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Abstract:  We propose a monolithic large-aperture narrowband optical 
filter based on a moiré volume Bragg grating formed by two sequentially 
recorded gratings with slightly different resonant wavelengths.  Such 
recording creates a spatial modulation of refractive index with a slowly 
varying sinusoidal envelope.  By cutting a specimen at a small angle, to a 
thickness of one-period of this envelope, the longitudinal envelope profile 
will shift from a sine profile to a cosine profile across the face of the device.  
The transmission peak of the filter has a tunable bandwidth while remaining 
at a fixed resonant wavelength by a transversal shift of incidence position.  
Analytical expressions for the tunable bandwidth of such a filter are 
calculated and experimental data from a filter operating at 1064 nm with 
bandwidth range 30-90 pm is demonstrated. 
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1. Introduction 

The ability to isolate information encoded in some spectral band of a light signal is critical to 
a number of sensing and communication technologies and there exists an abundance of optical 
filters to fulfill these roles [1–5]. In the pursuit of improved performance for these 
applications, for example higher spectral resolution for lidar or for improving the number of 
WDM channels, filters with narrow bandwidths and high efficiency are desirable. In addition, 
the creation of narrowband, highly coherent light sources which serve as sources for many of 
these same applications depend on similar filtering technology, be it inherent to the design or 
an external component. As an example, spectral narrowing of laser diode emission can be 
achieved using a spectrally selective mirror [6]. This example utilizes a uniform reflective 
volume Bragg grating (VBG) recorded in photo-thermo-refractive (PTR) glass to produce 
narrowband, low loss, high efficiency spectral filtering. Such filters are most directly 
comparable to fiber Bragg gratings (FBGs) but have the advantage of a large aperture, which 
allows free space operation with high power laser beams. Typically a PTR VBG has a full 
width at half maximum (FWHM) reflection bandwidth in the range of 50-500 pm. The 
bandwidth depends on the amplitude of refractive index modulation (RIM) and the thickness. 
To achieve narrower bandwidth filtering, a resonant Fabry-Perot cavity can be formed with 
two VBGs with mutual phase π-shift between their profiles of spatial RIMs. If no phase shift 
is introduced, the whole compound device works as if it were a single VBG with double 
thickness. 

Such a compound VBG cavity was demonstrated in [7] but it was not robust. However, a 
monolithic filter with similar characteristics can be fabricated based on the moiré effect by 
superimposing two gratings with slightly different periods within the same volume. In case of 
the two grating wavevectors being in the same direction, the total recorded pattern has a 
carrier spatial frequency equal to the average frequency of two gratings, while the amplitude 
envelope varies slowly with a spatial frequency equal to half of the difference of the two 
individual frequencies, namely 
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Two neighbor semi-periods of length l = π/q, separated by a zero point of the slowly varying 
envelope cos(qz), have a mutual phase shift of π between their Bragg modulations. This slow 
periodic variation of refractive index modulation has been implemented in FBGs [8], and 
properties of moiré FBGs were intensively studied [9–11]. A volume monolithic device based 
on moiré pattern was demonstrated in PTR glass [12] but no comprehensive theoretical 
analysis was provided at that time and no potential capabilities of such elements were studied. 
In this paper we will discuss features of one-dimensional theory of moiré Bragg gratings and 
will present results of experimental implementation of a moiré resonant VBG cavity with a 
narrow tunable bandwidth. 

2. Notations and basic equations 

Consider two uniform gratings with equal amplitudes of RIM N1/2 and slightly different 
vacuum resonant wavelengths λ1 and λ2 and mutually aligned wave vectors along the z-axis 
which have been recorded in the same medium with background refractive index n0. The 
resulting modulated refractive index is 
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were λ0 is vacuum Bragg resonant wavelength of the moiré grating, n1,φ(z) is the slowly 
varying envelope of the moiré pattern with amplitude N1 and spatial semi-period l, phase γ 
defines the position of the fast spatial modulation of refractive index and phase φ defines the 
position of the slow varying envelope on the z-axis as shown in Fig. 1(a). 

