematic liquid crystal layer. One of the originalities of the
setup is the direct observation of the evolution of the transverse intensity profile | (z, t)|> from the use of a microscope
objective. This permits the observation of the change in the dynamics of the incoherent wave all along the propagation
distance, thus providing nice (x, t) diagrams. Note that in this setup the Fourier Transform (FT) of |y (x) |2 can be computed,
while | (ky)|?> = |FT ((x))|? is not directly available.

The authors observe an inverse cascade with an initial spectrum centered on a non-zero wavenumber. This inverse
cascade leads to a power law FT (| (x)|?) o ky 3 At long propagation distances, soliton formation emerging from the
waves interaction is also observed. Moreover, probability distribution functions of the optical intensity decaying slower
than exponential laws (corresponding to Gaussian statistics) is observed [83,84].

The authors make use the general framework of the WT theory in order to describe the experimental results. As discussed
in Section 4.6.1, a liquid crystal exhibits a nonlocal Kerr nonlinearity. The weakly nonlocal regime was considered in the
experiment, so that the nonlocal interaction can be treated in a perturbative way, as discussed in after Eq. (158). The
theoretical study reveals that the wave interaction refers to a six-waves process [84]. This allows the authors to derive
kinetic equations with a collision term involving six-waves resonances. In this way, stationary nonequilibrium solutions of
the Kolmogorov-Zakharov type are obtained (see Ref. [84] for details). In this way, an inverse WT cascade has been predicted
theoretically and found in good agreement with the experimental results [83,84] (see Fig. 44).

To the best of our knowledge, these experiments in liquid crystals provide the unique observation of a WT (inverse) cas-
cade in optics. Note in Refs. [83,84] that the optical system is forced at the input of the nonlinear medium (z = 0), and the
formation of the nonstationary spectrum is observed in the transient propagation of the optical wave. From a phenomeno-
logical point of view, this experimental configuration can be compared with ‘decaying turbulence’ in hyrdodynamics [374].
As discussed above, the propagation length z plays the role of time in optics, so that the observation of a permanent nonequi-
librium stationary state would require a forcing and a damping at any z, a situation which is rather artificial in optics.
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Raman fiber lasers are active 1D optical systems that can exhibit a turbulent-like behavior. In this system described
by a generalized 1D NLS equation, one should not expect Zakharov-Kolmogorov-like cascades, though many interesting
behaviors such as a laminar to turbulent transition have been observed [81]. An overview of these experiments will be
given in Section 7.

We finally note that Section 6 reports other WT experiments realized in optical fibers, in relation with breakdown
of thermalization. Indeed, when the wave system is accurately modeled by an equation which is almost integrable, it
can exhibit a process of anomalous thermalization through degenerate resonances (see Section 6.2 for the theory and
Section 6.2.3 for the experiments) or a process of irreversible relaxation through non-resonant interactions (see Section 6.3
for theoretical developments based on the integrable NLS equation, and Section 6.3.3 for experiments).

6. Breakdown of thermalization in 1D-NLS equation

As commented in the introduction (Section 1.2.4) through the Fermi-Pasta-Ulam problem [130], the natural phe-
nomenon of thermalization towards the Rayleigh—Jeans distribution discussed in the previous section does not necessarily
occur in a nonlinear system. In this section we discuss this possible breakdown of thermalization in the light of the WT kinetic
equation (see Section 5). We consider the 1D NLS equation accounting for higher-order dispersion effects, which is known to
describe light propagation in photonic crystal fibers (see Section 5.4.1). We present three different processes which inhibit
the phenomenon of optical wave thermalization towards the Rayleigh-Jeans spectrum. Indeed, depending on whether the
dispersion relation is truncated up to the second, third, or fourth-order, the wave system exhibits different types of relax-
ation processes. We will see that the WT theory provides an accurate description of the three mechanisms underlying this
breakdown of thermalization. We remark that, besides the WT approach [375], the long term evolution of the dynamics of
incoherent optical waves has been also explored in different circumstances. For instance, many studies of thermalization
in nonlinear discrete systems have concentrated on the discrete NLS equation in one [60,61,63,55,56,376,64] or two [377]
dimensions.

6.1. Influence of fourth-order dispersion: Truncated thermalization

We consider here the 1D NLS equation in which the dispersion relation is truncated to the fourth-order. In this case, the
WT theory reveals the existence of an irreversible evolution towards a Rayleigh-Jeans equilibrium state characterized by a
compactly supported spectral shape [143]. This phenomenon of truncated thermalization may explain the physical origin
of the abrupt SC spectral edges discussed above in Section 5.4.2. More generally, it can shed new light on the mechanisms
underlying the formation of bounded spectra in SC generation [357,378,355,356,184]. Besides its relevance in the context
of SC generation, this phenomenon is also important from a fundamental point of view. Indeed, it unveils the existence of
a genuine frequency cut-off that arises in a system of classical waves described by the generalized NLS equation, a feature of
importance considering the well-known ultraviolet catastrophe of ensemble of classical waves (see Section 5.2.2).

NLS model

The starting point is the NLS equation (192) accounting for third- and fourth-orders dispersion effects. For convenience,
we present the results in dimensionless units, for which the NLS equation takes the form

0,y = —so¢y —iad’y + Bojy + [y Py, (209)
where the spatial and temporal variables have been normalized with respect to the nonlinear length L,; = 1/(y p) and the
‘healing time’ 79 = (|B2|Lu/2)"/%. As discussed in Section 3, y (>0) is the nonlinear coefficient, p the average intensity,
B, the second-order dispersion coefficient with s = sign(8,). In these units, the normalized dispersion parameters read
& = LypB3/(673), and B = Lufa/ (247), B3 and B4 being the third- and fourth-order dispersion coefficients. We recall
that the NLS Eq. (209) conserves three important quantities, the normalized power N = f [y (t)|?dt, the momentum
M = f a)|1/~/(a))|2da) and the total ‘energy’ (Hamiltonian) H = E + U, which has a linear (dispersive) kinetic contribution
E(z) = [ k()| (»)|*dw and a nonlinear contribution U(z) = 1 [ 1w (©)|*dt, where

k(w) = so?® + a@w’ + B’ (210)

is the dispersion relation [we recall that fﬁ(z, w) = \/%7 f Yz, t) exp(iwt) dt].

6.1.1. Refined wave turbulence analysis

The WT kinetic equation associated to the NLS Eq. (209) has been reported above in Eqs. (193) and (194). As discussed
in Section 5.4.2, it describes an irreversible evolution towards the Rayleigh-Jeans thermodynamic spectrum (195). Here we
show that this process of thermalization to the Rayleigh-Jeans spectrum is not achieved in a complete way, but turns out
to be truncated within a specific frequency interval. We show that this effect can be described by a refined analysis of the
kinetic equations (193) and (194) with the dispersion relation (210).
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As in the usual configuration of SC generation, we assume that the pump wave frequency lies in the anomalous dispersion
regime (s = —1). Then we integrate the collision term of the kinetic equations (193) and (194) over one of the frequencies,
so that the kinetic equation can be written in the form

1 Noryo
0z, w) = — / N @ 3w (@2, w3)] dwy 3 (211)
2 |wy — w| w3 — |

where J\wam (mn) is the functional ﬁmwzws (n) in which n,,, (z) has been changed with n,,,  ,,,—,(2), and
3. -
$o(@2, @3) = S8 (@2 + ©3) + BI2(@; + ©)) + 3003 — (@2 + @3) + 0’1 — 1. (212)
This function is a quadric in the two dimensional space (w,, w3). It can be recast into its canonical form with the following

change of variables: (2, = (@, + w3)/v/2, 23 = (w; — ®3)/+/2), and then (2, = 2, + q/(7B), 25 = £23), with
q = 3@/~/2 — v/2Bw. The kinetic equation (211) then takes the form

=~ & 2 O 2 _
1/w9293(n)5[(92/a2) + (§23/a3)* — p] 05,5 (213)

Nz, w) = — ~ = = =
[$22 + §25 — 1| |£22 — §23 — 1|
where a; = ,/2/(7,3), as = ,/Z/B andr,, = 64/2w/7 + 3ﬁ&/(14,§). It becomes apparent that the condition
2 8Bw? + 4d 3 >0 (214)
0= %% 1) aw 5 )7

must be satisfied in Eq. (213). This reveals that the resonant four-wave interaction underlying the Kerr effect can only take
place within a specific frequency interval defined by the bounds, w € [w_, w, ], with

ws :—ij: \/ﬁ 342 + 8. (215)
48 12B

Finally remark that, by introducing the following parametrization of the ellipse, (fzz = @y cos(0), 25 = a3 sin(@)), with
dy,3 = y,3,/p, the kinetic equation (213) can be recast in the following compact form

~ o~ 2 ~
aas T Neos(@) sin(6) (n)

0;1n(z, w) =
@)= oo 7. (0)

dao, (216)
where F,,(0) = |ay cos(0) + as sin(@) — r,| X |ay cos(0) — az sin(0) — r,,|.

6.1.2. Numerical simulations

The confirmation of this process of truncated thermalization by the numerical simulations is not obvious. This is due to
the fact that in the usual configurations of SC generation discussed in Section 5.4, the cascade of MI side-bands generated
by the cw pump in the early stage of propagation spreads beyond the frequency interval predicted by the theory. As already
discussed, the MI process is inherently a coherent nonlinear phase-matching effect which is not described by the WT kinetic
equation [Egs. (193) and (194)]. This explains why the numerical simulations reported in Section 5.4 (see Refs. [184,345])
did not evidence a precise signature of this phenomenon of truncated thermalization.

In order to analyze the theoretical predictions in more detail, we need to decrease the injected pump power so as to
maintain the (cascaded) MI side-bands within the frequency interval (215). Intensive numerical simulations of the NLS
Eq. (209) in this regime of reduced pump power have been performed in Ref. [ 143]. This study reveals that the nonlinear
dynamics slows down in a dramatic way, so that the expected process of thermalization requires huge nonlinear propagation
lengths and huge CPU time computations. This results from the fact that the normalized parameters @ and B decrease as
the pump power decreases, so that Eq. (209) approaches the integrable limit of the NLS equation, which does not exhibit
thermalization [142] (see Section 6.3). We report in Fig. 45 the wave spectra at different propagation lengths obtained
by solving the NLS Eq. (209) with @ = 0.1 and 8 = 0.02. In the early stage of propagation, z ~ 200, the spectrum
remains confined within the frequency interval [w_, w, ] predicted by the theory [Eq. (215)], although the spectrum exhibits
a completely different spectral profile than the expected Rayleigh-Jeans distribution. As a matter of fact, the process of
thermalization requires enormous propagation lengths, as illustrated in Fig. 45(d), which shows that the wave spectrum
eventually relaxes towards a truncated Rayleigh-Jeans distribution. Here, the Lagrangian multipliers («, A, T) have been
calculated from the conserved quantities (N, M, E) (once the system has reached a weakly nonlinear regime), without using
adjustable parameters.
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Role of the nonlinearity

Note however in Fig. 45(d) that, despite the good agreement, the whole spectrum spans a frequency band which exceeds
the frequency interval [w_, w,] predicted by the kinetic theory in Eq. (215). Indeed, in the first stage of evolution (see
Fig. 45(a)-(c) for 200 < z < 5 x 10°), the SC spectrum exhibits a slow process of spectral broadening, so that the
corresponding SC edges spread beyond the frequency bound [w_, w.]. Such a discrepancy decreases in a significant way
as the system becomes weakly nonlinear, as discussed below through Fig. 47. Accordingly, this discrepancy can be ascribed
to a deviation from Gaussian statistics of the incoherent wave. Indeed, we report in Fig. 46 the PDF of the wave intensity
calculated at different propagation lengths. A deviation from Gaussian statistics is visible for z < 10%, which can merely
explain the slow process of spectral broadening beyond the frequency interval (215) predicted by the theory. This conclusion
is corroborated by the analysis of the kurtosis of the intensity distribution, K(z) = (12) @)/ (I y2) — 1 (data not shown).
The value of K (z) and the variance of its fluctuations are shown to slowly decay during the propagation to zero. Then as the
system evolves, it eventually reaches a kinetic regime of Gaussian statistics, which is subsequently preserved in the further
evolution. It is interesting to underline that, once the state of Gaussian statistics is reached, the incoherent wave does not
exhibit any significant spectral broadening (for z > 5 x 10°), while its spectral profile slowly relaxes towards the truncated
Rayleigh-Jeans distribution, as described by the kinetic theory.

This conclusion as regard the role of the nonlmearlty in the process of truncated thermalization is corroborated by
the analysis of the impact of the parameter ;3 As ;3 increases, the typical bandwidth of MI decreases, so that the system
evolves towards the nonlinear regime of interaction. Note however that in the process of spectral broadening, the increase
of the second order contribution in the kinetic energy (Ez =5 f w2|&|2(a)) da)) is compensated by the reduction of the

fourth-order contribution (E4 = B f w4|1}|2(w) da)), while the third-order contribution plays a negligible role here. Then
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Source: From Ref. [143].

to quantify the role of the nonlinearity, one needs to compare E, (~—E,4) with U. Fig. 47 reports the evolution of the spectra
obtained by solving the NLS Eq. (209) in the same conditions as in Fig. 45, but for different values of . In Fig. 47(a)-(d) we set
B = 0.05and B = 0.1, which respectively correspond to |U/E,| ~ 0.09 and |U/E,| ~ 0.2, while in Fig. 45 |U/E,| ~ 0.03 for

B = 0.02. The comparison of the three different cases confirms that, as the system approaches a weakly nonlinear regime,
the generated spectrum tends to remain confined within the frequency interval [Eq. (215)] predicted by the WT theory.

The case@ = 0
We finally note that the same numerical study has been performed for @ = 0, for which the frequency bounds (215)
reduce to

wy = +,/7/(6B).

A study analogous to that discussed above for @ # 0 confirms the process of relaxation towards a spectrally truncated
Rayleigh-Jeans distribution for the incoherent wave.

6.2. Influence of third-order dispersion: Anomalous thermalization

In this section we present another mechanism that inhibits the natural process of thermalization. We consider the 1D
NLS equation by truncating the dispersion relation up to the third order. We will see that the incoherent wave exhibits an
irreversible evolution towards an equilibrium state of a different nature than the conventional Rayleigh-Jeans equilibrium
state. The WT kinetic equation reveals that this effect of anomalous thermalization is due to the existence of a local invariant
in frequency spaceJ,,, which originates in degenerate resonances of the system [ 140,141]. In contrast to conventional integral
invariants that lead to a generalized Rayleigh-Jeans distribution, here, it is the local nature of the invariant J,, that makes
the new equilibrium states different than the usual Rayleigh-Jeans equilibrium states. We remark that local invariants and
the associated process of anomalous thermalization have been also identified in the 1D vector NLS equation, a feature that
will be discussed in Section 6.2.3 in relation with experimental results (for details, see Ref. [ 140]).

6.2.1. Local invariants and local equilibrium states
The dimensionless 1D NLS Eq. (209) accounting for third-order dispersion reads

0,9 = —sd2y —i@d’y + |y >y, (217)
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with the dispersion relation

k(w) = sw? + aw’. (218)

k(w) exhibits an inflection point at the frequency w, = —s/(3&). This frequency plays an important role in the theory and
refers to the zero-dispersion frequency. We note in particular that the frequency components of the wave exhibit different
dispersion properties: Assuming @ > 0, the wave evolves in the normal dispersion regime [9%k(w)/dw? > 0] for those
frequencies verifying w > w,, whereas for v < w, the wave evolves in the anomalous dispersion regime [32k(w)/dw?* < 0].
Without loss of generality, we shall assume in the following that @ > 0. We note that the NLS model (217) has been
considered to study optical rogue waves phenomena [362,379], as discussed in Section 7.5.3.

Wave turbulence analysis

The WT kinetic equation associated to Eq. (217) is given by Egs. (193) and (194), with the dispersion relation (218). Two
integrals in the kinetic equation may be computed exactly owing to the Dirac §-functions, which gives

_ 1 NeNg—wlw; Ng—w; i 1 _ i _ 1
on(w, z) = - 4+ — dwq (219)
3ma| |lw — 1] o + w1 — q| \ Ny Ng—y Ny, Ng—w,

where ¢ = —2s/3&¢ = 2w,. The integrand of this equation exhibits a remarkable property: It is invariant under the
substitution ® — @ = q — w. This peculiar property implies d,n(w, z) = 9,n(w, z), which thus reveals the existence
of the following ‘local’ invariant

J(w) =n(w, z) —n(q — w, 2). (220)

This invariant is ‘local’ in the sense that it is verified for each frequency w individually, d,J(w) = 0. It means that the
subtraction of the spectrum by the reverse of itself translated by ¢ = 2w,, remains invariant during the whole evolution
of the wave. The invariant (220) finds its origin in the following degenerate resonance of the phase-matching conditions: A
pair of frequencies (w, ¢ — w) may resonate with any pair of frequencies (', ¢ — '), because k(w) + k(q — @) = sq*/3
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does not depend on w. The invariant J,, may thus be used to derive the following kinetic equation governing the evolution
of the averaged spectrum n(w, z)

1 o\ltw T Jo)tw w1~ Jo 1 1 1 1
uni.z) = 5 [ Rl dot o ) (L SR
37T|O(| |w—w1||w+w1—Q| N, ngy _ju) Ny, Ny, _.]wl

The kinetic equation (221) is characterized by a H-theorem of entropy growth, d,S > 0, where the nonequilibrium
entropy reads S(z)/Ty = f log[n,(z)] dw. One may also verify that the kinetic equation (221) conserves the power N, the
energy E and the momentum P. As outlined above in Section 5, the equilibrium spectrum is obtained by looking at the
extremum of S[n,] given the constraints of conservation of E, P and N. Introducing the corresponding Lagrange multipliers
Aj (j = E, P, N) and making use of the variable change @ — q — w, the extremum condition reads 1/n£§c + 1/(n£fjc —Jw) = A,
where A = A:q?/3 + Apq + 2)1y. The important point to underline is that, because of the existence of the local invariant
J the condition of extremum entropy does not involve the frequency, i.e. A does not depend on w. This simply means that
the conservations of the energy E and of the momentum P are implicitly verified as a consequence of the invariant J,,. The
corresponding local equilibrium spectrum thus reads

(221)

loc _-Ii 1 Miw ’
n @L_2+A H—1+<2> , (222)

where we chose the positive sign indetermination in front of the square-root because of the condition of positivity of the
spectrum, ni‘jc (z) = 0. The parameter A is determined from the initial condition through the conservation of the power,
N/To = [n*(®)dw = [n(w,z = 0)dw. Note that the equilibrium spectrum n'(w) verifies the conservations of the
energy E and of the momentum M. We remark that the equilibrium distribution (222) vanishes exactly the collision term of
the kinetic equation, i.e., it is a stationary solution of Eq. (221).