Let us analyze the spectral properties of such a resonator. Propagation of monochromatic 
electromagnetic plane waves inside the reflective VBG may be formulated in terms of 
counter-propagating waves A(z)exp(–iωt+ikz) and B(z)exp(–iωt–ikz) with k = n0ω/c = 2πn0/λ 
[7]. The slowly varying envelopes A(z) and B(z) are coupled by equations 
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where κ(z) is the coupling parameter with n1,φ(z) from Eq. (2) and D is a z-independent 
parameter of detuning from the Bragg resonance condition which corresponds to D = 0. 

At skew propagation with the angle θin inside the VBG, see [7], the coupling parameter 
should be divided by cosθin and, in the case of TM polarization, multiplied by cos(2θin). 
Additionally k should be substituted by kcosθin in the expression for D in Eq. (3) so the 
resonant wavelength will be shifted to 
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where θair is the angle of incidence in air. This angular adjustment of the spectral resonant 
properties is often used in experimental setups with VBGs [13], a feature that is absent for 
FBGs. Below we discuss more sophisticated possibilities for VBGs provided by the presence 
of transverse degrees of freedom. 

3. Spectral properties of moiré VBG filter 

The solution of the system in Eq. (3) for a linear media can be represented in matrix form 

 .
)()(
)()(

)(ˆ,
)0(
)0(

)(ˆ
)(
)(

2221

1211








=








=








zMzM
zMzM

zM
B
A

zM
zB
zA  (5) 

The determinant of matrix M̂  equals one, 1ˆdet =M , which will be also true even in the case 
of loss. In the absence of loss the matrix M̂  related to Eq. (3) belongs to group SL(1,1), and it 
provides conservation of the expression |A(z)|2–|B(z)|2, proportional to the Poynting vector. 

The problem of reflection of incident wave with amplitude A(0) is formulated with 
boundary condition B(L) = 0 at the opposite side of element of length L. According to Eq. (5), 
this condition leads to the following expressions for amplitude reflection and transmission 
coefficients, r and t 
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Here R is reflectance, T is transmittance and the introduced parameter S is the “strength of 
reflection” which obeys the law of additivity [7]. In particular, for two elements reflecting in a 
constructive manner the total strength is the sum of their particular strengths. The equality of 
the matrix determinant to one was used to derive the expression for amplitude transmission 
coefficient t in Eq. (6). 
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The solution of Eq. (3) for a uniform grating with constant n1 is given by Kogelnik’s 
well-known analytic result [14]. Propagation of electromagnetic waves in a non-uniform VBG 
with all z-dependent n0(z), n1(z) and γ(z) can be studied numerically only [15]. 

If the coupling κ(z) depends on z only through the arbitrary real function n1(z) with 
constant γ, then the matrix )(ˆ zM  for system in Eq. (3), at exact Bragg resonance D = 0, has 
the following analytic solution defining the resonant amplitude reflection coefficient r0 
according to Eq. (6) 
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We see that gratings with envelope profiles n1(z) with zero integral values of S(L) = 0 
over the grating thickness demonstrates zero reflection and 100% theoretical transmittance in 
the case of exact Bragg resonance according to Eqs. (6),(7). This zero condition exists for 
n1,φ(z) from Eq. (2) with 0 ≤ z ≤ L = 2l. For the particular envelope phase of φ = 0 in Eq. (2) 
this result can be interpreted as perfect transmission through a Fabry-Perot filter of two 
identical reflective elements. Each of them is comprised of an apodized VBG from one semi-
period of the moiré pattern with the following reflection strength 
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In [12] we have reported experimental results of the first such moiré VBG filter 
fabricated in PTR glass. During the recording process the glass sample was sequentially 
exposed with the stationary intensity interference patterns formed by splitting and overlapping 
two parts of flat-front UV beam at λUV = 325 nm. The angle 2α between two overlapping 
coherent UV waves defines the resonant VBG wavelength as λ0 = n0λUV/sinα, and for the 
discussed grating λ0 was 1550 nm. A small change in the recording angle α for the second 
grating resulted in a moiré pattern with semi-period of the RIM envelope equal to l = 3 mm. 
These exposures were followed by a thermal development to produce a permanent change of 
refractive index in PTR glass. RIM of up to 10–3 ≡ 103ppm can be achieved [16]. The 
modulation of each grating after development was around ½N1 = 120 ppm. The filter 
produced a narrow transmission peak which had a bandwidth of 50 pm with 95% maximum 
transmittance. 

One can see that the strength integral from Eq. (7) for n1,φ(z) from Eq. (2) over one moiré 
period 2l, equals zero regardless of the starting phase φ of envelope profile. Meaning that 
100% theoretical peak transmission occurs at the same resonant Bragg wavelength λ0 whether 
the envelope modulation amplitude profile is a sine period, a cosine one, or some intermediate 
profile between the two. But, the bandwidth of a transmission peak will depend on φ. One of 
the main goals of this paper is to find the formula for the bandwidth of a moiré filter 
depending on its parameters λ0, n0, l, N1 and the starting phase φ of the moiré envelope. 

Bandwidth tunability of the resonant peak is possible in a moiré VBG due to the presence 
of transverse degrees of freedom and it can be useful for some spectroscopic applications or in 
laser cavity design. Implementation of a filter with tunable bandwidth can be realized in the 
following way: while the wave vector Q of the fast Bragg modulation is directed along z-axis, 
the moiré pattern wave vector q can be very slightly tilted from z-axis by appropriately 
recording two gratings with non-collinear vectors Q1 and Q2. Then, with transverse shift along 
the x-direction, the moiré envelope profile inside such a specimen is changing from a sine to a 
cosine profile as illustrated in Fig. 1(a). Transmission peak shapes calculated numerically 
according to Eqs. (3),(5),(6) in the vicinity of the resonant wavelength for different transverse 
illumination points are presented in Fig. 1(b). 
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Fig. 1. (a) Scheme of a one-period moiré VBG with RIM envelope profiles of shifted phases.  
(b) Corresponding numerically calculated transmission peaks versus dimensionless detuning 
Φ = Dl for different envelope profiles. 

In these simulations, the reflection strength of one semi-period in Eq. (8) was sM = 1.5, and 
the argument of wavelength detuning is expressed through the dimensionless detuning phase 
Φ = Dl, where the semi-period l = L/2 is defined in Eq. (2) and the detuning D is defined in 
Eq. (3). 

4. Analytic theory of transmission peak bandwidths 

To begin the theoretical analysis of transmission peak shapes of a resonant moiré Bragg 
cavity, it is instructive to start with studying more simple resonant cavities. First we will bring 
up the properties of a regular Fabry-Perot resonator consisting of two equivalent thin mirrors. 
Then we will consider resonant cavity made of two uniform Bragg gratings with mutual π 
phase shift between their RIMs. For all mentioned resonant cavities we will use the transfer 
matrix technique. By deriving the dependence of the propagation matrix element M22(L) on 
the detuning Φ in the vicinity of the transmission peak resonance we will get the spectral 
shape of the transmission peak as T = 1/|M22(L)|2 according to Eq. (6). 

Suppose the reflectivity of each mirror of a regular Fabry-Perot cavity is R = tanh2s, see 
Eq. (6), where strength s is a parameter of the propagation matrix )(ˆ sm  through one thin 
mirror similar to Eq. (7). The matrix for another element shifted by distance l is similar to first 
matrix with additional phase matrix multipliers due to this longitudinal shift [7], so the total 
propagation matrix M̂  of a two-element system is: 
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When mirrors are attached to each other, l = 0, then M̂  is the unit matrix and we have 100% 
resonant transmission. In general, the resonant transmission occurs at some particular 
wavelength λ0 when the phase matrix in Eq. (7) is proportional to unit one 1̂)(ˆ

0 ±=lkK , 
k0 = 2πn0/λ0, so it should be k0l = πp, where p is integer. We obtain the well-known result that 
a half-integer number of wavelengths is needed for resonant transmission: l = pλ0/(2n0). 