The equilibrium distribution is characterized by a remarkable property: it exhibits a constant spectral pedestal, "¢ (w) —
2/X for |w| > |wy|. This property is confirmed by the numerical simulations of both the NLS Eq. (217) and the kinetic
equation (221), a feature that will be discussed below. We remark in this respect that in the tails of the spectrum (|w| >
|w4|), the invariant J,, vanishes, so that a constant spectrum (n,, = const) turns out to be a stationary solution of the kinetic
equation (221).

Local vs. integral invariants

The equilibrium distribution (222) is of a fundamental different nature than the conventional Rayleigh—Jeans distribution.
In particular, as discussed just above, n'° () is characterized by a constant spectral pedestal in the tails of the spectrum.
The kinetic theory reveals that the difference between n'®(w) and n®(w) is due to the existence of the local invariant J,,.
Let us briefly discuss the ‘local’ nature of the invariant J,, in regard to the integral invariants investigated in Refs. [380-383]
in line with the problem of integrability. First of all, one may note that the possible existence of a set of additional integral
invariants, Q; = f @j(w) n,(z) dw, would still lead to a (generalized) Rayleigh-Jeans distribution,

T
k() + 3 Aigj(w) — w’
i

() = (223)

where ; refer to the Lagrangian multipliers associated to the conservation of Q; [383]. The local invariant J,, thus leads to
an equilibrium spectrum n'°° () of a different nature than the generalized Rayleigh-Jeans spectrum (223).

One may wonder whether the local invariant J,, may generate the existence of integral invariants of the kinetic equation
(221). We can easily verify that Q = f ¢¥w Ny (z) dw is a conserved quantity of (221) whenever ¢, satisfies the following
relation

P T Pg—0; = Pun T Pg—wy» (224)
for any couple of frequencies (w1, ;). In other terms, it is sufficient that ¢, + ¢4, does not depend on w for Q to be a

conserved quantity of (221). A simple way to satisfy this condition is to construct ¢,, as follows, ¢, = @, — @q—e. In this
way, regardless of the particular choice of the function ¢,,,

Q= / (60 — Pr-0) 10(2) do, (225)

is a conserved quantity of the kinetic equation (221). These considerations show that the existence of a local invariant (J,,)
may generate an infinite set of integral invariants Q.

6.2.2. Numerical simulations

We analyze the anomalous thermalization process by performing numerical simulations of both the NLS Eq. (217) and
of the corresponding wave turbulence kinetic equation (221). The evolution of the spectrum of the field is essentially
characterized by two stages. In the following we analyze the two stages separately.
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Fig.48. Anomalous thermalization of incoherent waves: First stage of the spectral evolution obtained by integrating numerically the NLSE Eq. (217) (blue)
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reader is referred to the web version of this article.)

Source: From Ref. [384].

First stage: Formation of the spectral shoulder

Typical evolutions of the spectrum of the field are reported in Fig. 48 for two different values of the parameter &. We
remark in Fig. 48 that for small propagation lengths (typically z < 200) the high-frequency tail of the spectrum does not
exhibit any significant spectral broadening, whereas in the low-frequency part a broad spectral shoulder emerges [379],
which is then preserved for long propagation lengths (Fig. 48 left column). Note that this asymmetric spectral evolution
preserves the momentum (barycenter) P of the spectrum. For small values of the parameter « (left column of Fig. 48), a
quantitative agreement is obtained between the numerical simulations of the NLS Eq. (217) and the WT kinetic equation
(221). We underline that such a quantitative agreement is obtained without any adjustable parameter. This good agreement
is corroborated by the fact that the NLS Eq. (217) conserves, in average, the invariant J,,, as illustrated in Fig. 49(a), in which an
average over 50 NLS spectra (from z = 2500 to z = 2550) has been realized. Besides such a quantitative agreement, we note
in the second column of Fig. 48 that an appreciable discrepancy between the NLS evolution and the kinetic evolution arises as
the parameter & increases. The origin of such discrepancy has been studied in Ref. [384] through the analysis of an improved
criterion of applicability of the WT theory [51,385,73]. In substance, as the parameter & increases, a significant amount of
power of the wave evolves in the neighborhood of the zero dispersion frequency, @ ~ w. In this region, nonlinear effects
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Fig. 50. Anomalous thermalization of incoherent waves: Spectrum of the wave obtained by solving numerically the NLS Eq. (217) (blue) and the kinetic
equation (221) (red), for the same conditions as in Fig. 48 (left column) but in the anomalous dispersion regime, s = —1 (z = 200, @ = 0.05). The green
dashed line represents the initial condition (z = 0). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Source: From Ref. [384].

dominate dispersive effects, which invalidates the kinetic approach. Note that, despite such discrepancy, the invariant J,, is
still preserved by the NLS evolution, as illustrated in Fig. 49.

Let us note that a spectral evolution similar to that discussed in Fig. 48 is obtained by setting the carrier frequency of the
wave in the anomalous dispersion regime. This is illustrated in Fig. 50, which reports the spectrum of the field obtained by
integrating numerically the NLS Eq. (217) in the same conditions as in Fig. 48 (left column, @ = 0.05), except thats = —1.
As expected, in this case the deformation of the spectrum is reversed, so that the spectral shoulder emerges in the normal
dispersion regime (i.e. for o > w,). The fact that the system is not sensitive to the sign of the dispersion coefficient (s) is
consistent with the kinetic equation (221), which globally does not depend on the sign of the dispersion coefficient s. We
note in Fig. 50 that a good agreement is obtained between the NLS wave evolution and the kinetic evolution. We also verified
that, as discussed in the framework of SC generation in Section 5.4, the weakly nonlinear regime considered here prevents
the formation of robust coherent structures, such as ‘quasi-soliton’ solutions of the NLS Eq. (217) [47].

Let us now show that the invariant J, provides a simple qualitative interpretation of the asymmetric deformation of
the spectrum discussed in Fig. 48. For this purpose, one should consider that, in general, the natural tendency of a nonlinear
wave is to generate new frequency components in the tails of its spectrum, which thus leads to a lowering of the central part
of the spectrum. In the particular case considered here, the lowering of the spectrum is constrained by the existence of the
invariantJ,,, because n,, = J,,+n¢—, > Jo,. It turns out that the spectrum tends to approach the spectral profile of J,, for those
frequencies verifying J,, > Oi.e., n, =~ J, forw > q/2.Making use of the substitution w« — q— w, the above expression reads
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Fig. 51. Anomalous thermalization of incoherent waves: (a) Second stage of the spectral evolution obtained by integrating numerically the NLSE Eq. (217)
(blue) and the kinetic Eq. (221) (red) at z = 20 000 for & = 0.05 (s = +1) (a). (b) Numerical simulations of the kinetic equation (221) showing the spectral
profile n(z, w) at different propagation lengths z: A constant spectral pedestal emerges in the tails of the spectrum (& = 0.05). The spectrum slowly relaxes
towards the equilibrium state n'® (w) given by Eq. (222) (blue). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Source: From Ref. [384].

Ng—w = —Ju, because J;_,, = —J,. For the frequencies w < q/2, we thus obtainn,, = J,, + ng—, = 0, i.e. the field essentially
exhibits a small amplitude constant spectrum. In summary, in the normal dispersion regime (v > w,), the spectrum evolves
towards J,,, while in the anomalous dispersion regime (v < w, ) the spectral amplitude is small and almost constant. This
provides a simple interpretation of the emergence of the spectral shoulder discussed in Fig. 48, which characterizes the first
stage of the spectral evolution.

Second stage of the numerical evolution: Formation of a constant spectral pedestal

The second stage of the spectral evolution of the wave is characterized by the emergence of a constant spectral pedestal
in the far tails of the spectrum. This is illustrated in Fig. 51, which reports the numerical simulations of the NLS Eq. (217) and
of the kinetic Eq. (221) for long propagations. Let us note the remarkable agreement between the NLS wave equation and
the kinetic equation for a very long propagation (z = 20 000), and down to ~10~% in the tails of the spectrum. We see that a
constant spectral pedestal progressively emerges as a result of two fronts that propagate in opposite directions in frequency
space, and symmetrically with respect to the zero dispersion frequency, w, = q/2. Such a symmetric propagation of the
two fronts may be interpreted as a consequence of the degenerate resonance discussed above through the invariant J,, [see
Eq. (220)], simply because the pairs of frequencies (wj, ¢ — ;) involved in the conversion (w1, ¢ — w1) = (w2,  — wy) are
always symmetric with respect to w,. It turns out that the two fronts propagate with the same velocity in frequency space,
although they are asymmetric with respect to the carrier frequency of the wave, i.e. ® = 0.

Constant spectral pedestal of the local equilibrium state

As discussed above in the framework of the local equilibrium distribution (222), a peculiar property of n* () is precisely
the fact that it exhibits a constant spectral pedestal, n'“(w) — 2/ for || > |w,|. The numerical simulations of both
the NLS Eq. (217) and the kinetic equation (221) thus confirm that the wave slowly relaxes towards the local equilibrium
spectrum given by Eq. (222). Note that a complete relaxation of the simulations towards the exact analytical expression
(222) cannot be demonstrated in practice, simply because the numerical schemes used to solve the NLS equation and the
kinetic equation break down as the two symmetric fronts approach the frequency cut-off w, associated to the numerical
discretization of the equations. In this way, the analytical expression of the equilibrium distribution should be regarded as
the asymptotic evolution to which the wave spectrum tends to evolve.

The local equilibrium spectrum (222) also provides physical insight into the long term evolution of the field. Indeed,
we may notice in Fig. 52 that n(w) exhibits a lateral dip for @ < w,, i.e. into the anomalous dispersion regime. Such a
spectral dip is in fact reminiscent of the spectral shoulder generated in the first stage of the evolution discussed in Fig. 48.
The central frequency of the spectral dip precisely corresponds to the frequency in which the invariant J(w) reaches its
minimum value, a feature that is illustrated by various different examples in Fig. 52. Note also that, for very small values of
a, we observed a discrepancy between the kinetic [Eq. (221)] and the NLS [Eq. (217)] evolutions. We observed in this case a
negligible contribution of E5 with respect to E,. This means that third-order dispersion becomes negligible and the NLS Eq.
(217) tends to recover the integrable scalar NLS equation, whose dynamics will be discussed in Section 6.3.

6.2.3. Anomalous thermalization in the vector NLS equation

To conclude this discussion, we remark that local invariants as well as the associated process of anomalous thermalization
can be found in different types of nonintegrable model equations. In particular, they have been identified in the vector NLS
equation in the particular case where the dispersion coefficients coincide [140]. Indeed, when the dispersion coefficients
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Source: From Ref. [384].

of the vector NLS equation coincide, the WT kinetic equations reveal the existence of a local invariant which is simply the
sum of the two spectra of the two waves involved in the vector NLS equation, J(w) = ny(w, z) + ny(w, z). In complete
analogy with the scalar NLS equation with third-order dispersion, the existence of this local invariant finds its origin in
degenerate resonances: In the particular case where the dispersion coefficients of the vector NLS equation coincide, the
resonant conditions of energy and momentum turn out to be trivially satisfied. The existence of the local invariant predicts
an irreversible evolution of the coupled random waves towards local equilibrium states, whose structure is analogous to the
local equilibrium state discussed above for the scalar NLS equation. The numerical simulations of the vector NLS equation
with random waves confirm the existence of the irreversible relaxation process towards the local equilibrium states. A
quantitative agreement between the NLS simulations and the analytical expression of the local equilibrium states has been
obtained, without using adjustable parameters [140].

Experimental results

We briefly comment here some experimental results in optical fibers aimed at providing some signatures of this process
of anomalous thermalization (for more details see [140]). Two different incoherent waves with left- and right-handed
circular polarization are launched in an isotropic fiber of length L = 1.6 m. In this experiment, light propagation is described
by a set of two coupled NLS Eq. (186) with identical group velocities, u; = u,, and group-velocity dispersion coefficients,
B1 = B,. The experiment is aimed at observing the mutual interaction of two incoherent waves whose initial spectra have
very different width (see Fig. 53(a)).

In the particular limit in which the two waves have the same power, N; = N,, the process of anomalous thermalization
predicts an irreversible evolution towards a local equilibrium state characterized by two identical spectra for the two waves,
ni(w) = n)'(®) = (n1(w,z = 0) 4+ ny(w, z = 0))/2 [140]. The black line of Fig. 53(b) represents the output spectrum
ni(w, z = L) when ny(w) = 0. When the wave with a broad spectrum (1, (w) blue curve in Fig. 53(a)) is launched inside the
fiber, the output spectrum n;(w) broadens (red curve Fig. 53(b)). This constitutes a signature of the existence of a mutual
interaction between the two incoherent waves. However, the experiment involves several difficulties.

As discussed above in Section 5.5, stimulated Raman scattering is unavoidable in optical fibers and prevents the system
from reaching the local equilibrium state predicted by the WT theory. It should be noted that numerical simulations of
the vector NLS equation neglecting the Raman effect confirm the process of anomalous thermalization towards the local
equilibrium state, nj’(w) = n3'(w) [140]. However, considering the range of experimentally available parameters, the
system does not relax towards the expected local equilibrium spectra of the WT theory, i.e., n{!(w) = nj!(w) # (m1(w, z =

0)+ny(w,z = 0))/2. Indeed, in order to keep the isotropy of the fiber, one needs to use a short fiber length and thus a high
pump power, so that the experiments were performed far from the weakly nonlinear regime of propagation. We note in this
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respect that propagation of a single wave in the fiber is well described by the (integrable) 1D NLS equation and the optical
spectrum undergoes a significant broadening in the nonlinear regime of propagation [386]. Comparing the initial spectrum
(red in Fig. 53(a)) and the output spectrum (black in Fig. 53(b)), such spectral broadening induced by self-phase modulation is
clearly visible. Note that a generalized WT approach for the 1D scalar NLS equation will be discussed in Section 6.3 to describe
the evolution of the incoherent wave in the weakly nonlinear regime. It turns out that the experimental observation of the
process of anomalous thermalization still constitutes an open challenging problem. We refer the reader to Ref. [140] for
details concerning this process of anomalous thermalization for the vector NLS equation and a detailed presentation of the
corresponding experimental setup.

6.3. Influence of second-order dispersion: Integrable limit

In this section we consider the case where the dispersion relation of the NLS equation is truncated to the second-
order, so that the equation recovers the completely integrable NLS equation. This integrable equation is known to have
a class of special solutions called bright and dark solitons, which are sustained in the anomalous (focusing) and normal
(defocusing) dispersion regimes respectively. During the past fifty years, the question of the interaction among solitons
has been extensively studied by using the method of the inverse scattering transform (see, e.g., [387]). From a different
perspective, the formation and the dynamics of shock-waves in the defocusing regime have been studied in different
experimental circumstances (see, e.g., [102,103,200]). The evolution of a dense gas of uncorrelated NLS solitons has been
also examined in Ref. [388], in which a general method to derive kinetic equations describing the evolution of the spectral
distribution function of solitons has been proposed.

As discussed in the introduction section (Section 1.2.4), the non-integrability of the model equation is usually considered
as a prerequisite for the applicability of WT theory, because it implies a process of irreversible diffusion in phase space
that is consistent with the formal irreversibility of the kinetic equation. On the other hand, the dynamics of integrable
systems is expected to be essentially periodic in time, reflecting the underlying regular phase-space of nested-tori [389].
This is consistent with the fact that when one applies the conventional WT procedure to the integrable NLS equation, one
obtains that all collision terms in the kinetic equation vanish identically at any order [390]. Accordingly, the conventional
WT procedure predicts that the spectrum of a weakly nonlinear wave does not evolve during the propagation. We
note in this respect that accurate experiments were performed in optical fibers since 2006 [386], which revealed that a
significant evolution of the spectrum of the wave occurs beyond the weakly nonlinear regime of propagation. This issue was
subsequently addressed in Refs. [361,142], in which a generalized WT kinetic equation was proposed by considering that the
fourth-order moment of the field is not necessarily a stationary quantity. It is important to note that similar generalizations
of the WT kinetic equation were originally developed in the context of hydrodynamic waves (see [391] for a review), and
are still important when one considers the early stage of the evolution of the turbulent system, see, e.g., [392]. Contrary
to the conventional WT kinetic equation, the collision term of such generalized WT equation does not vanish, but relaxes
rapidly to zero. In spite of such a fast relaxation, the spectrum of the field can exhibit significant changes depending on
the initial conditions. Considering Gaussian-shaped initial conditions, the evolution of the spectrum is characterized by
a rapid growth of the spectral tails, which subsequently exhibit damped oscillations, until the whole spectrum ultimately
reaches a statistically stationary state. The generalized WT kinetic equation provides an analytical expression of the damped
oscillations, which is found in agreement with the numerical simulations of both the NLS and kinetic equations [142].

We remind that the applicability of the generalized WT kinetic equation to the description of the dynamics of the
integrable NLS equation is constrained by the usual assumption of weakly nonlinear interaction. A rigorous mathematical
treatment of the evolution of the incoherent wave beyond this weakly nonlinear regime would require the application of
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the inverse scattering machinery (see, e.g., [393-395]), a feature which is also of interest considering the recent Hanbury
Brown and Twiss experiment [396,397].

6.3.1. Generalized wave turbulence kinetic equation
We consider the 1D integrable NLS equation

10, = =59y + [V 2y, (226)

where s = sign(f,). For convenience, we adopt here a different normalization with respect to that used above. The time
variable t has been normalized to 7y = 1/Aw, where Aw denotes the initial spectral width of the incoherent wave [for a
Gaussian spectrum, n,, = ng exp(—w?/Aw?), Aw denotes the half-width at 1/e of the spectrum]. The space variable z has
been normalized with respect to the linear dispersion length Ly = 2/(8, Aw?), while the field amplitude v (z, t) is expressed
in units of 1//y Ly, where we recall that y denotes the nonlinear Kerr coefficient. The variables can be recovered in real
units through the transformations z — zLg, t — ttpand ¥ — ¥ //yLa.