With detuning from the resonant wavelength, the transmission decreases according to a 
Lorentzian shape following Eqs. (9),(6): 
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Here Φ is a phase shift in the cavity due to wavelength detuning δλ and parameter F is the 
finesse which determines the bandwidth of the transmission peak. The standard expression for 
F is 4R/(1–R)2 [17] which coincides with ours in Eq. (10) when taking into account 
R = tanh2s, see Eq. (6). The maximum reflectivity of such a resonator, given in literature as 
Rmax = 4R/(1+R)2, is equal Rmax = tanh2(2s) in our notations for a double reflection strength 
device consisting of two mirrors with s = arctanh R  each. 

Finally, the FWHM for a high-finesse cavity, F >> 1, is equal to twice the wavelength 
detuning δλHM corresponding to ΦHM = 1/F ½ which gives T = ½ in Eq. (10): 

 .))2sinh(()(2 0
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Let us now discuss uniform Bragg gratings. The propagation matrix ),,(ˆ I γΦsm  for a 
grating with constant n1 in the coupled wave system in Eq. (3) has a known analytical solution 
for arbitrary detuning from the resonant Bragg condition 
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Subscript U points out relation to uniform gratings. 
Having the propagation matrix Im̂  of a single VBG in an analytical form from Eq. (12) 

makes it possible to derive analytical expression of the bandwidth of a resonant cavity formed 
by two uniform VBGs with a mutual phase shift of π in their modulations. Matrix IIm̂  of a 
second VBG attached at a distance l will have additional phase K̂ -matrix factors describing 
this longitudinal shift similar to Eq. (9). A π phase shift of the modulation of the second 
grating relative to the modulation of the first grating is equivalent to flipping the sign of n1 
and therefore s as well. The Lorentzian shape of the transmission peak can be written 
according to transmittance T from Eq. (6) similar to the last expression from Eq. (10) with the 
following intermediate derivation steps: 
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The last expression in Eq. (13) defines the bandwidth of a resonant cavity formed by two 
uniform π-shifted Bragg gratings of length l and reflection strength s = sU from Eq. (12) 
similar to the bandwidth from Eq. (11) 
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Derivation of an analytical formula for the transmission peak bandwidth for the case of a 
moiré Bragg grating is more challenging because there is no analytical solution for the 
propagation matrix from Eq. (5) of the system of coupled wave equations in Eq. (3). In order 
to get the width of the peak approximated by the Lorentzian shape, we have to know the 
expansion of the propagation matrix element M22 up to the second power Φ according to 
Eq. (6). We will begin this derivation by rewriting the system of equations in Eq. (3) using 
notations from Eqs. (2),(8)-(10) as well as new notations such as ς for the dimensionless 
spatial variable 
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Here we performed the transition from wave amplitudes A and B to amplitudes a and b with 
phase K-matrix introduced in Eq. (9) and we get the coupling matrix with a linear dependence 
on detuning Φ. This allows the following iterative matrix derivations to be performed. 

After substituting the solution for wave amplitudes a and b, in propagation matrix form, 
into the coupled wave equation, we get the differential equation of propagation matrix )(ˆ ςm  
with identity condition at the boundary ς = 0: 
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By representing the propagation matrix )(ˆ ςm  in the following expansion form with the 
detuning Φ, we get matrix equations with corresponding initial conditions from Eqs. (16),(15): 
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Differential equations for matrices 
0m̂ , )1(û  and )2(û  are relations at corresponding powers of 

detuning Φ in the differential equation for the whole matrix m̂ . 
Propagation matrix )(ˆ 0 ςm  at the exact Bragg condition, which is known from Eq. (7), 

allows the calculation of a first-order correction matrix )2(ˆ )1( πu  by integrating the 
corresponding differential equation in Eq. (17) over the whole moiré period 
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Here I0(s) = J0(is) is modified zero-order Bessel function. 
After rewriting the last differential matrix equation in Eq. (17) in the form 
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d
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d
d
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one can check that the diagonal elements of the matrix expression in the square brackets are 
equal to zero. Finally, we get the propagation matrix element defining the bandwidth of a 
Lorentzian transmission peak: 
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Here sM is defined in Eq. (8). 
We see that the bandwidth of the transmission peak in Eq. (20) is increasing with tuning 

of the envelope phase φ from zero. At φ = π/2 it actually has an infinite value. This means that 
the Lorentzian approximation for the shape of transmission peak is not valid anymore. To 
approximate the peak for this value of φ we need to take into account the next term which is 
proportional to the forth power of detuning Φ4. We were able to find the expression for 
bandwidth of this double coherent moiré (DCM) filter formed by a cosine envelope profile 
corresponding to φ = π/2, though this derivation is rather cumbersome. The necessary 
calculation steps are presented in Appendix and the final result is 
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Here the modified zero-order Bessel function I0(s) and the modified zero-order Struve 
function L0(s) with s = sM from Eq. (8) have known power representations 
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For reference we would like to present analytical expressions for the bandwidths of 
transmission peaks in the case of double coherent cavities formed by thin reflective elements 
and by uniform Bragg gratings. A double coherent reflector (DCR) cavity formed by 
consecutive thin reflectors with strengths ½s, –s and ½s separated by l has a bandwidth of the 
100% resonant transmission peak given by: 
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This result can be derived in terms of the transfer matrix approach used in Eqs. (9),(10). 
Double coherent resonant cavity formed by three Bragg gratings of lengths ½l, l and ½l 

with the same amplitude of modulation n1 and mutual π-shifts should demonstrate a flat-top 
100% transmission peak occurring at resonant Bragg wavelength λ0 with a bandwidth derived 
in a fashion similar to Eq. (13) 
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where reflection strength s is equal sU from Eq. (12). 

5. Physical implementation 

In order to verify the theoretically predicted bandwidths and peak shapes for a moiré VBG 
filter of varying φ values a moiré VBG similar to the one in Fig. 1(a) was created. This moiré 
VBG was designed to demonstrate the concept of a filter with tunable bandwidth by 
transverse change of the position of incidence. Measurement of the spectral transmission at 
varying transverse locations along the grating allowed us to prove the validity of the obtained 
formulae in Eq. (20) and Eq. (21). 

To create the moiré VBG for testing, a PTR glass specimen was sequentially exposed to 
two UV interference patterns designed to individually create two reflective VBGs with 
slightly different resonant wavelengths close to λ0 = 1.064 µm. The superposition of these two 
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gratings generated the moiré pattern discussed in Eq. (1). Then the specimen was thermally 
developed to produce permanent RIM of the moiré pattern. The semi-period of the slowly 
varying envelope was determined from side illuminating the specimen in a transmission VBG 
regime with longitudinal translation along z-direction. It was observed that the efficiency of 
the diffraction in the transmission regime had a periodicity of l = ½L = 1.635 mm relating to 
the semi-period of the moiré pattern in the reflection regime. 

The background refractive index of the PTR glass is n0 = 1.485 at λ0. The amplitude of 
RIM for each grating was estimated to be n1 = 215 ppm based on the technical parameters of 
recording and development procedure. Thus, the maximum amplitude of the moiré envelope 
is N1 = 2n1 = 430 ppm from Eq. (2) and the reflection strength of one semi-period is 
sM = 2N1l/λ0 = 1.32 from Eq. (8). 

In the device under consideration, both recorded Bragg wave vectors Q1 and Q2 are 
collinear along the z-axis. Two parallel cuts of this specimen with separation 
L = 2l = 3.27 mm were made at a small angle θ ≈ 5° = 0.087 rad with respect to the Bragg 
modulation fringe planes. This small angle is used to provide transverse variation of the moiré 
envelop similar to that illustrated on Fig. 1(a). The magnitude of the transverse shift along x-
direction necessary to change the envelope profile from a sine period to a cosine period is 
about ½l/θ = 9.4 mm. In order for laser beam propagation inside the moiré VBG to be normal 
to the fringe planes, the VBG should be placed at a small angle n0θ in air with respect to the 
incident beam. This skew incidence leads to a trivially small constant transverse shift of the 
transmitted beam due to refraction on parallel surfaces of the glass specimen. The more 
advanced situation proposed in Fig. 1(a) where vectors Q1 and Q2 were not exactly collinear 
but had a small specific mutual angle is able to provide a device where light is incident along 
the surface normal. This ability to vary the directions of the recorded grating wave vectors 
inside the multiplexed VBG would give more opportunities for the design of sophisticated 
resonant optical elements for different laser applications [18]. 