In order to derive the generalized WT Kkinetic equation, we consider the evolution of the second-order moment,
(1}(2, w)V*(z, w3)) = Ny, (2) §(w1 — wy), and of the fourth-order moment

(¥ (2, 00V (2, 0)V* (2, 03) V™ (z, wa)) = ]33 (2) $(1 + wr — @3 — wa), (227)

where we recall that 1/7(2, w) = \/% f Y(z,t) exp(iwt) dt. Following the standard procedure to derive the WT kinetic

equation (see Appendix A.7 in the appendix), one obtains the following coupled equations for the evolutions of the second
and fourth-order moments

Ay, (2) = _% f f f Im[J;5]8(w1 + 0 — w3 — ws) dwydwsdwy (228)

%I (2) +iAk])S = —% Q[n] (229)
where

Q@[N] = g, (2N (2) N0y (2) + Ny (2N (2)N0, (Z) — Ny, (2) Ny (295 (2) — Ny, (2)N, (2)N,(2), (230)

and Ak = k(w1) + k(w,) — k(ws) — k(ws), k(w) = sw?. The solution to Eq. (229) reads
H z
jf’;‘(z) :]13‘;(2 = 0) exp(—iAkz) — L / Q[n(z")] exp[—iAk(z — z')]dzZ’. (231)
. . 7 J

As discussed in Appendix A.7, the usual way to proceed at this point is to consider that the dominant contribution to ]13”4(2)
arises from the phase-matched terms, Ak = 0. For Ak # 0, the contribution of the fast oscillating function exp(—iAkz) is
considered as being unessential for propagation distances larger than 1/ Ak. With these assumptions, one obtains the usual
WT kinetic equation (193) and (194). Now, it is easy to verify that, because of the 1D geometry and the quadratic dispersion
relation k(w) = sw?, the Dirac §-functions involved in the usual WT equation lead to a vanishing collision term. Indeed,
the 1D integrable NLS equation only permits trivial interactions among frequency components i.e., the phase-matching is
degenerate w3 4 = w1 . This discussion reveals that a natural way to describe an evolution of the spectrum, d,n,(z) # 0,
is to take into account non phase-matched interactions, i.e., Ak # 0. Hence, the corresponding generalized WT kinetic
equation is obtained by the substitution of (231) into Eq. (228)

Oy, (2) = %/ dz’ /// Q[n(z)] cos[Ak(Z' — 2)] 8 (w1 + wy — w3 — w4) dwydwsdws. (232)
0

We note the important point that, because of the presence of the cosine function, the collision term of this kinetic equation
no longer vanishes, despite the degenerate phase-matching interaction.

6.3.2. Irreversible relaxation to stationary state

We present here numerical simulations of the NLS Eq. (226) and of the kinetic equations. The NLS equation has been
integrated numerically with periodic boundary conditions and a standard pseudo-spectral step-adaptive numerical scheme.
As usual, the initial condition is characterized by a Gaussian spectrum with random phases uniformly distributed between
0 and 2. The spectra are computed by performing an averaging over an ensemble of 100 numerical integrations of the NLS
Eq. (226).

The numerical simulations of the NLS Eq. (226) reveal that the spectrum of the incoherent wave reaches a statistically
stationary state after a transient stage, whose duration and amplitude critically depend on the shape of the spectrum
considered in the initial condition. The most significant evolutions are observed when the tails of the initial spectrum decay
faster than exponentially (i.e., nS) = npexp(—|w/Aw|*) with « > 1). This is illustrated in Fig. 54 that shows the spectra
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Fig. 54. Irreversible relaxation to stationary state in the integrable NLS equation: The averaged spectrum n,,(z = 1) plotted in black line has been obtained
by integrating numerically the integrable NLS Eq. (226) (an average over 100 realizations of the initial noise has been taken). The spectrumn,, (z = 1) plotted
in red line is obtained from the numerical integration of the coupled equations (228) and (229). The spectrum n,(z = 1) plotted in blue line is obtained
from the numerical integration of the coupled equations (235). The initial Gaussian spectrum n,, (z = 0) is plotted in dashed black line. Simulations plotted
in (a) correspond to the weakly nonlinear regime, |[U/E| ~ 0.05 (np = 0.1, s = +1). Simulations plotted in (b) correspond to a slightly nonlinear regime,
|U/E| >~ 0.5 (ng = 1, s = +1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Source: From Ref. [142].

(black lines) computed with the following initial Gaussian spectrum (dashed black lines) ng) = ng exp(—w?). We recall that
with the adopted normalization, the half-width Aw at 1/e is unity, while the variable ng is an important parameter which
measures the amount of nonlinearity in the system, ng = 2./7Lg/Ly.

As illustrated in Fig. 54, the simulations reveal the existence of an irreversible evolution of the spectrum towards a
statistically stationary state. It is important to note that this relaxation process is very short and occurs over a propagation
distance in the range of 0.1L;. It is also worth-noting that the central part of the spectrum does not exhibit significant
changes, in contrast with the tails of the spectrum, which tend to approach an exponential decay. Let us emphasize that the
power carried by the frequency components lying in the wings of the spectrum increases by several orders of magnitude.

We also report numerical simulations of the coupled kinetic Eqs. (228) and (229). We note in Fig. 54 that Eqgs. (228)
and (229) describe the evolution of the spectrum in a quantitative way for various different values of the parameter ng
(see the spectra plotted in red lines in Fig. 54). As previously mentioned, ng reflects the amount of nonlinearity in the
system, so that changes in ng are associated with changes in the ratio between the nonlinear and linear contributions to
the Hamiltonian [we remind that H = E + U, E (U) being the linear (nonlinear) contribution]. Considering the weakly
nonlinear regime |U/E| >~ 0.05, Fig. 54(a) shows that the simulations of Eqs. (228) and (229) are in quantitative agreement
with those of the NLS equation over more than 20 decades. As shown in Fig. 54(b), this quantitative agreement is preserved
over ~15 decades even beyond the weakly nonlinear regime, |U/E| >~ 0.5. Whatever the interaction regime explored in the
simulations (i.e., from |[U/E| ~ 0.01 to [U/E| ~ 1), the central part of the spectrum that carries the essential of the power
of the incoherent wave is not significantly modified during the propagation.

In the following, we make use of this numerical observation that the spectrum of the incoherent wave only slightly
evolves and then we assume that the term Q[n(z)] in Eq. (232) can be approximated by its initial value at z = 0. The
generalized WT Kkinetic equation then reduces to the simpler form

1 sin(Akz)
3znw1 (Z) = ; /// Q[n(z = O)] Tk 8(6()1 + wy — w3 — a)4) dwzdw3dw4. (233)

If z > 1/Ak, the function sin(Akz)/Ak tends to the Dirac §-function, w8(Ak), so that the collision term vanishes, as
discussed above. However, as long as z ~ 1/ Ak, non-phase-matched interactions among spectral components cannot be
neglected. The collision term in Eq. (233) does not vanish and thus describes an evolution of the spectrum. Eq. (233) can be
further simplified by performing the integration over w,

in(Ak.
SINAKZ) s,

1
0Nw, (2) = ;/ Mlnz = 0)] —=

(234)

with Ak = k(w) + k(ws + ws — @1) — k(ws) — k(ws) = 25(w1 — w3)(w; — wq), while M[n(z = 0)] = n® n® n® +

w1 w3 “wy
11w3nw4nw3 Fog—o nw1 nw3nw3 tog—wy nw1 nw‘lnw3 twg—wy WIth nwj = n,,(z = 0). Observing that two terms among these
four terms cancel each others, we obtain
sin(Akz) 0 sin(Akz)
0N, (2) = ”w3”w4”w3+w4 ot Ak dwsdwy — w3 Ny, VI dwzdws. (235)

This equation has been integrated numerically and the corresponding spectra are plotted in blue lines in Fig. 54. Fig. 54(a)
shows that our approximation is accurate in the weakly nonlinear regime (no = 0.1, [U/E| ~ 0.05). Beyond the weakly
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nonlinear regime (Fig. 54(b) for np = 0.5), the approximation becomes less effective, though a quantitative agreement with
the simulation of Eq. (226) is preserved over ~8 decades.

The simulations of Eq. (235) reveal that the first term in its right-hand side mainly contributes to changes occurring in
the wings of the spectrum, whereas the second term essentially contributes to small changes occurring nearby the center
of the spectrum, w; ~ 0. In the following, we restrict the analysis to the study of the evolution of the spectral wings,
w1 > Aw, and thus consider solely the contribution of the first term in Eq. (235). If the power spectrum is initially Gaussian
[n), = noexp(—w?)], the dominant contributions from nf_n? nd . - in the first term of Eq. (235) are obtained for
w3 ~ Wy >~ w1/3, w; >~ —wq/3. This can be easily seen by introducing the variables x = w3 — w;/3 andy = w4 — w1/3,
sothatn) nd no ., ., =ngexp[2(x* +y* 4 xy)] exp(—w7/3), which corresponds to a peaked function localized around
x = y = 0. With an initial Gaussian spectrum, the power growth rate carried by a spectral component at a frequency
w1 falling in the tails of the spectrum is determined by the interaction among spectral components at frequencies +w;/3
falling in the center of the Gaussian spectrum. This result is not intuitive: The evolution of the component at a frequency
w1 is not driven by degenerate four-wave mixing among the pairs of frequencies (0, 0) and (—w1, +w1). Indeed, the
dominant contribution corresponds to degenerate four-wave mixing among the pairs of frequencies (+w1/3, +®1/3) and
(—w1/3, +w1). Note that this result is valid for any initial spectrum with an hyper-Gaussian shape, i.e., ng) = ng exp(—w?P),
where p > 0 is an integer.

Making use of a common approximation for integral involving oscillating functions, we consider that the term Ak in the
denominator of the first term of Eq. (235) can be assumed constant (Ak = Ssa)f /9), which gives

9 .
3Ny, (2) a7 // N T sy SIN[2(@1 — @3) (1 — 04)2] dwsdawy. (236)
1

Keeping in mind that ng) = ng exp(—w?), this integral can be computed analytically. However the corresponding expression
is complicated. It can be further simplified by approximating the expression of Ak in the sine function by Ak >~ 4sw (w4 —
w3) /3, which gives

0,Ny, (2) =~ ng 9 ex w% 1+ 82° sin Swfz (237)
cA L% - «/§7‘L’ Sw% p 3 9 9 '

Eq. (237) describes the growth of frequency components found in the tails of the spectrum (w > Aw) with propagation
distance z. For the sake of clarity, we rephrase its expression in physical units

2 3A 2 9 2 8 ZA 4.2 8 2
2Ny, (2) =~ A exp | — 9 (14 prAwz sin parz (238)
V3r  8Bwd 3A0? 9 9

with 8 = B,/2.

This equation shows that a spectral component in the wings of the Gaussian spectrum grows with the propagation
distance z. More precisely, Eq. (238) shows that n,, will reach a steady value after a transient characterized by damped
oscillations. This phenomenon is illustrated in Fig. 55, that shows the decay of the oscillations of two different spectral
components. As illustrated in Fig. 55, there is a good quantitative agreement between the results obtained from the
numerical integrations of the NLS Eq. (226) and the plot of Eq. (237). We remind that the NLS simulations refer to an averaging
over 100 realizations and that the curves plotted with black lines in Fig. 55 represent an averaged result. Note also that the
decay of the oscillations plotted in Fig. 55 correspond to the simulation reported in Fig. 54(a).

As revealed by Eq. (237), the spatial period A ~ 97/ (4a)%) of the decaying oscillations is inversely proportional to
a)f In dimensional units, the expression of the period reads A ~ (97 /4)(Aw/w1)*Ly. We remind that these oscillations
find their origin in transient and non-phase-matched interactions among frequency components of the incoherent wave.
The period of the oscillations is determined by the fact that the spectral component at w; essentially interact with the
frequency components w3 ~ w4 >~ wi1/3 and w; >~ —w,/3. In these conditions, the dominant spatial frequency Ak is
around Ak = 850)%/9. The amount of damping in the oscillations is given by the Gaussian function in Egs. (237) and (238).
This estimate reveals that the damping length measuring the propagation distance needed for the wave system to reach its
steady state scales as 1/(Bw Aw).

Influence of the sign of the nonlinearity

Let us finally briefly comment on the influence of the sign of the nonlinearity on the dynamics of the spectrum. As
discussed above, the WT kinetic equation is inherently unable to distinguish the normal or anomalous dispersion regime.
In the weakly nonlinear regime (|[U/E| < 1), coherent structures such as solitons do not emerge from the propagation of
the incoherent wave. Moreover, in this regime, the typical MI frequencies are usually much smaller than the initial spectral
width of the incoherent wave, so that MI results to be suppressed by wave incoherence. We have checked this from the
simulations of the NLS Eq. (226) and verified that the averaged spectra reported in Fig. 54(a) do not depend on the sign of s
in the weakly nonlinear regime (|U/E| >~ 0.05).

On the other hand, beyond this weakly nonlinear regime (|JU/E| =~ 0.5, see Fig. 54(b)), the averaged spectra at z = 1
do depend on the sign of s. Simulations performed in the anomalous dispersion regime (s = —1) show that n,(z = 1) is
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Fig. 55. Irreversible relaxation to stationary state in the integrable NLS equation: Numerical simulations of the integrable NLS Eq. (226) (black line) and
of Eq. (237) (blue line) showing the decaying of the oscillations of two spectral components taken in the wings of the spectrum plotted in Fig. 54(a). The
initial condition is the Gaussian spectrum plotted in Fig. 54(a) (ny = 0.1, s = +1). In (a), the spatial period A ~ 97 /(4w?) of the decaying oscillations is
close to 1.96 x 1072 for a spectral component at the frequency @ = 6. In (b), the period decreases to A ~ 1.44 x 1072 for a spectral component at the
frequency w = 7. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Source: From Ref. [142].

broader than that plotted in black line in Fig. 54(b) for the normal dispersion regime (s = +1). This feature can be interpreted
from the fact that soliton-like structures and incoherent MI can start to play a role in the anomalous dispersion regime for
|U/E| >~ 0.5. We have checked that the analytical results obtained from the kinetic theory are still in good agreement with
the simulations of NLS Eq. (226) at |U/E| =~ 0.5 (see Fig. 54(b)). In other words, the range of values of the small parameter
|U/E| over which WT theory provides results that are quantitatively correct is wider in the normal dispersion regime than
in the anomalous dispersion regime.

We finally note that it would be interesting to study this nonequilibrium relaxation process of the integrable NLS equation
through the analysis of nonvanishing fluxes of conserved quantities, in relation with Kolmogorov-Zakharov nonequilibrium
stationary solutions discussed in Section 5.1.2. We remark in this respect that, because of the absence of the Dirac §-function
associated to energy conservation in the generalized WT kinetic equation (232), one cannot directly apply the Zakharov
transformation to find nonequilibrium stationary spectra. This interesting issue will be the subject of future investigations.

6.3.3. Experiments

We report in this section experimental results concerning the relaxation process of the integrable NLS equation discussed
here above. The optical fiber setup is reported schematically in Fig. 56. The partially-coherent light source used in
the experiment is a solid-state Nd:YVO4 continuous-wave laser. The laser is linearly-polarized and its central emission
wavelength of ~1064 nm is far from the zero-dispersion wavelength Ao of the optical fiber (Ag ~ 1400 nm), so that third-
order dispersion effects can be neglected. The laser optical power spectrum has a full-width at half maximum (FWHM) of
~0.15 nm (i.e. ~36 GHz). We have analyzed the time evolution of the laser power with a photodiode whose bandwidth is
much greater than the free spectral range Avgsg of the laser cavity (Avgg >~ 150 MHz), and no significant changes in the
laser power on time scales of the order of 1/ Avgsg have been observed. Therefore the laser emits a radiation composed of
approximately 200 longitudinal modes whose phases can be considered as uncorrelated.

The power of the laser light is controlled by adjusting a half-wave plate (HWP1) placed between the Nd:YVO4 laser
and a Faraday isolator. The laser light is launched inside a 1.5 km-long single-mode polarization-maintaining fiber. The
polarization direction of the input light is adjusted along one of the birefringence axes of the fiber by using another half-
wave plate (HWP2). In the experiments, the light wave remains linearly polarized all along the fiber and the extinction
ratio between the two axes is greater than 20 dB. The nonlinear Kerr coefficient of the polarization maintaining fiber is
y =6 W~! km™! and its second-order dispersion coefficient is 8, = 20 ps? km~! at 1064 nm.

The experiment is aimed at investigating the weakly nonlinear regime discussed in Section 6.3, in which only the wings
of the spectrum are modified during the propagation (|U/E| < 1). So far, only the nonlinear interaction regime has been
explored in experiments (|JU/E| >> 1) [386]. In the nonlinear regime, the spectrum of the incoherent wave exhibits deep
changes which affect both the wings and the central part of the spectrum (see Fig. 2 of Ref. [386]). For incoherent light waves
with wavelength around 1 wm and with a typical spectral width of ~1 nm, the nonlinear interaction regime in a standard
single mode fiber typically refers to optical powers of ~1 W [386]. The weakly nonlinear regime explored in Ref. [142]
corresponds to an optical power typically lower than ~1 mW. As illustrated in Fig. 56, the changes occurring in the wings of
the spectrum in the linear interaction regime involve spectral components carrying an optical power that is typically 10
times (equivalently 100 dB) lower than the power of spectral components lying in the center of the spectrum. The possibility
of exploring the linear interaction regime therefore critically depends on the sensitivity and the dynamic range of the optical
spectrum analyzer used in the measurement.

In the experiment, the output end of the polarization maintaining fiber has been directly connected to the optical
spectrum analyzer (Ando AQ6317B). With this experimental setup and using the highest degree of sensibility of the spectrum
analyzer, we have observed changes in the optical spectrum that can be undoubtedly associated to the effects predicted
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Fig. 56. Irreversible relaxation process of the integrable NLS equation: Experiments. (a) Schematic representation of the experimental setup. HWP: Half-
wave plate. OSA: Optical spectrum analyzer. (b) Power spectra recorded in experiments (black lines) and obtained from numerical simulations (red lines)
of Eq. (226). Note that numerical simulations of Eq. (235) give identical results (not represented here, see [ 142]). The narrow spectrum plotted in black line
is the spectrum of the Nd:YVO4 laser launched inside the polarization maintaining fiber. The wide spectrum plotted in black line is the spectrum recorded
at the output of the polarization maintaining fiber. In numerical simulations of the normalized NLS Eq. (226), the initial incoherent wave has a power
spectrum approximated by n?u = n,(z = 0) = np exp(—w*/A%) (A = 0.73,ny = 4.72, 0 = +1). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Source: From Ref. [142].

by the generalized WT theory discussed in the previous section. The optical power measured at the output of the fiber is
of ~12 mW. At this poser level, our experiment corresponds to a nonlinear regime in which |[U/E| >~ 1. To explore the
weakly nonlinear regime, the optical power should be decreased by at least one order of magnitude, but the detection of the
minor changes occurring in the wings of the spectrum would become impossible with the spectrum analyzer used in the
experiment of [ 142].

As predicted by the generalized WT theory, Fig. 56 shows that the power of spectral components falling in the wings of
the spectrum has increased with propagation distance, whereas the central part of the spectrum does not exhibit changes, as
expected from the simulations. We note that the experiment only permits to explore the first stage of the transient regime
corresponding to a monotonic growth of the power carried by spectral components in the tails of the spectrum. In particular,
the damped oscillations of the power of these frequency components have not been observed by using the setup presented
in Fig. 56.

The question of the changes of the statistical properties of an integrable system described by the 1D-NLSE have been also
considered in the context of nonlinear interferometry [396]. Taking a geometry in which an incoherent light wave propagates
along one direction and is free to diffract along another, experiments performed in the strongly nonlinear focusing and
defocusing regimes have evidenced strong changes in the statistics of the incoherent field. Considering an initial incoherent
wave with Gaussian statistics, the probability to record high intensity values is enhanced in the focusing regime while it is
reduced in the defocusing regime [396]. These experimental results have stimulated a theoretical work in which tools of
the inverse scattering theory have been used to describe the changes in the field statistics [397]. Note finally that statistics
of light intensity has been also experimentally and theoretically studied in 1D discrete lattice described by a tight-binding
model [376]. This work revealed the existence of a spontaneous emergence of a correlation between neighboring sites, while
the field correlation takes a universal shape independent of the parameters [376].

7. Recent advances and perspectives

In the first part of this Section we review some recent advances and perspectives of optical WT, in particular with its
study in optical cavities, in relation with condensation-like phenomena and lasers. We remind in this respect that nonlinear
optical systems with feedback and associated phenomenologies, such as pattern formation [398] and cavity solitons [265,
266], have been continuously drawing attention from both the fundamental [399] and applicative [265,266] points of views.

In the second part of this Section we briefly discuss the role of vortices in the thermalization and condensation processes
in relation with the Berezinskii-Kosterlitz-Thouless (BKT) theory, as well as the possible role of coherent phase effects in
the dynamics of incoherent nonlinear waves. Finally, we comment some additional open problems and possible interesting
perspectives for future developments of optical WT.

7.1. Condensation phenomena and lasers

A laser system is known to be characterized by the property of delivering a narrow spectral radiation. However, one
expects the mechanism underlying the generation of such a coherent radiation of a different nature than the thermalization
process underlying wave condensation, as discussed in the conservative (Hamiltonian) limit in Section 5. The essential
difference relies on the fact that a laser system is usually described as a dissipative system driven far from equilibrium
by an external source, while wave condensation discussed above relies on the natural relaxation of a conservative (‘closed’)
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system to thermal equilibrium. Accordingly, wave condensation is characterized by the formation of the Rayleigh-Jeans
equilibrium distribution reflecting the property of energy equipartition among the modes, while laser radiation is usually
expected to exhibit different (Poisson) statistics [2]. In other terms, the nonequilibrium nature of the laser device introduces
crucial differences with respect to the standard equilibrium Bose-Einstein condensation: The steady state of the laser is not
determined by a thermal equilibrium condition, but rather follows from a dynamical balance between the pumping and
losses [399].

Bose-Einstein condensation in optical microcavities

From the experimental point of view, a relation between Bose-Einstein condensation and spontaneous coherence effects
in optical systems has been recently recognized with the so-called Bose-Einstein condensation of exciton polaritons in
semiconductor micro-cavities [400-403,82]. These studies are in contrast with the strongly nonequilibrium regimes of
laser operation observed in a vertical cavity surface emitting laser device [404]. Hence, questions related to common and
different properties of laser operation and photon-polariton Bose-Einstein condensation have attracted strong interest,
with particular attention to the issue of thermalization, see [82] for a review.

It is important to note that the thermalization and the Bose-Einstein condensation of a photon gas have been recently
reported in an optical micro-cavity [405,77,406]. In spite of its bosonic nature, the photon gas involved in blackbody radiation
does not exhibit a Bose-Einstein transition because the number of photons is not conserved due to the interactions of the
photon gas with the cavity walls. In the experiments [405,77] the authors achieve a number conserving thermalization
process by considering a dye-filled optical micro-resonator, which plays the role of a ‘white-wall box’ for the two
dimensional photon gas. In this way the authors report an equilibrium Bose-Einstein phase transition that results from the
thermalization of the photon gas. It should be remarked that the thermalization process is achieved thanks to an external
thermostat—the photons exhibit repeated absorption and reemission processes in the dye molecules, which thus act as
a thermal heat bath reservoir that equilibrates the photon gas to the temperature of the dye molecules. Conversely, in the
passive cavity configuration considered below in Section 7.3, the process of thermalization solely results from the four-wave
interaction mediated by the intracavity Kerr medium [78].

As a matter of fact, the relation between lasing and Bose-Einstein condensation is still the subject of vivid debate—
we refer the reader to Refs. [325-327,82] for some recent discussions on this important problem. In the following we
briefly comment some other experiments, which have pointed out interesting analogies with optical wave conden-
sation.

Condensation-like phenomena

An important analogy with condensation has been discussed in the dynamics of active mode-locked laser systems in
the presence of additive noise source [76,407,327]. On the basis of their previous works [408,409], the authors show that
the formation of coherent pulses in actively mode-locked lasers exhibits in certain conditions a transition of the laser
mode system to a light pulse state that is similar to Bose-Einstein condensation, in the sense that it is characterized by
a macroscopic occupation of the fundamental mode as the laser power is increased. The analysis is based on statistical light-
mode dynamics with a mapping between the distribution of the laser eigenmodes to the equilibrium statistical physics of
noninteracting bosons in an external potential.

Another analogy with condensation has been pointed out to interpret the radiation emitted by a random laser system
in[74]. Random lasers are a rapidly growing field of research, with implications in soft-matter physics, light localization, and
photonic devices. In Ref. [74] the analogy with condensation is supported by the fact that the random laser linewidth is ruled
by a nonlinear differential equation, which is the equivalent of the Schwalow-Townes law in standard lasers, and is formally
identical to the NLS (Gross-Pitaevskii) equation with a trapping potential. In this way, the random laser emission has been
related to a condensation process of several wave resonances in the presence of disorder, the distribution of their decay
times playing the role of a temporal trapping potential. An analogy has thus been pointed out between the simultaneous
spectral and temporal narrowing with the number photons in the random laser and the spectral and spatial narrowing that
typically characterizes condensation.

7.2. Wave turbulence in Raman fiber lasers

The dynamics of Raman fiber lasers has been also shown to exhibit some interesting analogies with condensation-like
phenomena [75,80,81]. In this section we discuss in more detail these systems in light of the WT theory that has been
developed to describe their dynamics. We remark in this respect that Raman fiber lasers are the only example of laser
systems whose dynamics has been described by the WT kinetic equation. We refer the interested reader to Ref. [79] for an
overview on the WT description of Raman fiber lasers.

7.2.1. Spectral and statistical properties of Raman fiber lasers
Raman fiber lasers are reliable and efficient light sources that have attracted a great interest in recent years because of
the wide range of their potential applications and also because they constitute an important example of nonlinear photonic
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device that can be used for the investigation of some new concepts in nonlinear science [410,81]. Raman fiber lasers exploit
the well-known nonlinear process of stimulated Raman scattering in silica fibers [ 138]. Pumping a conventional single mode
fiber with a germanium doped silica core, the Raman process provides gain around a Stokes wavelength that is shifted by
~14 THz from the pump wavelength [411]. Oscillation of the Raman fiber laser is achieved by placing the Raman active fiber
inside a cavity that is typically formed by a set of two fiber Bragg grating mirrors located at each end of the fiber. As the Raman
gain curve is rather broad, the fiber laser has the ability to operate at some discrete wavelengths that can be selected over
wide wavelength ranges, including the telecommunication window around 1.5 wm. Moreover several frequency conversion
cascades can also be exploited in nested cavities so as to reach longer Stokes wavelengths [412,413].

Although ultrashort distributed-feedback [414] cavities or ultralong (~100 km) [415,416] cavities have been
demonstrated, standard Raman fiber lasers have a typical configuration in which a single mode fiber having a length of
several hundreds meters is inserted between the two fiber Bragg grating mirrors. The free spectral range of the cavity is
typically of the order of 100 kHz, which is much smaller than the typical laser linewidth (~100 GHz) measured well above
threshold. In other words, Raman fiber lasers are strongly multimode light sources whose output is determined by the
nonlinear interaction among approximately one million longitudinal cavity modes.

Understanding the spectral properties of Raman fiber lasers is a question that has been initially considered of importance
for the optimization of the laser output power [417,418]. By increasing the pump power, the laser optical power spectrum
significantly broadens. Well above threshold, it can become even broader that the reflectivity spectrum of the cavity
mirrors. This spectral broadening phenomenon has first been treated in a phenomenological way by introducing an effective
reflectivity for the cavity output mirror. Using simple single-mode models with only one frequency component for the pump
wave and one frequency component for the Stokes wave, some empirical modifications of the reflectivity coefficient of
the cavity output mirror have proven to provide laser power characteristics close to those experimentally recorded [417].
However this kind of procedure ignores the fundamental multimode nature of the laser operation [418]. Subsequently, the
four-wave mixing process underlying the optical Kerr effect has been identified as being responsible for the phenomenon of
spectral broadening. In this way, several phenomenological treatments of the four-wave mixing process have been proposed
to describe the properties of Random fiber lasers [419,420].

Wave turbulence description of Raman fiber lasers

From a fundamental different point of view, Babin et al. proposed to describe the dynamics of Raman fiber lasers by
making use of the WT theory [410]. In Ref. [410], the Raman fiber laser is modeled as a turbulent system whose optical
power spectrum results from a weakly nonlinear interaction among the multiple modes of the cavity. Performing a mean
field approach in which they assume that the Raman Stokes field does not evolve significantly over one cavity round trip,
the authors of Ref. [410] first establish a differential equation for the evolution of the complex amplitude E, of the nth
longitudinal mode

dE, 1 i . . )
Tt = 5@ = SE(D) = =S yLY Ena(0) ) Enm(DE;_p(6) expif mla® ct). (239)
t 2 2 150 m0

In their approach, the time evolution of E, is determined by the Raman gain g, the dispersion of the fiber, the losses &, of
the fiber and of the cavity mirrors, and the four-wave mixing process. y is the Kerr coupling coefficient and S8 represents
the second-order dispersion coefficient of the cavity fiber. A = 1/7+ = c/2L is the free spectral range of the Fabry-Perot
cavity that has alength L. Gain, losses and dispersive effects occurring inside the whole laser cavity are supposed to influence
the formation of the optical power spectrum through their dependence in frequency-space. In particular fiber Bragg grating
mirrors are considered as spectral filters introducing parabolic losses in frequency space (8, = 89 + 8,(nA)?). Dispersive
effects occurring inside the laser cavity are supposed to be dominantly governed by the second-order dispersion 8 of the
cavity fiber. It must be emphasized that Eq. (239) refers to the discretized version of the one-dimensional NLS equation, in
which gain and losses terms have been added [421]. In other words, the approach developed by the authors of Ref. [410]
amounts to apply a WT treatment to a one-dimensional NLS equation, whose integrability is broken by the presence of gain
and loss terms.

Assuming an exponential decay for the correlation function among the modes, (E,(t)E}(t")) = I,exp(—|t — t'|/71),
Babin et al. derive the following WT kinetic equation that governs the temporal evolution of the intracavity optical power
spectrum [410]

di(2)
i (g — 8(2)I(82) + Spwm (£2), (240)

where I(£2) = (E,E})/A. The mathematical expression of the collision term Sgyy (£2) can be separated into two parts
1(82 — £2)1(82 — $2)[(2 — 21 — §25)
(Bt /T)[1 + (47LB/31:)? 27 23]
and the nonlinear term responsible for four-wave-mixing-induced losses §y; reads
[(1(£2 = §21) + (2 — 25) (2 — 21 — §25) — (2 — 2)I(2 — 1) 4o
Gte/D[1 + (4TLB/31,)222 23]
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O = (J/L)2

. (242)
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Fig. 57. Wave turbulence in Raman fiber lasers: Measured (dots) and calculated (solid curve) intracavity Stokes power spectrum for increasing values of
the pump power Py. The solid line refers to a plot of the stationary solution (243) of the WT kinetic equation (240)-(242).(a) Pp = 0.4 W, (b) Py = 1W, (c)
Py =2W,(d)Py = 3W.
Source: From Ref. [410].

With respect to standard mathematical developments commonly used in the framework of WT theory, the originality
of the treatment made by Babin et al. mainly relies on the introduction of the finite correlation time t. The idea of the
introduction of this parameter stems from radio-frequency measurements of the inter-mode beating spectrum of the Stokes
intensity [422]. These measurements have evidenced that the peaks associated to the beating phenomenon are separated
by the cavity free spectral range and that their widths increase with the intracavity Stokes power. This indicates that there
exist an interesting relation between this phenomenon observable at the level of a few individual modes and the global
phenomenon of spectral broadening that involves a very large number of cavity modes.

A stationary solution of the WT kinetic Eq. (240) has been obtained by Babin et al. in Ref. [410], which exhibits the
following hyperbolic-secant structure

1(2) = e (243)
" cosh(2§2/T")
where I" is the width of the intracavity laser power spectrum. As shown in Fig. 57, the hyperbolic secant shape found from
the WT treatment performed by Babin et al. is in very good agreement with spectra recorded in experiments in which the
fiber laser operates well above threshold. This particular shape of the solution has been observed in a very robust fashion in
several experiments, even in regimes in which the mean field approximation should no longer hold [423].

Although the WT approach developed in Ref. [410] has undoubtedly provided a new insight into the physics of
Raman fiber lasers, some other numerical and experimental works have raised some interesting questions concerning
the applicability of the WT approach to the description of the spectral broadening phenomenon. In particular, numerical
simulations of the mean field equations introduced in Ref. [410] revealed that the shape of the laser optical power spectrum
dramatically depends on the sign of the second-order dispersion coefficient [75]. This feature of importance cannot be
captured by the WT theory, which is inherently insensitive to the sign of the second-order dispersion parameter [75]. As
pointed out in Refs. [424,421], the formation of the Stokes spectrum is also deeply influenced both by dispersive effects and
by the spectral shape of the fiber Bragg grating mirrors used to close the laser cavity. In particular, dispersive effects occurring
at light reflection on the fiber Bragg grating mirrors can be so important that the cavity zero-dispersion wavelength might
be shifted inside the reflectivity bandwidth of the mirrors. This induces an asymmetry in the spectrum which is observed
when the laser operates close above threshold [421].

Statistics of the radiation

The question of the statistics of the Stokes radiation delivered by Raman fiber lasers has also been examined both
experimentally and numerically [75,425,423]. When the Raman fiber laser operates well above threshold, numerical
simulations have shown that the statistics of the Stokes radiation significantly deviates from Gaussianity [425]. It has also
been shown that the statistics of the Stokes radiation varies all along the fiber cavity. In particular, the Stokes wave has
Gaussian statistics just after reflection onto a cavity mirror, but the statistics becomes non-Gaussian as the Stokes wave
propagates inside the cavity fiber [423]. These results about statistical deviations from Gaussianity obviously raise some
questions concerning the applicability of the WT theory to the description of the dynamics of Raman fiber lasers. However
it should be emphasized that numerical simulations presented in Refs. [425,423] rely on a model in which generalized NLS
equations are integrated in an iterative way, in both forward and backward propagation directions. Although this kind of
model provides a quantitative description of the spectral broadening phenomenon, it is not obvious that it describes their
statistical properties in a correct way. The experimental verification of the statistical predictions of iterative models is not
an easy task because the fluctuations of the Stokes field are so fast that it is not possible to record them, even by using
fast detection techniques. This has been circumvented by the introduction of spectral filtering techniques [426,427]. Slicing
the intracavity broadened Stokes spectrum by using highly selective optical filters, high contrast fast fluctuations of Stokes
field are observed by using fast oscilloscope and photodiode. The study of the statistical properties of the radiation recorded
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Fig. 58. Numerical simulations evidencing the laminar-turbulent transition in a Raman fiber laser. The evolution of the laser optical power spectrum is
plotted as a function of number of round trips inside the laser cavity.
Source: From Ref. [81].

experimentally revealed that the Stokes field filtered from the central part of the spectrum has Gaussian statistics. However,
this is not the case when the filtering procedure is applied in the wings of the spectrum. In this part of the spectrum, the
statistics deviates from Gaussianity, with a probability of emergence of rare and intense events significantly higher than the
one defined by the Gaussian distribution [426,427].

7.2.2. Laminar-turbulent transition in Raman fiber lasers

Fast detection techniques have also recently proven to be useful for the observation of a laminar-turbulent transition in a
Raman fiber lasers [81]. The fiber laser designed and used in the new experiments reported in Ref. [81] has been specifically
designed. It is made with dispersion-free ultra-wideband super-Gaussian fiber grating mirrors. Slightly changing the pump
power, an abrupt transition with a sharp increase in the width of laser spectrum has been observed, together with an abrupt
change of the statistical properties of the Stokes radiation. The laminar state observed before the transition is associated to
a multimode Stokes emission with a relatively narrow linewidth and relatively weak fluctuations of the Stokes power. The
turbulent state corresponds to a high multimode operation with a wider spectrum and stronger fluctuations of the Stokes
power. The laminar-turbulent transition has been also studied by means of intensive numerical simulations (see Fig. 58)[80,
75,81]. The theoretical analysis made by the authors of Ref. [81] reveals that, by increasing the pump power, the mechanism
underlying the laminar-turbulent transition relies on the generation of an increasing number of dark (or gray) solitons. This
experimental work opens new fields of investigations, in particular for what concerns the developments of WT formulations
of one-dimensional optical fiber systems.

7.3. Condensation and thermalization in a passive optical cavity

The thermalization and the condensation of a classical optical wave have been discussed in Section 5 in different regimes
in the framework of the WT theory. In this section we show that a phenomenon completely analogous to the conservative
condensation process discussed in Section 5 can occur in an incoherently pumped passive optical cavity, despite the fact
that this system is inherently dissipative. This section is structured along the lines of Ref. [78].

In this section we consider a passive optical cavity pumped by an incoherent optical wave, whose time correlation, t, is
much smaller than the round trip time, t. < 7. In this way, the optical beam from different cycles are mutually incoherent
with one another, which makes the optical cavity non-resonant. As already discussed above in Section 4.6.4, because of this
non-resonant property, the cavity does not exhibit the widely studied dynamics of pattern formation [266,398]. Instead,
the dynamics of the cavity exhibits a turbulent behavior that can be characterized by an irreversible process of thermaliza-
tion towards energy equipartition. A mean-field WT equation is derived, which accounts for the incoherent pumping, the
nonlinear interaction and both the cavity losses and propagation losses [78]. In spite of the dissipative nature of the cavity
dynamics, the intracavity field undergoes a condensation process below a critical value of the incoherence (kinetic energy)
of the pump, which thus plays the role of the control parameter of the transition to wave condensation. The condensate
fraction in the dissipative optical cavity is found in agreement with the theory inherited from the conservative Hamiltonian
NLS equation, without using adjustable parameters [78].

We note an important difference that distinguishes the thermalization and condensation processes discussed here with
those reported in the quantum context in Refs. [405,77]. As discussed above, in these works the thermalization process is
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achieved thanks to the dye molecules, which thus play the role of an external thermostat. Conversely, in the passive cavity
configuration considered here, the process of thermalization solely results from the four-wave interaction mediated by the
intracavity Kerr medium, while the ‘temperature’ is controlled by varying the kinetic energy (degree of coherence) of the
injected pump.