Measurements of the transmission spectrum at different transverse points along the moiré 
VBG were performed using a tunable laser source with beam diameter of 1 mm. The small 
beam diameter was used so that the effect of inhomogeneity in the grating properties across 
the beam aperture would be minimized. Also with larger beam sizes the aperture of the beam 
would encircle areas of the tilted grating with phase φ in significant range to produce some 
convolution of spectrum across the beam aperture such as described in [19] and a small beam 
minimizes these effects. The tunable laser was incident normal to the fringe planes of the 
grating structure and, as the wavelength of the incident beam was swept through its range, the 
transmitted power through the moiré VBG was monitored. Figure 2 shows experimental and 
numerical data for cases where light is incident on a moiré envelope with a sine and a cosine 
profile. 
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Fig. 2. Experimental (dots) and numerically modeled (line) irradiance transmission versus 
spectral detuning δλ = λ–λ0: (a) sine moiré envelope profile; (b) cosine profile. 
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We see that experimental spectra are fit with good accuracy by numerical solutions of the 
coupled wave system in Eq. (3) with the characteristic parameters of this moiré VBG 
discussed above. 

6. Discussion of experimental results 

Figure 3 shows actual bandwidths of the moiré VBG measured at different transverse 
illumination positions with steps of 1 mm along the transverse x-axis, see Fig. 1(a). The x-
coordinate has been recalculated in terms of the initial phase φ of the envelope profile n1,φ(z) 
in Eq. (2). The solid line from numerical modeling of Eq. (3) fits well with the dots 
representing the experimental data. The range of FWHM bandwidths along this device 
aperture ranges from 30 pm to 90 pm. Deviation of experimental dots from simulation curve 
is due to both measurement errors and inhomogeneities of fabricated moiré VBG filter. The 
dashed line on Fig. 3 is our simple analytical result from Eq. (20) for a Lorentzian peak 
bandwidth which gives very good approximation for envelope angles 0 ≤ φ ≤ π/4. The square 
symbol with a horizontal dotted line on Fig. 3 is an analytical result from Eq. (21) for the flat-
top peak bandwidth in the case of a cosine envelope profile with φ = ½π. The dashed and 
dotted lines provide good estimates for the tunable bandwidth of our one moiré envelope 
period VBG with arbitrary phase φ defining any possible envelope profile between the two 
extreme cases of sine and cosine profiles. 
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Fig. 3. FWHM bandwidth of moiré VBG versus the tunable envelope phase parameter 2φ/π: 
dots – experimental measurements, solid line – numerical modeling, dashed line – analytical 
expression (20) for the bandwidth of a Lorentzian peak, square dot with dotted line – analytical 
expression (21) for the bandwidth of a flat-top peak of a double coherent resonant cavity. 

The analytical result in Eq. (21) describing the transmission peak using only the forth 
power of detuning Φ4 gives an approximation error of 4.1% in comparison with the numerical 
simulations for a moiré reflection strength of sM = 1.32, see solid and dotted lines at the right 
edge of Fig. 3. With an increasing sM, the approximation accuracy for the FWHM bandwidth 
of the flat-top transmission peak for the double coherent resonant cavity of a moiré cosine 
envelope profile improves and for sM = 2, the approximation error is reduced to 1.2%. The 
ratio of maximum to minimum bandwidth also depends on the moiré reflection strength; in 
our case it is approximately 3.1 for sM = 1.32 and it is 5.6 for sM = 2. 