Model of the incoherently pumped passive cavity

We are interested in the transverse spatial evolution of an optical beam that circulates in a passive optical cavity
containing a nonlinear Kerr medium, whose nonlinear response is assumed to be local and instantaneous for simplicity.
We thus consider the usual spatial NLS equation

i,y = —aV2y — y|y Py —isy, (244)

which also accounts for the propagation losses through the parameter 8. As usual z (0 < z < Ly) denotes the longitudinal
spatial coordinate, Ly being the length of the Kerr medium and V2 denotes the 2D Laplacian in the transverse planex = (x, y).
As usual in wave condensation (Section 5), we assume that the Kerr nonlinearity is defocusing (y < 0), so as to guarantee
the modulational stability of the plane wave solution.

The cavity is pumped by an incoherent optical beam of constant intensity Jo = A™! f lom (%)|?dx, where @, (x) is the
amplitude of the pump field injected at the time t = mrt,;, with m the number of round trips, while A denotes the area of
integration (i.e., the typical transverse surface section of the beam). As discussed above, the time correlation of the incoherent
pump is much smaller than the round trip time, t; < 1y, i.e., the longitudinal coherence length of the light is much smaller
than the cavity length. This means that, in a loose sense, the passive cavity does not behave as a resonant ‘phase-sensitive
interferometer’ [428,266], so that the temporal modes of the cavity do not play any role in the dynamics. In this way, the
beam circulating in the cavity and the pump beam are mutually incoherent with each other, and the boundary conditions
are not sensitive to the random relative phase among them

Ymi1(z = 0,%) = /p YUm(z = Lo, X) + V0 g (%), (245)

where ¥, (z, X) denotes the intracavity optical field after m round trips, with 0 < z < Ly, while p and 6 respectively refer
to the reflection and transmission coefficients of the field intensity, o + 6 = 1. Note that, for simplicity, we wrote the
boundary conditions (245) with the assumption that the length of the cavity Ly coincides with the length of the nonlinear
Kerr medium. Because the time correlation (t.) of the pump is much smaller than 7, the pump beam ¢, (x) is uncorrelated
with itself at each round trip, (¢ () ¢ (X)) = 85 ,Jo, where Jo is the average intensity of the pump field and 8}, , denotes
the Kronecker symbol Note that, for the same reason, there is no correlation between the pump and the intracavity field,
(Ym(z = Lo, X) @5, (x)) 2 0. We also assume that the fluctuations of the incoherent pump are statistically homogeneous in
space, i.e., its spatial spectrum is characterized by uncorrelated random spectral phases and the average pump intensity Jo
does not depend on x. Besides the time correlation t., the incoherent pump is characterized by a spatial correlation length in
its transverse surface section, say A.. This correlation length determines the amount of kinetic energy E; in the pump field,
a parameter that will be shown to play a key role in wave condensation.

In order to neglect the temporal dynamics of the cavity, we assume the time correlation of the pump field to be large
enough to neglect dispersion effects through the propagation in the Kerr medium. Note that this condition is compatible
with the non-resonant cavity condition discussed above, t. < 7. For instance, considering a cavity length L in the range of
a meter, we typically have 7, in the range ~10 ns. A time correlation ¢, typically less than 1 ns would thus make the cavity
non-resonant, while chromatic (or modal) dispersion effects in the Kerr material are usually negligible with such large time
correlations [6]. Along the same line, we also assume that the Kerr medium exhibits an anomalous dispersion at the pump
frequency, which guarantees the modulational stability of the 3D monochromatic plane wave.

We note that pattern formation in a cavity longer than the coherence length of the light has been considered in
Section 4.6.4 (see [262,261]). However, in these previous works the nonlinear medium was characterized by an inertial
(photorefractive) nonlinearity, whose response time ty is much longer than the time correlation of the optical field, t.. As
discussed in Section 4, such inertial nonlinearity prevents the thermalization of the incoherent optical wave. To summarize,
the process of cavity condensation investigated here requires the following hierarchy of the relevant time scales, 7z < t.
<L Ty

7.3.1. Mean-field WT kinetic equation

We combine here the WT kinetic equation that describes the propagation of the field through the Kerr medium (0 <
z < Ly) together with the cavity boundary conditions (245) to derive a mean-field WT kinetic equation. We consider
the WT kinetic equation (156) which governs the averaged evolution of the spectrum of the wave at the round-trip m,
nm(z, k1)é(ky — ky) = (fﬂm (z, k1)1/~/,’; (z, ky)). Ignoring for the moment the cavity boundary conditions, the WT equation
reads

0Ny (z, k) = —26n,(z, k) + Coll[n,,(z, k)], (246)

where Coll[n;,(z, k)] denotes the collision term [see Eq. (156)]. As discussed in many circumstances, this collision term
describes an irreversible evolution towards the Rayleigh-Jeans equilibrium distribution (see Section 5.1.2).
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Let us now consider the boundary conditions of the passive cavity. Taking the Fourier transform of Eq. (245) and
neglecting the correlations between the intracavity field and the pump field, we have

Nme1(z = 0,k) = pny(z = Lo, k) + 0] (k), (247)

where the averaged spectrum of the pump field, J(k1)8(ky — ko) = (@m (k1) @5, (k2)), is independent of the round trip m.
The absence of correlation between the intracavity field and the pump field, (¥m(z = Lo, k) @m(k)) =~ 0, is justified by the
assumption t; < T, which makes the pump field uncorrelated with itself at each round trip, (@, (k) @, (k)) = 0ifm # p.

In order to derive a mean-field kinetic equation, we assume that the averaged spectrum of the field, n,,(z, k), exhibits
a slow variation within a single round trip. We note that, contrary to the usual mean-field approach [429,430], we do not
assume that the field amplitude yr,,(z, x) exhibits a slow variation within a round trip—the individual speckles of ¥, (z, x)
can exhibit rapid variations resulting from the incoherent nature of the beam. Actually, the assumption that the averaged
spectrum exhibits slow variations is a rather weak assumption, which implies, in particular, § <« 1, 5L < 1, and a weak
nonlinearity (U/E < 1). Under this assumption, the evolution of the kinetic equation (246) can be averaged over a round
trip. Introducing the slow time derivative of the averaged spectrum, o;7(t, k) = [ny11(z = 0,k) — ny(z = 0,k)]/ 7y,
where t = mt; = mlL/vg, v, being the group-velocity of the optical field in the Kerr material, we obtain a mean-field
kinetic equation

T :71(t, k) = LColl[fi(t, k)] + 0] (k) — I" fi(t, k), (248)

where I = 0+26Ly. Note that the parameter I is related to the finesse of the cavity, which is usually defined as ¥ = 27 /I".
This kinetic equation simply provides an averaged description of the evolution of the wave spectrum under the influence
of the various different effects, namely the nonlinear interaction, the incoherent pump, and both the cavity losses and the
propagation losses. Note that the kinetic equation (248) does not exhibit a H-theorem for the nonequilibrium entropy S[7]
because of the presence of the losses 6 and I".

As discussed above through the usual kinetic equation (246), the collision term in (248) conserves the intensity N and
the density of kinetic energy E of the wave. Then integrating (248) over k, the collision term vanishes, which readily gives
the expression of the temporal evolution of the intensity of the intracavity optical field

0
N(t) = N(0) exp(—TI"t/Tp) + FJO [1—exp(—=I"t/t)], (249)

where Jo = f J(k)dk is the pump intensity. According to (249) the time required to fill the cavity, i.e., the injection time,
Timj = T/, plays an important role and it can also be viewed as the ‘average life-time that a photon spends in the
cavity’ (1/I" being the corresponding average number of round trips). Note that Eq. (249) can be obtained directly from
the boundary conditions (245) and the NLS Eq. (244) without making use of the high finesse assumption underlying the
derivation of the mean field Eq. (248). Eq. (249) reveals that, regardless of its initial value, the intracavity intensity relaxes
exponentially towards a stationary value, N*, determined by the pump intensity and the cavity-propagation losses

NSt = EJO_ (250)
r

Note that when the propagation losses can be neglected (6§ = 0), then the intracavity field intensity coincides with the pump
intensity, N = J,. Proceeding in a similar way, the evolution of the kinetic energy reads,

E(t) = E0) exp(~I"t /) + %E] [1— exp(—It/T0)], (251)

where E; = f w(k) J(k)dk is the kinetic energy of the pump. Accordingly, the energy E(t) relaxes towards the stationary
value

E* = EE (252)
=~ F.

It is important to note that the energy per particle, E; /Jo, provides a natural measure of the amount of incoherence in the
pump field [431]. Then for a fixed value of the pump intensity, Jo, the energy E; will appear as the control parameter of the
condensation process in the cavity.

The kinetic equation (248) explicitly shows that the evolution of the spectrum of the intracavity field is ruled by two
antagonist effects. On the one hand, the linear effects due to the incoherent pumping and to the cavity-propagation losses
enforces the spectrum to relax towards the pump spectrum: Neglecting the collision term, the analytical solution of (248)
gives n(t, k) — % J (k) for t > Tiyj = 7,r/I". On the other hand, as discussed above through the conventional WT equation
(246), the nonlinear Kerr effect described by the collision term in (248) enforces the field to relax towards the Rayleigh-Jeans
distribution (165). We shall see in the next section that in its high-finesse regime (I" < 1), the dynamics of the cavity
is dominated by the collision term in (248), so that the optical field experiences both the processes of thermalization and
condensation.
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Fig.59. Thermalization in an incoherently pumped passive optical cavity: (a) Evolution of the intracavity field intensity N (in units of the pump power J;)
vs. time ¢ (in units of mL/Ly), and corresponding temporal evolution of the kinetic energy E (b) and of the ‘entropy per particle’ /N (c). The red dashed line
in (a) reports the theoretical prediction of the evolution of the intensity given by (249), the red dashed line in (b) the theoretical stationary value (252), E*t.
(d) Averaged spectrum of the field once the cavity dynamics has reached the stationary state (continuous blue line): The tails of the spectrum exhibits an
equipartition of energy among the modes, as described by the Rayleigh-Jeans equilibrium distribution (165), i.e., the power-law n* (k) ~ k=2 (red dashed
line). The dark dashed line reports the spectrum of the incoherent pump, J (k) (characterized by random spectral phases). The parameters are discussed in
the text: A = 642 A2, 1282 modes, L = 8Ly, 0 = 0.001, and o = 1.5625 x ]0’5L51 so that N = 0.8],. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Source: From Ref. [78].

7.3.2. Numerical simulations

The simulations of the incoherently pumped passive cavity have been performed by integrating numerically the NLS
Eq. (244) for the field v, (z, x) from z = 0 to z = Ly. Then we calculate the field v,,1(z = 0, x) by applying the boundary
conditions given by the cavity map (245) at each round trip. For convenience, we normalized the problem with respect to the
pump intensity Jo, the longitudinal nonlinear length L,; = 1/(yJo), the healing length A = \/«aL, and the time 79 = Lo/ vs.
The dimensionless variables are obtained through the transformations z/L, — z; X/ A — X, ¥ //Jo = ¥; ©//Jo = ©;
6[,“’ — §; LO/Lnl d L() and f/'L'o —>t= mLo.

Cavity thermalization

We report in Fig. 59 a typical behavior of the dynamics of the incoherently pumped passive cavity. We considered here
the natural configuration in which an initial empty cavity, ¥,;,—o(z,X) = 0for 0 < z < Ly, is progressively filled by the
incoherent pump. The injected pump wave is characterized by a Gaussian-shaped spectrum with random spectral phases—
the realizations of the random spectral phases are generated independently of each others, so as to make the incoherent
pumps ¢m(x) uncorrelated at each round trip m. In this example we considered a transverse area of A = 64?42 with
1282 modes, a cavity length of Ly = 8L, and a reflection coefficient of & = 0.001. The value of the loss parameter
8 = 1.5625 x 10‘5L;,1 has been chosen in such a way that N = 0.8],. Note that the small value of the transmission
coefficient considered here can be increased by considering a longer cavity [78]. As expected, the cavity exhibits a turbulent
behavior, in which the random field amplitude v, (z, x) is characterized by statistically homogeneous spatial fluctuations.
Because of the high finesse the pump wave slowly enters into the cavity. As predicted by expression (249), the intracavity
intensity N(t) relaxes exponentially to the stationary value N* (see Fig. 59(a)). The kinetic energy E of the field in the cavity
follows a similar behavior, as illustrated in Fig. 59(b), which indicates that the optical field reaches a statistical stationary
state in the cavity. This is corroborated by the evolution of the entropy ‘per particle’, S/N, which has been normalized to the
intensity N (t), so as to compensate for the growth of the ‘number of particles’ in the cavity. Despite the fact that the kinetic
equation (248) does not exhibit a H-theorem, the temporal evolution of S/N is reminiscent of the usual process of entropy
production and saturation encountered in a conservative wave system (see e.g., [431,307,73]). This is due to the fact the
collision term in the kinetic equation (248) dominates the dissipative terms related to the cavity and the propagation losses.
In particular, the saturation of the process of entropy growth reported in Fig. 59(c) corroborates the fact that the turbulent
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Fig. 60. Wave condensation in an incoherently pumped passive optical cavity: (a) Evolution of the fraction of condensed power Ny(t)/N(t) vs. time t (in
units of mL/Ly) corresponding to the simulation reported in Fig. 59. The condensate growth saturates to a constant value N{f /NS, which is in agreement
with the theory given by Eq. (255) (red dashed line). (b) Condensation curve: fraction of condensed power in the stationary equilibrium state Ni' /N*' vs. the
kinetic energy of the pump E;. The condensation curve is computed for a constant value of the pump intensity Jo, while E; is varied by modifying the degree
of coherence of the pump (i.e., its spectral width). The blue solid line is a plot of Eq. (255) and refers to the Bogoliubov’s regime. The black dotted line is a
plot of Egs. (253) and (254) and refers to the WT regime beyond the thermodynamic limit (i # 0), while the dashed black line refers to the thermodynamic
limit [« — 0 in Egs. (253) and (254)]. The red points correspond to the numerical simulations of the NLS Eq. (244) with the cavity boundary conditions
(245). The bars denote the amount of fluctuations in Ni' /N* once the equilibrium state is reached. The arrow in (b) denotes the point corresponding to the
simulation reported in (a), Ng[/N“ ~ 0.51. Parameters are the same as in Fig. 59.

Source: From Ref. [78].

dynamics of the cavity tends to relax towards a statistical stationary state. We recall in this respect that the entropy, by its
definition, is very sensitive to small variations of the tails of the spectrum of the field.

We have analyzed with care the evolution of the spectrum of the field, which has been averaged over the time once the
stationary state has been reached, i.e., for t >> tj,; = 7,¢/I". More specifically, we compared an averaging of 1000 spectra
recorded in different time intervals spaced by 10000 7y, and we did not identify any evolution of the averaged spectrum.
We underline that, in the presence of a high finesse, the spectrum of the field relaxes towards a steady state whose tails
verify the property of energy equipartition among the modes (see Section 7.3.1). This is illustrated in Fig. 59(d), which shows
that the tails of the averaged spectrum exhibit the power-law distribution, n® (k) ~ k=2, inherent to the thermodynamic
equilibrium distribution (165).

Cavity condensation

In the previous paragraph we have shown that, in the presence of a high finesse, the intracavity field exhibits a relaxation
towards an equilibrium state that verifies the property of energy equipartition. As a consequence of this thermalization
effect, we shall see that the optical field exhibits a condensation process that can be described quantitatively by adapting
the theory developed for the purely conservative and Hamiltonian NLS equation [71,73].

We report in Fig. 60(a) the fraction of power, Ny/N, condensed into the fundamental Fourier mode, k = 0, as a function
of time. This evolution of the condensate amplitude corresponds to the simulation of the cavity discussed in the previous
paragraph through Fig. 59. Fig. 60(a) shows that the growth of the condensate fraction Ny/N saturates to a constant value
during the temporal evolution of the cavity. It is interesting to note that the condensate fraction reaches its asymptotic
stationary value (t ~ 5000 in Fig. 60(a)) well before that the cavity reaches its stationary regime (t ~ 40000 in Fig. 59(a)).
We shall see below in Section 7.3.2 that this is due to the fact that, thanks to the large finesse considered here, the
condensate amplitude Ny(t) follows adiabatically the corresponding equilibrium value determined by the instantaneous
intensity N(t) of the intracavity field. Let us analyze here the asymptotic condensate amplitude that the field reaches in
the stationary regime of the cavity, N(sf . Since the passive cavity behaves essentially as a conservative system, we may
expect that the stationary value of the condensate amplitude N} /N** may be predicted from the theory developed for the
conservative (Hamiltonian) problem. We shall now adapt the Hamiltonian condensation theory to the dissipative cavity
problem considered here. We anticipate that, as illustrated in Fig. 60(b), a good agreement is obtained between the theory
and the cavity simulations without using adjustable parameters.

We have discussed in Section 5.2 the condensate fraction as a function of the Hamiltonian (‘condensation curve’) in
the weak and strong nonlinear regimes of interaction. In the cavity problem discussed here, the essential difference with
respect to the conservative (Hamiltonian) problem is that the intensity (‘particle density’) N(t) and the energy H(t) are
not conserved quantities (see Fig. 59). However, as discussed above, in the high finesse regime the cavity behaves as a
conservative system, so that the condensation theory of [73] can be considered into the stationary regime. There is another
important aspect to note. Contrary to the conservative NLS equation where the conserved Hamiltonian plays the role of the control
parameter in the condensation curve, in the cavity configuration considered here the natural control parameter is the energy of
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the pump field. Below we shall thus express the condensate fraction as a function of the kinetic energy of the pump, Ej,
and the cavity-propagation losses (6, 8). The condensate amplitude at equilibrium is calculated by following two different
approaches.

Weak condensation: Wave turbulence regime

In the presence of a pump characterized by a poor coherence (i.e., a high kinetic energy E; ), the condensate fraction Ngf /N
is weak, and the dynamics is well described by the WT theory, U/E < 1.In this case the theory of wave condensation can be
applied straightforwardly by simply replacing the values of the intensity and condensate amplitude by the corresponding
values in the stationary regime of the cavity, N — N and Ny — N’ [see Egs. (177) and (178)]. Introducing the kinetic
energy of the pump from (252), one obtains

!

ak?
FN(S)t %: ak?—p
E(u) = (Jo — i (253)
Z akzl—u
k
Ny 1 1
oW _ (254)

Nst _ 1 )
K ; ak?—p

We recall here that finite size effects of the system are taken into account through the non-vanishing chemical potential,
—up > 0 (see Section 5.2.2). The fraction of condensed particles No/N vs. the energy of the pump E; is reported in
Fig. 60(a) (dotted line). In particular, in the thermodynamic limit (« — 0), the condensation curve reduces to a straight
line (dashed line in Fig. 60(a)), E; = (Jo — I'N§ /6)/Q, where Q = Z/ a~ k™% /(M — 1) and M is the number of modes. The
thermodynamic limit thus allows us to define a critical value of the pump energy below which the cavity system undergoes
wave condensation, Ef =Jo/Q.

Strong condensation: Bogoliubov’s regime

As the coherence of the pump field is increased (i.e., the kinetic energy E; decreases), the condensate amplitude becomes
strong, so that the dynamics enters into the nonlinear Bogoliubov regime, as discussed in detail in Section 5.2.2. In this regime
one can still derive a closed relation between the condensate amplitude and the energy into the Bogoliubov basis [71,73].
However, caution should be exercised when applying the procedure of Refs. [71,73] to the cavity configuration considered
here. We refer the reader to Ref. [78] for a discussion of this point. It turns out that, instead of expressing the condensate
fraction as a function of the total energy H, the condensate fraction can be expressed in terms of the kinetic energy of the
pump E; and of the losses (6, §) in the following form

. N N M—1
Ej=—-yNy |Jo— g +{Jo— 7 I (255)
Z 0

a2k4+2ay N§'k?

k

The condensation curve (255) is plotted in Fig. 60(b) (blue line). We recall here that the hysteresis predicted at the transition
to condensation E; ~ E]C is not physical [73], since the transition is continuous, as described by the WT theory [see Egs. (253)
and (254)].

Adiabatic condensation

In Fig. 60(b) we compare the theoretical condensation curves in the weak [Egs. (253) and (254)] and strong
[Eq. (255)] condensation regimes with the numerical simulations of the passive cavity. The ‘error bars’ denote the amount of
fluctuations (variances) of the condensate fraction N§' (t)/N* (t) once the stationary state is reached in the cavity. We note
that in the very high condensation regime (E; < 1) there exists some significant discrepancy between the theory and the
simulations, a feature that will be discussed in the next paragraph. Besides such high condensation regime, we note that the
theory is in quantitative agreement with the simulations of the cavity, without using any adjustable parameter. This good
agreement stems from the fact that we considered a cavity characterized by a large finesse, # > 10>. As mentioned above in
Section 7.3.2, thanks to such a large finesse, the intracavity field reaches thermal equilibrium before that the cavity reaches
its stationary regime, i.e., the time required to achieve thermalization, say 7, is smaller than the injection time, Tjy; = 7t /I"
[see Eq. (249)]. In this way, the variations of the intensity N (t) and of the energy E (t) in the cavity are very slow as compared
to the thermalization process, so that the equilibrium state of the intracavity field follows adiabatically the slow growths of
N(t) and E(t).

It is interesting to note in Fig. 60(a) that the condensate fraction rapidly reaches its asymptotic equilibrium value N§' /N*,
and subsequently keeps such a constant value in spite of the slow growths of N(t) and of E(t). This is a consequence of the
fact that the intracavity field is permanently at equilibrium during the adiabatic condensation process. This aspect becomes
apparent through the analysis of the WT condensation curve (254) and (253). Indeed, in the thermodynamic limit (u — 0),
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Fig. 61. Partial condensation and thermalization in an incoherently pumped passive optical cavity: Simulation of the same configuration of the cavity
considered in Figs. 59-60, except that the transmission coefficient is & = 0.01. (a) Evolution of the intracavity field intensity N vs. time t (in units of
mL/Ly), and corresponding temporal evolution of the kinetic energy E (b). The red dashed line in (a) reports the theoretical prediction of the evolution of
the intensity given by (249), the red dashed line in (b) the theoretical stationary value (252). (c) Temporal evolution of the condensate fraction No(t)/N(t)
(solid blue line), and corresponding theoretical value predicted by Eq. (255) (red dashed line). (d) Averaged spectrum of the field once the cavity dynamics
has reached the stationary state (solid blue line). The red dashed line reports the Rayleigh-Jeans (165) power-law n* (k) ~ k~2. The dark dashed line
reports the spectrum of the incoherent pump, J (k) (characterized by random spectral phases). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Source: From Ref. [78].

the fraction of condensed power takes the following simple expression, No/N = 1—QE(t)/N(t). Recalling that the intensity
and the energy evolve according to N(t) = N%[1 — exp(—I't/t)] and E(t) = E*[1 — exp(—I"t/t)] (see Section 7.3.1),
then it becomes apparent that the condensate fraction does not depend on time, No/N = const, simply because the ratio
E(t)/N(t) = ES'/N* remains constant. The same conclusion is obtained from an inspection of the condensation curve in the
Bogoliubov’s regime. The analysis of Eq. (255) reveals that, except for small values of N for which the Bogoliubov approach is
not justified, the condensate fraction Ny /N does not depend on the variations of the intensity [i.e.,, N(t)] if the ratio E(t) /N (t)
is kept constant. This result may be interpreted intuitively by recalling that the ‘energy per particle’ E/N provides a natural
measure of the amount of incoherence in a random wave [431]. In this way, an increase of the number of particles with
a constant value of E/N does not lead to a change of the fraction of condensed particles. To summarize, as the cavity gets
filled by the incoherent pump, the intracavity optical field rapidly relaxes towards a thermal equilibrium state, which thus
follows adiabatically the slow growths of the intensity and of the energy in the cavity.

Influence of the finesse: Partial condensation and thermalization

Up to now we have restricted our study to the analysis of the cavity in its high-finesse regime. However, as one
may expect, the cavity no longer behave as a conservative system as the finesse decreases. This is illustrated in Fig. 61,
which reports the simulation of the same configuration of the cavity considered in Fig. 59, except that the transmission
coefficient has been increased to 6 = 0.01. We see in Fig. 61 that, while the intensity N(t) and the energy E(t) follow
the expected exponential relaxation towards the stationary regime, the condensate fraction Nj' /N* no longer reach the
expected theoretical value of Ni'/N* = 0.51 [from Eq. (255)], and the tails of the equilibrium spectrum exhibit some
appreciable deviations from the k—2 Rayleigh-Jeans power law. In other therms, the cavity and propagation losses (8, 6)
are no longer negligible with respect to the collision term in the mean-field kinetic Eq. (248). Nevertheless, the dynamics
of the cavity still relaxes towards a stationary regime, which is characterized by a non-vanishing value of the condensate
amplitude, i.e., the cavity dynamics exhibits a process of partial condensation and partial thermalization.

The analysis of the numerical simulations reveal that the transition from the complete to the partial thermalization
typically occurs when the thermalization time inherent to the conservative (Hamiltonian) NLS equation, ty;, becomes of
the same order as the average life time of a photon in the cavity, 7j;; = 7¢/I". In the regime of adiabatic thermalization
discussed here above we had 74 < 7. Conversely, when tj;; ~ 74 the optical field does not spend sufficient time in the
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Fig. 62. Comparison of the condensate growth time, No(t)/N(t), with the injection time 7;;; in a passive optical cavity. (a) and (c) respectively report a
zoom of Figs. 59(a) and 60(a) (¢ = 0.001). (b) and (d) respectively report a zoom of Fig. 61(a) and (c) (¢ = 0.01). For a high finesse [(a) and (c)], the
condensate fraction adiabatically reaches its thermal equilibrium value over a time smaller than t;;; = 7,;/I". As the finesse decreases [(b) and (d)], a
partial condensation takes place and the growth of the condensate occurs over a time larger than ;.

Source: From Ref. [78].

cavity to achieve a complete thermalization process. This interpretation of the cavity dynamics also explains the discrepancy
between the theory and the simulations observed in Fig. 60(b) in the high condensation regime, i.e., for E; < 1. Indeed, the
thermalization time t;, of the conservative (Hamiltonian) problem, is known to increase in a significant way in the highly
condensed regime. For instance, the numerical simulations reveal that ty, typically increases by a factor ~10 when the
equilibrium condensate fraction increases from 50% to 95%. This can be explained by the fact that in the highly condensed
regime the energy H is very small, so that the correlation length of the initial field exceeds the system size, A, > +/A.The time
required to reach thermal equilibrium starting from such a highly coherent state is very large: The generation of the new
frequency components necessary to reach the Bogoliubov’s equilibrium state (i.e., energy equipartition (|bk|2) = T/wg(k),
see Section 7.3.2) requires a very long transient as compared to the corresponding transient of a highly energetic initial
condition verifying A, < VA, a feature which is clearly apparent in the simulations. Accordingly, in the high condensation
regime of the cavity (small values of E;), the transient time 7, becomes larger than the injection time ;y;, which merely
explains the significant discrepancy between the theory and the numerics observed for E; < 1 in Fig. 60(b).

It is interesting to note in Fig. 61 that, although the intracavity field does not reach thermal equilibrium, the growth of
the condensate fraction may take place over a time larger than ;. This is illustrated in Fig. 62, which compares the injection
time 7;,; with the growth-time of the condensate for the two cases analyzed previously through Figs. 60-61. Contrary to the
adiabatic regime in which the condensate fraction reaches its asymptotic equilibrium value before 7, (Fig. 62(a), (¢)), in the
presence of a lower finesse the growth-time of the condensate becomes larger than 7 (Fig. 62(b), (d)). This indicates that,
beyond the simple reasoning that compares t;; and 7y, the cavity system has a kind of cumulative memory effect, which
allows the intracavity optical field to build the coherent dynamics necessary for the emergence of the condensate.

Finally, we refer the reader to Ref. [78] for a study of cavity condensation for different values of the transmission
coefficient, 6. The study reveals that the condensation process is degraded as the parameter 6 increases. More precisely,
the equilibrium condensate fraction N /N* still grows as the pump energy E; is decreased. However, at small energies Ej,
the condensate fraction saturates for the same reason as that discussed above in Fig. 60(b).

The influence of the cavity length L on the dynamics of condensation was also considered in Ref. [78]. The idea was to
qualitatively assess the influence of the perturbation induced by the pump at each round trip on the coherent state of the
condensed optical field. The analysis of the numerical results do not reveal any qualitative difference in the dynamics of the
cavity or in the stationary value of the condensate fraction Ny /N. This indicates that the there exists a large flexibility in the
choice of the parameters that define a particular experimental configuration of the passive optical cavity. For instance, the
small value of the transmission coefficient considered in Figs. 59-60 (i.e., & = 0.001), may be increased in a substantial way
by considering a longer cavity.

We finally note that experiments are in progress in different configurations in order to study these effects of
thermalization and condensation in incoherently pumped passive optical cavities.
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7.4. Importance of coherent structures and coherent phase effects

7.4.1. Role of coherent structures (wave collapse and quasi-solitons)

The dynamics of large scale coherent structures in a turbulent environment is a long standing problem that is still
the subject of current investigations in different area of nonlinear physics. Indeed, together with the weak turbulence
component, the system can include coherent structures which are characterized by a strong spectral phase correlation, and
thus violate the assumption of phase randomness. Note that, from a general perspective, the dynamic breakdown of the weak
turbulence approximation associated with nonlinear coherent structures was addressed in Refs. [385,51]. In this review we
have already discussed two important classes of large scale coherent structures. On the one hand, the homogeneous plane-
wave solution was discussed in Section 5.2.2 in the defocusing regime of the NLS equation in the framework of 2D or 3D
condensation. In this case, owing to the Bogoliubov transformation, the WT theory provides an accurate description of the
interaction between the coherent plane-wave component and the incoherent fluctuations about the condensate [40,73].
On the other hand, in Section 5.2.1 we discussed the role of soliton-like coherent structures in the framework of soliton
turbulence through the analysis of non-integrable focusing NLS equations. In the following we briefly comment two other
important examples of large scale coherent structures evolving in a turbulent environment, namely, collapse filaments and
quasi-solitons.

Let us first comment wave collapse in the framework of the focusing regime of the multi-dimensional NLS equation [46].
In this case, the inverse cascade of particles (i.e., power) towards the fundamental mode k = 0 does not lead to condensation,
because the homogeneous plane wave solution is modulationally unstable. In the focusing regime collapsing filaments
are known to form, and their main role is to reverse the flux of particles, i.e., they induce a secondary cascade which
carries particles towards high frequency components. While the primary cascades of energy and particles can be accurately
described by the WT theory through Kolmogorov-Zakharov nonequilibrium stationary solutions [37,40] (see Section 5.1.2),
the situation is different for the secondary cascade of particles induced by wave collapse. In this case, the flow in frequency
space simply results from the collapsing filament in real physical space, in which the wave intensity is squeezed from large
scales to small scales in a highly organized and coherent fashion. In this case, statistical considerations can be introduced by
considering the intermittent nature of such collapse events, especially as regard their uncertainty of occurrence in time and
space. Because the events involve large amplitude fluctuations, their impact on the probability density function of the field
is to cause an elevation in the tails of the distribution. It was argued in Ref. [46] that collapse filaments can be at the origin
of intermittent-like behaviors in WT—though a rigorous theoretical description of this idea still needs to be elaborated, in
relation with the existence of WT cycles discussed in Ref. [40].

Quasi-soliton turbulence is another important example in which large scale coherent structures deeply affect the
turbulent behavior of the system [47]. Quasi-solitons refer to soliton with a finite life-time: The soliton solution slowly
loses its power through a process analogous to Cherenkov radiation. The presence of quasi-solitons in a system of random
waves then leads to a breakdown of the WT predictions. In particular, numerical simulations of the so-called Majda,
McLaughlin, Tabak equation [432-434] in the presence of forcing and damping at different scales revealed the formation of
nonequilibrium stationary spectra of turbulence which can significantly differ from the Kolmogorov-Zakharov predictions.
This problem was recently addressed in Ref. [332]. In this work the authors proposed a new mechanism of turbulent
transfer that is radically different from that described by the weakly nonlinear WT approach. In Ref. [332] the authors
recognized the fundamental role that play quasi-solitons in the formation of the nonequilibrium stationary state discussed in
[432-434]. They showed that the direct energy cascade is carried by gradually deforming the quasi-soliton pulse heads, while
the inverse cascade is carried by radiation to the corresponding tails. Furthermore, by remarking that quasi-solitons exhibit a
weak interaction among each others, they have been able to predict a nonequilibrium stationary spectrum by computing an
adiabatic change of the wave packet. A remarkable good agreement between this theoretical prediction and the numerical
simulations has been obtained in Ref. [332].

7.4.2. Role of vortices and the BKT transition

As discussed in Section 5, the WT theory provides an accurate prediction of the condensate fraction vs. the energy of the
wave. We underline that a quantitative agreement between the theory and the simulations has been obtained, without using
adjustable parameters. It is important to remark that the WT theory ignores the role of vortices, since they are inherently
coherent topological structures that cannot be described by the kinetic approach. However, vortices are robust topological
phase defects that have been the subject of lot of studies in relation with wave condensation in different configurations of
forcing and damping at small and large scales (see e.g., [337-341]). For some reviews on this vast literature we refer the
reader to [435,82].

In the weakly nonlinear regime near by the transition to condensation, H ~ H, the random wave exhibits a large number
of zeros. These are not nonlinear (Pitaevskii) vortices, because the nonlinearity is small so that their shapes are rapidly
evolving during the temporal evolution. For this reason such zeros of the field are called ‘ghost vortices’. As the energy is
decreased, the mean inter-vortex distance becomes larger than the healing length, then the system becomes nonlinear and
most of the zeros of the field can be identified as nonlinear vortices. In particular, true nonlinear vortices can exist in the
highly nonlinear regime in the presence of a strong condensate. In this regime, vortices of opposite circulation can annihilate
by pairs in 2D. But they may also exhibit complex motions analogous to those known in 2D-Euler systems. In particular, two
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close like-signed vortices can rotate one around each other, while vortices of opposite signs (vortex dipole) can move along
a straight line perpendicular to the line connecting the vortex pair. As a rather general rule, the number of vortices decay in
time following a logarithmically law in 2D [338], a property that has not been explained theoretically so far. In 3D the vortex
centers are located on 1D curves and the annihilation takes the form of a shrinking of vortex loops that suddenly disappear.
Vortex loops can also be interlocked one with each other, a noteworthy property of superfluid turbulence [435].

To summarize, the general idea is that vortices affect the nonequilibrium transient process leading to the formation
of the condensate, while in the final stage, when all vortices have annihilated, the system comprises a coherent uniform
component immersed in a sea of turbulent fluctuations (‘phonons’). The regime in which vortices may play a relevant role
in the process of wave condensation is in the transition regime, in which the system is just between the weak and the strong
nonlinear regimes. In particular, as compared to 3D, in 2D the numerical simulations reveal the existence of significant large
fluctuations in the condensate fraction, as illustrated in Fig. 30 in Section 5. Indeed, large jumps in the condensate fraction
have been observed in the long term evolution of the wave system [73]. A different perspective to study these properties is
provided by the BKT theory.

BKT transition

The BKT transition has been experimentally observed in liquid helium films, 2D superconductors, superconducting
Josephson-junction arrays, and more recently in ultracold Bose gases [436]. In this latter case, the BKT theory provides
the general framework to study 2D superfluidity. We refer the reader to [437] for a recent pedagogical review on this
subject. In two dimensions the random wave does not exhibit true long-range coherence, but rather ‘quasi-long-range
coherence’. Indeed, the logarithmic divergence of the correlation function indicates that the destruction of long-range order
is only marginal in two dimension. Making use of the Bogoliubov approach, one can show that a quantum Bose gas at
low temperature exhibits a strong suppression of density fluctuations, so that its fluctuations are in substance only phase
fluctuations. This allows one to point out interesting analogies with different systems, such as, e.g., spins on a lattice, since
in the limit of purely phase fluctuations, the low energy Hamiltonian can be approximated by the continuous version of
the Hamiltonian of the XY spin model. It turns out that, at low temperature, an interacting 2D Bose gas is characterized
by a correlation function which decays algebraically at large distances. Such a slow decay reflects the property of quasi
long-range-order.

From the microscopic point of view, the key conceptual ingredient of the BKT theory is that, in addition to phonons
described by the Bogoliubov approach, vortices constitute a natural source of phase fluctuations. Below the BKT critical
temperature, Tgkr, vortices can exist only in the form of bound dipole pairs with opposite circulation. These pairs have a
short-range effect and weakly affect the long-range behavior of the correlation function. On the other hand, above Tgr,
unbinding of vortex pairs and proliferation of free vortices becomes energetically favorable, which leads to a scrambling of
the phase dynamics and thus to a destruction of quasi long-range-order. The BKT transition may thus be viewed as a 2D
phase transition characterized by the apparition of a topological ‘quasi-long-range’ order.

Although these aspects have been the subject of many theoretical and experimental efforts in different physical contexts,
they have not yet been studied in detail in purely classical wave systems, although semi-classical approaches have been
developed to describe the BKT transition observed in Bose gases [438,439]. Note in this respect that nonlinear optics opens
the experimental access to study the BKT transition using standard optical setups [377]. In this way, we can envisage the
experimental observation of the BKT transition with optical waves in a near future.