All of the measured spectra for the envelope profiles with different phase φ have 
demonstrated resonant peak transmissions of 95% or more using the previously mentioned 
1 mm diameter beam. The decrease of a resonant transmission from 100% can be due to 
fabrication non-uniformities in the VBG causing small spectral shifts of the transmission peak 
position for different aperture points. As a result, each of the total transmission spectra after 
integrating over the whole beam cross-section will demonstrate slightly washed out 
transmission peak producing reduced maximum transmission value. Another important cause 
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of reduced resonant transmittance is optical loss in glass, mostly due to scattering. The 
decimal loss coefficient in PTR glass of the studied grating is α10 = 0.005 cm–1, and it can be 
as low as 0.001 cm–1 for PTR glass [16]. This parameter describes a decrease of the wave 
intensity with propagation as zz e αα −− =∝ 1010 , so the natural loss coefficient is 
α = α10ln10 = 2.3α10 and wave amplitude decreases as )exp( 2

1 zα−∝ . 
We can estimate the decrease of the resonant transmission peak from coupled wave 

system in Eq. (15) at exact resonance without a detuning matrix term σ̂Φi  in )(ˆ ςw , but with 
amplitude loss matrix term σα ˆ2

1 l−  for counter-propagating waves. The determinant of the 
propagation matrix m̂  still equals one which follows mathematically from the condition 

0)ˆ(tr =w  valid in our current case of counter-propagating waves experiencing the same 
longitudinal losses. As a result, the equation for the amplitude transmission coefficient in Eq. 
(6) is still correct. Finally, with the use of correction matrix term )2(ˆ )1( πu  from Eq. (18) we 
obtain the following first-order correction to the resonant transmission peak of a moiré filter 
with tunable bandwidth 

 .)coscosh()(211),()2(ˆ1̂)2(ˆ MM0
2
22

2)1(
2
1 lssImTOulm αϕαπαπ −≈=+−=  (25) 

Using the values α = 2.3α10 = 0.0115 cm–1, sM = 1.32 and l = 1.635mm from the actual 
fabricated moiré VBG and Eq. (25), we expect a theoretical value T = 98.9% for the reduced 
resonant transmission in the case of the sine envelope profile with φ = 0, which is most 
sensitive to losses due to its producing the narrowest transmission peak. So, there are 
possibilities for increasing the experimental value of 95% for transmission by improving the 
parameters of the recording process. Still, for recording resonant Bragg filters with much 
more narrow intended bandwidth, the losses could be one of the main limiting factors for the 
maximum resonant transmission. 

7. Conclusion 

The moiré VBG filter with tunable bandwidth is suggested as an optical element for laser 
design and for significant narrowing of emission spectra of lasers of different types. Detailed 
theoretical analysis based on transfer matrix approach with an additional expansion of the 
propagation matrix in a power series of spectral detuning was used to derive analytic 
expressions for the tunable bandwidth of a moiré VBG filter. This analysis provided 
expressions for both the Lorentzian transmission peak of a one-period sine moiré cavity and 
for the flat-top transmission peak generated by a double coherent resonant cavity occurring in 
the case of a one-period cosine moiré envelope profile. An analytic expression was also 
derived for the reduction of the resonant peak transmission due to losses that can exist in 
actual devices. A robust monolithic large-aperture moiré VBG filter was fabricated in a 
material known to be tolerant to high-power laser irradiation. The processing of this device 
enabled creating a filter with a tunable spectral bandwidth at a fixed resonant wavelength 
which confirmed our theoretical results. 

Appendix 

Let us calculate the parameter H in Eq. (21). In the case of a cosine envelope profile with 
phase φ = ½π, the integral strength along the grating is S(ς) = ½ssinς according to Eq. (18). By 
expanding the matrix )(ˆ ςm  up to the forth power of Φ and using differential equations for 

)(ˆ )3( ςu  and )(ˆ )4( ςu , similar to the ones in Eq. (17), one can show that 
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Here matrix element )2(
12U  has been calculated analytically and it is equal to twice the product 

of a modified zero-order Bessel function I0(s) and a modified zero-order Struve function L0(s). 
The square of the absolute value of the matrix element defining the transmission 

spectrum according to Eqs. (6),(21),(26) is 
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From the other side, the determinant of the propagation matrix is equal one and it does 
not depend on spectral detuning. So all coefficients at powers of Φ in the calculated 
determinant of the matrix expansion from Eq. (26) should be equal to zero 
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Comparing Eq. (27) and Eq. (28) we get with Eq. (26) 
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We have used this expression in Eq. (21). 
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