7.4.3. Role of coherent phase effects

The WT theory has been shown to provide a reliable statistical description of the evolution of weakly nonlinear
incoherent waves in different circumstances. In its basic form, the theory does not account for the existence of phase
correlations between distinct incoherent waves. However, there exists particular conditions in which phase correlations
emerge spontaneously in a system of incoherent waves. We note in this respect that the Bogoliubov transformation can
be viewed as a reformulation of the problem in a different basis so as to avoid such correlations. In this way, anomalous
correlations have been recently studied in the process of wave condensation, so as to provide a description of a periodic
evolution of the condensate fraction with time (propagation distance) [343].

The spontaneous emergence of correlations between distinct incoherent wave components has been also clearly
identified in the important problem of the resonant three-wave interaction. It has been shown that, when the group-velocity
of the high-frequency component (pump wave) coincides with the group-velocity of one of the daughter waves (i.e., idler
wave), then this latter idler component absorbs the incoherence of the pump wave, then allowing the other daughter wave
(signal) to evolve towards a fully coherent state [21,440-443]. Note that this phenomenon has been shown to also occur in
optical parametric oscillators [444]. As a matter of fact, this effect of coherent signal generation from an incoherent pump
wave is the essential mechanism underlying the existence of mixed coherent-incoherent solitons (i.e., solitons composed
of both coherent and incoherent waves) in instantaneous response nonlinear media [21,22]. This is illustrated in Fig. 63,
which represents the one-dimensional evolution of three resonantly interacting waves. The initial condition (a) refers to
an incoherent pump (As3) in the presence of a small random noise of the signal (A1) and idler (A,) waves. When the group-
velocities of the pump and idler waves are matched (v3 = wvy), the incoherence of the pump is transferred to the idler
field, which permits the signal to reach a highly coherent soliton-like structure (Fig. 63(c)). We note in particular that the
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Fig. 63. Three-wave solitons composed of both coherent and incoherent waves: (a-c) Generation of the coherent soliton component (signal wave, A;)
from the incoherent component (pump wave, A3) in the 1D three-wave interaction. The evolution of the three waves is represented in the reference
frame travelling at the group-velocity of the signal wave (v1). The incoherence of the pump is transferred to the idler wave (A, ), which allows the signal
component to evolve towards a highly coherent state. The existence of this mixed coherent-incoherent soliton relies on the spontaneous emergence of a
phase correlation (mutual coherence) between the incoherent pump and idler fields ((A3 A;) # 0). Panel (d) shows the corresponding coherent three-wave
interaction soliton that is generated from a fully coherent pump wave.

Source: From Ref. [21].

generated coherent signal pulse exhibits the same soliton-shape as the corresponding soliton generated by a fully coherent
pump [445-447], as revealed by the comparison of Fig. 63(c) and (d). The spontaneous emergence of correlations between
incoherent waves can also lead to a condensation-like process that occurs far from thermal equilibrium [448,441]. From a
more general perspective, the evolution of the spatio-temporal coherence properties of three resonantly coupled partially
incoherent waves has been widely studied in the past [449-452] and is still the subject of current investigations [448,444,
453-457,443,458,459]. It would be interesting to construct a generalized WT formulation of random nonlinear waves that
would account for a possible mutual correlation between distinct incoherent wave components.

7.5. Some additional open problems

7.5.1. Spontaneous repolarization

The statistical description of partially polarized optical waves in the framework of the WT theory has not been specifically
discussed in this review. In principle, nonlinear polarization effects require a vector description of the optical field which
can be formulated on the basis of a vector NLS equation, as discussed in many different cases [171,138,6]. From this point of
view, the WT theory considered in the framework the scalar NLS equation should be extended to the vector NLS equation.
Note that this aspect has already been discussed in different contexts in the literature [97,460,344,431,461,462,140,463].

From a different perspective, the study of nonlinear polarization effects revealed a remarkable phenomenon of
repolarization of an optical wave without loss of energy. Contrarily to conventional polarizers which are known to waste 50%
of unpolarized light, Heebner et al. proposed in 2000 a “universal polarizer” performing repolarization of unpolarized light
with 100% efficiency [464]. By using the photorefractive two-beam coupling, it was shown in [464] that unpolarized light can
be converted to a state of linear polarization with essentially a unit efficiency. This phenomenon can be termed “polarization
attraction”, in the sense that all input polarization configurations are transformed into a well-defined polarization state. The
existence of a phenomenon of polarization attraction has been also demonstrated in the framework of a counter-propagating
configuration of the four-wave interaction in optical fiber systems [465]. This effect contrasts with the commonly accepted
idea that an optical field should undergo a depolarization process in the presence of Kerr nonlinearity, as discussed in several
pioneering works [466-47 1]—although repolarization effects with different originating mechanisms have been discussed in
nonlinear media [461], or even linear disordered media [472,473]. Subsequently, this phenomenon of polarization attraction
due to the counter-propagating interaction has been the subject of a growing interest, from both the theoretical [474-482]
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and experimental [465,483-487] points of view. Specifically, polarization attraction has been shown to exhibit different
properties depending on the experimental configuration [488,487], and on the type of the optical fiber used, e.g., isotropic
fibers [465,475,476,483], highly birefringent spun fibers [489,479], as well as randomly birefringent fibers used in optical
telecommunications [478,479,484]. The theoretical description of this effect of polarization attraction has been developed
through the analysis of the stationary states of the system on the basis of mathematical techniques recently developed for the
study of Hamiltonian singularities [474,476,479,490,491]. This geometrical approach revealed the essential role that play the
peculiar topological properties of singular tori in the process of polarization attraction. The analysis has been also extended
to study the stability properties of soliton states in a medium of finite extension [489,78]. However, so far, no statistical
description of partially polarized beams has been developed to describe this phenomenon of polarization attraction. This
problem raises important difficulties, since the phenomenon of repolarization is inherently associated to the existence of
a mutual correlation between orthogonal polarization components. From a broader perspective, the statistical description
of a counter-propagating interaction raises interesting difficulties, which are of interest in their own and deserve to be
considered in future developments of the WT theory.

7.5.2. Thermalization and condensation in disordered systems

It is well-known that even a weak structural disorder of the medium of propagation can change in a dramatic way
the properties of the physical system thus giving rise to a plethora of unexpected behaviors, among which the celebrated
phenomenon of Anderson localization. This phenomenon is characterized by two equivalent properties, (i) the suppression
of transport in disordered media, (ii) the exponential decay of the eigenmode of the (e.g., Schrédinger) wave equation with
a random potential V (x). We remind that these properties differ from those of a wave that evolves in a periodic potential,
in which the eigenmodes are spatially extended throughout the system, as described by the Bloch theorem. Anderson
localization finds its origin in the destructive interference of waves multiply diffused by the modulations of the random
potential. Because of the universality of this underlying mechanism, this phenomenon is encountered in a large variety of
physical systems, e.g., light, acoustic, elastic or matter waves [492-496].

The problem of understanding the influence of a weak nonlinearity on the wave evolution of a wave that evolves in a
disordered systems is the subject of several current intense investigations, in particular, in the context of Bose-Einstein
condensates [497-500]. The WT theory can shed new light into this vast problematic. In particular, the thermalization
of a nonlinear wave in a random potential V (x) is expected to be strongly affected by the spatially localized nature of
Anderson modes, a feature that may be described by the collision term of the kinetic Eq. (151)-(152). A natural important
question to be addressed is to see whether a weak disorder can prevent the thermalization process to take place. In other
words one may wonder whether the thermalization process can take place on the basis of the localized Anderson modes
solutions of the linearized NLS equation. If such thermalization process can occur, then one may expect a process of classical
wave condensation on a localized Anderson mode. From a more general perspective, this issue can be extended to forced
and damped systems driven far from equilibrium by an external source. In the optical context, the analysis of stationary
nonequilibrium Zakharov-Kolmogorov spectra in a disordered environment would find a direct application in random laser
systems [33].

7.5.3. Emergence of rogue waves from wave turbulence

The evolution of turbulent waves can be characterized by the spontaneous emergence of short lived high amplitude
waves. These rogue waves events that “appear from nowhere and disappear without a trace” [501] are among the most
studied phenomena in nature in these last years. Besides the hydrodynamic context [502-506], rogue waves have been
recently identified in various different fields, including optical waves [507-511,427,512] capillary waves [513], superfluid
helium [514], atmosphere [515] or microwaves [516].

The common feature characterizing rogue wave phenomena in the different systems is the observation of deviations
from the Gaussian statistics of the wave amplitude, with long tails of the probability density function accounting for the
rather frequent emission of such giant waves. We refer the reader to the following recent reviews for a detailed discussion
of this vast area of research [34-36].

Recent optical and hydrodynamics studies suggest that rogue wave events can be interpreted in the light of exact
analytical solutions of 1D integrable nonlinear wave equations, i.e., breathers solutions [517,518,501,519,502], or more
specifically their limiting cases of infinite spatial and temporal periods, the rational soliton solutions [520,521]. Because
of this key property of localization in both the spatial and temporal domains, rational solutions may be viewed as a kind of
‘rogue wave prototype’. The hierarchy of rational solitons has been found, in particular, in the framework of the integrable
1D NLS equation [521]. A remarkable property of rational solitons is that they are characterized by an increasing value of the
central amplitude of the wave field, a feature that can be used to interpret the emergence of rogue wave events of higher
amplitudes from a chaotic field. The Peregrine soliton solution refers to the first order rational solution [522-526].

Rational solitons are exact analytical solutions of integrable wave equations, and for this reason they can be regarded
as a coherent and deterministic approach to the understanding of rogue wave phenomena. However, rogue waves events
are known to spontaneously emerge from an incoherent turbulent state of the system. It is thus important to understand
whether rational solitons can emerge from a turbulent environment [503,527-529,519,530,531]. This actually constitutes
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a difficult problem, since the description of the turbulent wave system necessarily requires a statistical approach, whereas
rational solitons are inherently coherent deterministic structures.

An interesting problem is to consider the emergence of rogue waves and rational solitons in a genuine turbulent wave
system, such as a system that can be described by the WT theory. In other words, one may wonder whether the coherent
description of rogue waves provided by rational solitons is consistent with the WT description of the random wave.
This problem was addressed in particular in Ref. [364] by considering the NLS equation with third-order dispersion (see
Section 6.2). In its focusing regime, this model exhibits a quasi-soliton turbulence scenario [47] that can be interpreted
in analogy with wave condensation: As the Hamiltonian increases, a transition occurs from the purely coherent and
deterministic quasi-soliton regime towards the fully incoherent turbulent regime [363]. As discussed in detail in Section 6.2,
this latter turbulent regime is described in detail by the WT theory, which thus brings the question of the existence of rogue
wave events in the framework of the WT regime of the incoherent wave.

We note in this respect that caution should be exercised when drawing conclusions as regard the applicability of the WT
theory. It is indeed well-known that the existence of a permanent large scale coherent structure (such as a stable soliton
or a condensate) leads to a breakdown of the WT theory [47,73], as discussed above through the Bogoliubov regime of
condensation in Section 5.2.2. However, contrary to solitons, rogue waves are, by nature, very short and very rare events.
In this way, although the WT theory is inherently unable to describe rogue waves, their occurrence should not invalidate
the applicability of the WT theory. It was shown in [364] that rogue waves can emerge in the genuine turbulent state of the
random field and that their coherent deterministic description provided by rational solitons is compatible with the accurate
WT description of the random waves. In particular, the nearly Gaussian statistics for the field amplitudes inherent to the WT
theory was compatible with the asymmetric long tail observed in the pdf of the maxima of the field intensity [ 363]. However,
it is important to note that the comparisons between rational soliton solutions and the WT theory have been realized near
by the transition to condensation (i.e., for values of the Hamiltonian in the vicinity of the threshold value H. for quasi-
soliton condensation), and thus far from the highly nonlinear regime where the WT theory is known to break down. Rational
solutions have been identified in this weakly nonlinear regime, while in the strong nonlinear regime robust quasi-soliton
states are generated and thus characterized by large deviations from the Gaussian statistics of the wave amplitude [363].

The problem of occurrence of rogue waves in a turbulent environment has been addressed in the context of
hydrodynamics, see, e.g., [503,527-529] (also see the recent review [36]). In this context, the amount of nonlinearity in
the turbulent system is measured by the Benjamin-Feir index. By increasing this index, the random wave spontaneously
generates breather-like modes. The interesting aspect is that, by further increasing the Benjamin-Feir index, such breathers
are no longer generated sporadically, but in some ordered fashion. In this respect, numerical simulations of the NLS equation
revealed that, as a result of the incoherent modulational instability, ‘oscillating coherent structures’ may be excited from
initial random spectra [116]. Then, by increasing further the Benjamin-Feir index, the system generates robust quasi-
coherent solitons, which lead to a significant deviation from Gaussian statistics. We remark that this phenomenology
exhibits some interesting analogies with the three turbulent regimes discussed in Ref. [363], in which different types of
rogue waves events have been identified by increasing the Hamiltonian in the condensation curve, i.e., the quasi-soliton
regime, the intermittent regime, and the sporadic regime.

From a more general point of view, there is still no satisfactory understanding of several important questions concerning
the mechanism underlying the generation of extreme events from a turbulent environment. We refer the reader to [36] for
a recent review on this topic.

7.5.4. Thermodynamics of a pure wave system?

Let us finally remark that the process of thermal wave relaxation to equilibrium paves the way for the study of the
thermodynamics of a pure optical wave system. To illustrate this aspect, let us underline that the equilibrium distribution
(164) allows one to derive the T dS equation of thermodynamics (see Ref. [307]):

TdS = dE — pdN, (256)

where E refers to the kinetic energy of the optical wave. This corresponds to the familiar T dS equation for a fixed volume of
interaction [296]. Furthermore, an analogous of the thermodynamic pressure for a pure wave system may be defined from
the conservation of the momentum of the field.

Along this line, one can imagine a way to analyze the second principle of thermodynamics in a pure wave system. Consider
for instance an optical wave that propagates in a multimode waveguide characterized by a large transverse surface section
A. We assume that the optical wave has reached, owing to a Kerr-like nonlinearity, an equilibrium state characterized by
some entropy S;. Then suppose that the waveguide is realized in such a way that its transverse area A(z) increases suddenly
at some propagation distance zy. For z > z, the optical wave then irreversibly relaxes towards a novel state of equilibrium,
with a different value of entropy S,. In analogy with thermodynamics, this experiment may be considered as the analogous
of the expansion of a gas enclosed in a box, in which a piston is removed at some time ty—the propagation distance z playing
the role of time t. According to the second principle of thermodynamics, the lift of the constraint on the system ‘volume’
implies that the entropy S, must be greater than the entropy S;. As illustrated by this additional example, the WT theory
seems to open a variety of novel fascinating opportunities for the study of nonlinear optics with partially incoherent waves.
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Appendix

A.1. Derivation of the short-range spatial Vlasov equation

We use the multiscale expansion, B(x, £, z) = B (ex, &, £z), where n(X,2) = [ BO(X, &, Z) exp(—ik.&) d&, withX =
exand Z = ez.In this way, the second term in the equation for the autocorrelation function (5), j P(x, &, z) exp(—ik.§)d§ =
f P(X /e, &, Z/¢) exp(—ik.£)dE, can be calculated explicitly, which gives

/ P(x, £, 2) exp(—ik.£)dE = G 1)2d / U() [n,Q)(x — ey +¢£/2.2) — ni) (X — ey — £&/2, Z)]

x ) (X, Z) expli(k; — k).&] diy dk, d& dy. (257)

Expanding the integrand to first-order in ¢ and integrating by parts with respect to k; gives

/ P(x, £, z) exp(—ik.£)dE = iedyn\ (X, Z). ax< / Y (X, Z)dk) (258)

1
(2m)d

The third term in the equation for the autocorrelatjon fugction (39) can be calculated in a similar way. Expanding in
powers of ¢, one obtains f Q(x, &, z) exp(—ik.&)dé = Qy + £Qq, where

Q= (Z]T)d / U@ n (X, Z)n (X, Z) [explitk; — k).y] — exp[—i(ky — k).y1] dk; dy. (259)

Defining the Fourier transform of the response function, Uk = f U(x) exp(—ik.x) dx, one readily obtains

~ 2i

G = g ®%.2) [ i@ X, 20 . (260)
where lm(f]k) denotes the imaginary part of Uy. The contribution Qo vanishes because the response function U(x) is real-
valued and even, which thus leads to Im(Uy) = 0. Note that this will not be the case in the temporal domain, because of the

causality condition of the response function, as discussed here below. The contribution of order & can be written

~ 1
Q= n)H / U)[(us + v) exp[—i(k; — ky).y] + (u_ — v) expli(k; — kz).y]]
x exp[—i(k — ky).£] dk, dk,dy dE, (261)

where uy = —n,‘z) X,2)(Exy). 8xn,(q) X,2),v = —nkl) X,2)Y. 3xn(0) (X, Z). By means of some algebraic manipulations,
this expression reads

Q, = / U)ok, (n“”(x Z)) ny (X, Z) [expli(k — k).y] + exp[—i(k; — k).y1] dk; dy

2(2 227)d

2(2 )d /U(}')n,‘))(x Z) ox (n,q)(x Z)) [exp[i(kl — k).y] + exp[—i(k; — k).y]] dk, dy (262)
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and can finally be written in the following compact form

~ i ~
Q= (27‘[)d Ox </ Uk—k1 nl(c?) X,2) dkl) 'a’fnl(:O) X,2) -

Then collecting all terms in Eqs. (263) and (258), and coming back to the original variables, z = Z/¢ and x = X/¢, one
obtains the short-range Vlasov-like kinetic equation (11), with the effective potential given in Eq. (13).

i ~
L e ( / Ure—tey 1y (X, Z) dkl) Y (X,2).  (263)

A.2. Derivation of the long-range spatial Vlasov equation

We proceed as in Appendix A.1, but we use the following scaling for the highly nonlocal potential U(x) = eU© (¢x). We
thus have

/P(x,“;',z) exp(—ik.&)dé =

Gy / UOW) [ (X — Y +¢8/2,2) — 0 (X — Y — ¢£/2.2)]

x my) (X, Z) expli(k; — k).&] diy dk, d& dY . (264)

Expanding the difference in the brackets to the first order in ¢, one obtains

/ P(x, £, z) exp(—ik.£)dE = isdpn (X, Z).dx / U x —X’)( / nf?(X’,Z)dk’) dx’. (265)

@2m)?

The same procedure applied to the term Q in the equation for the autocorrelation function reveals that the expansion in
the first order in & vanishes—the first nonvanishing term is of second order, £2. Coming back to the original variables, one
thus obtains the Vlasov equation (11) with the effective potential (22).

A.3. Derivation of the weak Langmuir turbulence equation

The method for the derivation of the WT Langmuir equation follows the procedure reported in Appendix A.1 for the
derivation of the short-range Vlasov equation in the spatial domain. The main difference is that the calculation is carried out
in the temporal domain, i.e., the variables are transformed as follows x — t, & — t, while the nonlocal response function
is substituted by the noninstantaneous response. Accordingly, the multiscale expansion reads, B(t, 7, z) = B© (et, 7, £2) +
0(e), where nO(T,2) = [BO(T, 1,Z) exp(iwt) dr, with T = st and Z = ez. Expanding the term P in first-order in ¢
gives

+o0 1 +00
/ P(t, 7, 2) exp(—iwt)dtr = ied,,n" (T, Z)dr (2/ nO(T, Z)dw’) ) (266)
_ T

oo —00

The term Q can be expanded in the same way, f Q(t, t,2) exp(iwt)dt = Qo + £Q;, where
~ -1 Too
Q = —n9(T, 2) / Im(R,—.) n9(T, 2) do, (267)
T —00

where lm(f?a,) denotes the imaginary part of the Fourier transform of the response function R(t). Contrarily to the spatial
case where this function vanishes, in the temporal domain it refers to the gain spectrum of the nonlinearity, Im(R,,) = g(w),
as discussed through Eq. (37). It turns out that, thanks to the causality condition, the zeroth order expansion in € no longer
vanish in (267). In this way the first term P in Eq. (266) of order ¢ is negligible with respect to the term (267). Coming back
to the original z = Z/¢ and t = T /¢, one obtains the WT Langmuir kinetic equation (44).

A.4. Derivation of the Korteweg-de Vries equation

By substituting the form of the spectral gain curve, g (w) = g© (), and of the spectrum, n,,(z) = no+&*1(? (¢?2)+0(e*),
into the rhs of Eq. (44), we obtain:

N i ve e
—n, / g(w— o nyde = ;[no + &’ / g9 [no + €2ﬁfisw/]dw/

o0 —00
4 +o00 2
& - - & ~
=Y [no + ezng’)]/ g(o)(a)')[—w’awnif) - wB—ainé?)]da)/
T oo 6
© © ©
_ ve'nog 3 7O res; 705 50 v&°nogs 3370
= - il + - n,’ dpn,’ + 67 ol



A. Picozzi et al. / Physics Reports 542 (2014) 1-132 117

up to terms of order €8, where we have used the fact that g(@ is an odd function and we have defined

+00 +oo
g1(0) —f wg(o)(w)dw, géo) = —/ w3g(o)(w)dw.
—0 —00

Of course the lhs of Eq. (44) reads:
3,1, (z) = %0, (¢%2),
with Z = ¢2z. By dividing Eq. (44) by £ and by collecting the terms of order up to O(g?), we find:

ve g]

9,1 (2) — 0 (2) = —=1=7 (2),1) (2) +

0) 2 (0)
YN8y~ Y€ No83 33)1712?)(2).
T 6

By coming back to the original variables we obtam the Korteweg-de Vries equation (52).

A.5. Derivation of the singular integro-differential kinetic equations

We report the mathematical procedure underlying the derivation of the singular integro-differential kinetic equations
starting from the WT Langmuir equation. We first the derivation for general response function and show that the leading-
order terms of the singular integro-differential equations are related to the properties of the response function close to zero.
Then we apply the general results to the damped harmonic oscillator response and the purely exponential response.

A.5.1. General response function
The starting point is to carefully address the singularities involved in the convolution operator of the WT Langmuir Eq.
(44). The response function can be written in the following general form

1- t
R(t) = —R(——)H(—t),
TR TR

where R is a smooth function (that is at least five times differentiable with integrable derivatives over [0, c0)). By using
integration by parts one finds that the imaginary part of the Fourier transform of the response function

g(w) = Im( /_ ” R(t)efwfdt) - —Im( /0 "R explion) dt)

o0

has the form
1 2 i
gw) =g’0n), g'w) = ——R(0>+ —R?(0) - R<“>(0) Re( / R“"’(t)e‘wfdr),
0

where R?) (t) denotes the jth derivative of R(t). This allows us to identify the two ‘singularities’ (the terms in 1 /wand 1/w?)
that are important when addressing the convolution operator of the WT Langmuir Eq. (44).
For a smooth function n,, we want to find the expression of

N, = / g(w — u)nydu, (268)

oo

in particular in the regime 7z /7o > 1. In the following we will denote g, = g(w).
Summary of the general results:

(1) For any tz > 0, the convolution operator can be written in the following form without approximations

R(O 7RV (0 R®(0 1 [®
= "R 50, O+ O g2, 4 —4/ (031000 + 020, ]GO ydu, (269)
TR T 215 R Jo R R

where we have defined for u > 0:

] > p(2)
Gu) = —%/ (g,? + ko) _R (0))(1; — u)’dv, (270)

v v3

and # is the Hilbert transform.
(2) When /79 > 1,

RO RD 0 R®(0 R®(0 1
N, = 7RO T 2( )awnw+”73()seajnw ”7()33nw+o( ) 271)
TR T 213 675 79
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These results show that the leading-order term in the expansion (271) is determined by the behavior of the response
function at 0. We will address in the two following sections two examples for which R(0) = 0 and R(0) £ 0, respectively.
Proof. We can write N,, in the form

R(O 1 o R(0
Nwz_go/ e Lo [T (@ B
TR o0 T R

o]

B Sy
= w+%_w—%

R
— (O) Hn, — —/ dufo[n, v —n, u]du,
R Jo ® ®

TR

where we have introduced the function f° defined by (for u > 0):

f°<u)=—f g +@d

Note that f° can be expanded as fo(u) = _o O(ui4) asu — oo and f°(u) = R(0)Inu + O(1) asu — 0, so that

2u?
limy_of°(u) [nw+% — nw,%] = 0. Therefore we can write after integration by parts

7R 1 [
Nw _ _ ( )J(le + 7/ fo(u)[awnanLl + awnwfi]du
77 Jo i *

TR

R(O f 1 [
_ RO ok Lzawnw 1 —Zf FO@[Bunys 1 + By — 23,1, ]du,
T T, 0 R R
R R

TR

where
_ [o¢] o0 _ [o¢] _
f= 2/ fOouwdu = —2/ ug? + R(0)du = —/ ug? + R(0)du.
0 0 —00
After integration by parts:
- o - .
ug? + R(0) = —Re( / R(”(t)e’”“dt),
0

and therefore

f = aRY(0).
We can write
TR 7R (0 1 [*
Ny = =R o, + %awnw + —2/ OuFO (W) [0uNes 1 + Dy 1 — 20,1, |du,
TR Tr R Jo 3 R

where we have introduced the function F° defined by (for u > 0):
o0
Fou) = — / O(v)dv.
u

Note that F® can be expanded as FO(u) = R( EO 4 0(%) asu — oo and FO(u) = —wR™(0)/2 + o(1) as u — 0, so that
lim,_q FO(U)[awnw+L + 0pn,_u — 20, nw] =0. Therefore, after integration by parts we find
TR R

7RO 7RM (0
N, = — ( )}t’nw-i- %8 *\/ Fo(u) 8 nw+” -9 nwff]du
TR TR R
R 0 R(l) 0 R(Z) 0
= RO+ TR O+ TROO) g2,
TR TR TR
1 %/, RP0)\,., )
_ -[T? /0 (F (u) — - )[Bwanr% — 8wnw,%]du
B 711_2(0)]( N 711_3“)(0)8 n NR(Z)(O)J(,BZ 1 [ 8,6° ()2 52 ld
T T P oo Tz Jo M e e T o JE
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where we have introduced
00 p(2)
R®(0)
Gw) = —f Fo(v) — —dv
u 2v

After some calculations, this expression of G°(u) can be written in the form given in Eq. (270). Note that G°(u) = O(uiz) as

u — oo and G°(u) = O(Inu) as u — 0, so that lim,_.o G°(w)[82n, » — 82n,_u | = 0 and we can integrate by parts the
TR R

last term

7RO 7RM(0 7R®(0 1 [
N, = — ( )J{’nw + 2( )8wnw + 3( ),}t’af,nw + —4/ GCwla} L 9 na,_,]du
TR T 278 7 Jo

which is the first desired result. This expression of N,, is exact, and G° is an integrable function over (0, co). As a result N,
has the following expansion as tg/to > 1:

TR(0) 7RM(0) TR?©0) G, 1
N, = ———=%n, + 3 0Ny + F0 nw+—48 nw—i-o( 4)
TR T 277 Tq Tq

with

_ 00 1 [ _ _

G= 2/ Gwdu = -5 / u?g? + uR(0) — R (0)du.

0 —00
After iterated integration by parts:
o0
13g® + 1?R(0) — R?(0) = Re ( / I_Q<3)(t)ei”tdt),
0

and therefore

T -
G=—=R®(0),
K70

which completes the proof.

A.5.2. Application to the damped harmonic oscillator response

We apply the general theory exposed above to the particular example of a damped harmonic oscillator response function.
In this way we derive the singular integro-differential kinetic equations (56) and (57). The normalized nonlinear response

function is R(t) = " sin(nt /1) exp(—t/g), with
1+ n? 1 1
g = ( ~ — 2). (272)
2n \14+(n+ irw) 1+ — rw)
For a smooth function n,, we want to find the expression of
o0
N, = / Lo—uludu, (273)
—0Q

in particular in the regime tz/79 > 1. Applying the general theory reported in the previous section, we find the following
results.

(1) Forany wz, n > 0,

71+ n? r(1 o0
N, = T wﬂaz N+ — | [0y u + 020, 1 ]G0 (wdu, (274)
i rR rR 0 R R

where we have defined for u > 0:

1+ n? 1 vt
G = Rkl f ™ _ f[w arctan(w) — — log(l + w )] ' —dv, (275)
n u

2 2
and # is the Hilbert transform.
(2) When z/70 > 1,

1 1 1+7)3—n? 1
Nw=”( +n) Bt — ( +77)J€82 _7( +n)£ ")ajnw+o(—4).
L LA 674 TR

(276)
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-Derivation of (56) and (57)
With an initial condition without background:

w—+o0

n,(z=0 — 0, (277)
in the asymptotic regime 7z/to >> 1, the spectrum satisfies the singular integrodifferential kinetic equation

1
t2o,n, =y(1+ n2)<nw8wnw - r—nw}fainw>, (278)
R

in which the small regularization term is dispersive.
With an initial condition with background:

n,(z) =ng +,(), no >0, (279)

introducing the scaling
- 1.
o) = =1 (z/7R), (280)
TR
the spectrum satisfies in the asymptotic regime /79 > 1
21 =y (14 n*) (trnoduiY + AP 8,7 — ng#d2a?). (281)
whereZ = z/ r,f. The first term of this equation can be removed by a change of Galilean reference frame, (2 = w + y (1 +

n*)1rneZ, € = Z), so that Eq. (281) recovers the Benjamin-Ono (BO) equation.

A.5.3. Application to the exponential response

Here we apply the general theory reported above to the particular example of a purely exponential response function.
In this way we derive the singular integro-differential kinetic Eqs. (60) and (62). The nonlinear response function is
R(t) = % exp(—=), with

R

TRW
o= ———. 282
& 1+ (TRCL))Z ( )
We want to find the expression of
o0
N, = / Zo—uMudu, (283)
—00

in particular in the regime tz/7o > 1. Applying the general results derived in the previous section, we find the following
results.

(1) Forany 1z > 0,

No = = Z gtn, — Loy + 2 5020, + — /w[a% w920, |G (u)du (284)
TR 7 2t ¢ o VTwm T ey ’
where we have defined for u > 0:
0 3 1., 1 1
Cuy=->4-(1-u )ln(l + —) tu arctan<f). (285)
4 4 u? u
(2) When tz/70 > 1,
N, = — = 3n,, — 1awnw+lﬂaznw+la3nw+o(l). (286)
TR 174 2t 6ty T

-Derivation of Egs. (60) and (62)
With an initial condition without background:
n,(z=0) =i, withii® =570, (287)
in the asymptotic regime tz/7o > 1, the spectrum satisfies
TR

1 1
—ad,n, = —n,Hn, — —n,0d,n, + ané‘(ainw. (288)
14 TR TR
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As discussed in Section 3.2.3, the dynamics is dominated by the leading-order term in the rhs of this equation, which leads
to a collapse-like behavior.
With an initial condition with background:

n,(z) =no +,(z), ng >0, (289)
introducing the scaling

2 — l~(0)

n,(z) = —n,,’ (z/ ), (290)

TR

the spectrum satisfies in the asymptotic regime tz/7o > 1

1. . 1/. - . 1 - ~ 1 -

07 = —no#i? — — (A9 IR + nod i ) + = (-~ A + 5%]685115?) (291)

Y TR TR

where Z = z/t. The leading-order linear term is

310 = —yny 3. (292)

The solution to this linear equation is periodic
i0(Z) = cos(yneZ)ily — sin(ynoZ) #i'sy, (293)

where 19(Z = 0) = ﬁi%.

A.6. Derivation of the long-range temporal Vlasov equation

The derivation of the long-range Vlasov equation in the temporal domain follows the lines of the corresponding derivation
in the spatial domain outlined in Appendix A.2. In particular, the scaling for the long-range response function reads
R(t) = eR©(gt). For the term P one thus obtains

+00 +00 1 +00 0

/ P(t, 7,2) exp(iwt)dt = ied,n' (T, Z)d; / RO —T) (— / n(1, Z)dw’) dr’. (294)
—0o0 —00 27 —0o0

As in the spatial case, the same procedure applied to the term Q in the equation for the autocorrelation function reveals

that the first nonvanishing term is of second order, £2. Coming back to the original variables, one thus obtains the Vlasov

equation (64) with the effective potential (66).

A.7. Derivation of the WT kinetic equation with a trap V (r)

Starting from Eq. (148), one obtains the following equation for the evolution of n(z) = (N (z))m

0:nm(2) =2y Z lm(meqs;]mpqs(Z)) (295)
b.q,s

where Jipgs = (a;apa;as> denotes the fourth-order moment. The equation governing the evolution of J;;¢s depends on the
corresponding sixth order moment. In this way one obtains an infinite hierarchy of moment equations, in which the nth
order moment depends on the n 4 2th order moment. The closure of the hierarchy can be achieved following the random
phase approximation [37,47]. Assuming that |[U/E| < 1, linear dispersive effects dominate the interaction and bring the
field close to Gaussian statistics [37,51]. By virtue of the factorizability property of statistical Gaussian fields, the sixth order
moment in the equation for Jimpes can be factorized as a product of second-order moments. We obtain in this way

O2Jmpas (2) = 1Ampas)mpgs (2) + 21y W0 cMinpgs (0(2)) + 2iy Rinpgs (0(2)) (296)
with

Ampgs = Pm + Bg — Bp — Bs. (297)

Minpgs () = nnpngng(ny,' +ng' —n ' —n;h), (298)

Rmpqs(n) = 855 Upm (m) (np - nm)nq + (Sgp Usm (m) (ng — nm)np
+ 8% s Upg(m) (1, — ng)ng + 85 Usg (M) (ng — ng)nip, (299)

qu(n) = Z qussns = /u;(r)uq(r) Z n5|us(l‘)|2dl' (300)
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where 8(’; denotes the Kronecker symbol, 8(’; = 1if the mode index {q} equals {s}, 8(’; s = 0 otherwise. We recall here that

{q} labels the two numbers (g, gy) that specify the eigenmode uy, 4, (r) and its eigenvalue B, 4, -
We integrate the equation for Jypgs:

Jpas (2) = €497 [0 (0) + 2iy / e 4masC=E (W Minpgs(M(Z)) + Rinpgs (N(Z)))dE
0
and substitute into the equation for n:

0:Mm(2) = 2y le‘l‘l lAmpquW pqs]mpqs(o))

p.q.s

+42 ) / d¢ coS(Ampgs(z — ;))[Re( mpas mpqs(n(;)))+|meq5|2Mmpqs(n(g))]

p.q.s

- 4)/2 Z/ d¢ Sm(AquS(Z - ;))lm(mequmpqs(n@)))

p.q.s

Under the assumption Vo /8y >> 1, we can take the continuum limit. If we denote ik (z) = njk/g,](2), then

- 2y e - -
azn"(z) = 76/// dKldKZdKBIm(eIAKK1K2K3Z ICIC]IC2IC3]ICIC1IC2IC3(O))

+7/// dK1dK2dIC3/ dc COS(AKK]K2K3(Z $)

X [Re(WKK1K2K3RKK1K2K3 (ﬁ(é‘))) + |WICK1IC2IC3| MICIC1IC2IC3 (ﬁ(g))]
4 2 z 5 5 5 _
_Lﬁ /// dKldKZd’Q/(; d; Sin(AICIqIC2IC3 (Z - ;))lm(WKK1K2K3RKK1K2K3 (n(;’)))

where ,BK ,3[,(/,30], weriaics = Ali/Bollicr/Bollicz/Bollkcs/Bo] aNd SO on, [x] being the integer part of x. The presence of the rapid
phase allows us to use the following results:

m//z cos(mAy)dyp(A)dA :fsmc(v)w(m )dv plidy m¢(0)
0

7 sinf(v) [ 2v Moo
m// sin(mAy)dyp(A)dA =2/ ol — Jdv — 0
0 v mz

and we find

471)/2

azﬁlc(z) = dK1dK2dK38(AKK1K2K3)I:Re(wl(lqlczl(gkl(lqkzl(:; (ﬁ(Z))) + |WKK1K2K3|2MKK1K2K3 (ﬁ(Z))]

We remark that the Kronecker symbol involved in I~2K,(1,f2,c3 (n(z)) can be converted to a Dirac §-function, 8[’21 JBollea/Bol
,338(:(1 — K3). The contribution of the first term I; of kmkz,q (n(2)) can thus be written as

A 1 K
L = / / / die1dicydicsd (Dreyicyies ) RE[Wieyicaies Sy o)1 01 Ui/ o1/ 801 (M) My /01 — M/ o) M /601
= B / dicr8 (B, — BK)RE[( / d’CZWKlf]Kszn[lfz/ﬂo])u[m/ﬂo][lf/ﬂo](n)(”[m/ﬁo] - ”[K/ﬂo])]

= /33/‘1”15(@1 — B Uiy ot/ o1 ) > (g, o) — My o) -

We also made use of the fact that Uy, /gy11c/8,1 (M) = flklk(ﬁ) = ﬁiz f dlc/W,q,mr,czﬁ,c/, and ljl,q,c(ﬁ) = 0::(1 (m). Proceeding
0
similarly for the second term I of Rey,x,i; (1(2)), one obtains I; = L. The contributions of the third and fourth terms of

R yiye; (1(2)) lead to

L=I4= 1361 / dkldKZS(qu ;sz)Re [ KKK K] UIC]KZ (n)(nK1 ﬁxz)ﬁx] .

A permutation of the variables k1 and k; in this expression readily gives I; = I; = 0. Collecting all terms, we finally obtain
the irreversible kinetic equation (151) governing the evolution of 7, ().
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