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We provide a squeeze-like transformation that allows one to remove a position
dependent mass from the Hamiltonian. Methods to solve the Schrödinger equa-
tion may then be applied to find the respective eigenvalues and eigenfunctions.
As an example, we consider a position-dependent-mass that leads to the integrable
Morse potential and therefore to well-known solutions. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4890462]

I. INTRODUCTION

Considerable interest has been recently devoted in finding exact solutions to Schrödinger equa-
tions involving known potentials when the mass is position-dependent (PDM). Among them, one
may mention the Morse and Coulomb potentials.1–18 Moreover, it has been recently shown19 that to
lowest order of perturbation theory, there exists a whole class of Hermitian position-dependent-mass
Hamiltonians that are associated with pseudo-Hermitian Hamiltonians.

A great deal of interest has been paid to the interplay between these pseudo-Hermitian parity-
time reversal (PT)-symmetric Hamiltonian and their equivalent Hermitian representations.20–24 In
particular, Mostafazadeh20, 21 has considered the transition to the classical limit by showing that the
relevant classical Hamiltonian for the PT-symmetric cubic anharmonic oscillator plus a harmonic
term produces a behavior similar to a point particle with position-dependent-mass interacting with
a quartic harmonic oscillator.

Indeed, many physical settings exist in which the effective mass can in principle depend on
position. For example, Wang et al.25 have recently shown that the Schrödinger equation for a
thin charged shell moving under the influence of its own gravitational field may be viewed as a
position-dependent-mass problem.

Displacement operators have already been introduced for systems with position-dependent-
mass, for null or constant potentials from which generalized forms of the momentum operator have
been obtained.26, 27

In this contribution, we demonstrate the possibility of transforming via similarity transforma-
tions, a position dependent mass Hamiltonian into a Hamiltonian with constant (unity) mass. By
doing so, these Hamiltonians can then be solved (if integrable) using well-known techniques from
quantum mechanics. If on the other hand the potentials are not solvable, perturbative methods may
be applied for their solution. In order to achieve this objective, we use aspects associated with some
non-classical states of the harmonic oscillator, namely, squeezed states.28, 29 For squeezed states, the
uncertainty may be “squeezed” in one of the quadratures, while in the other canonical conjugate
variable the uncertainty increases.
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II. SQUEEZE OPERATOR

In what follows, we will first show how the constant mass may be eliminated from the kinetic
energy in a Hamiltonian. In this regard, consider the Hamiltonian

Ĥ = p̂2

2m0
+ V (x), (1)

where the mass particle is m0 and � = 1. This Hamiltonian is in turn transformed using the squeeze
unitary operator28

R̂ = exp

[
−i

ln m0

4
( p̂x̂ + x̂ p̂)

]
. (2)

To find how the operator R̂ transforms the position and the momentum operators, the Hadamard
lemma30 is used, i.e., eÂ B̂e− Â = B̂ + [

Â, B̂
] + 1

2!

[
Â,

[
Â, B̂

]] + 1
3!

[
Â,

[
Â,

[
Â, B̂

]]] + . . ., from
which we obtain that

R̂x̂ R̂† = x̂√
m0

, R̂ p̂ R̂† = √
m0 p̂. (3)

As a result, the transformed Hamiltonian takes the form

ĤR = R̂ Ĥ R̂† = p̂2

2
+ V

(
x√
m0

)
. (4)

And thus the mass has been effectively eliminated from the kinetic energy term. Based on this latter
possibility, one could ask if the mass can also be eliminated from the kinetic energy via a proper
transformation, even if it is position dependent.

III. POSITION DEPENDENT MASS

There is always some uncertainty as to the actual form of the kinetic energy term in a Hamil-
tonian, when the mass is position dependent. This is because m(x) no longer commutes with the
momentum. There are consequently several ways to write the kinetic part of the Hamiltonian that
must be kept Hermitian; for instance,

Ĥkin = 1

4

(
mα p̂mβ p̂mγ + mγ p̂mβ p̂mα

)
, α + β + γ = −1. (5)

On the other hand, by choosing α = γ = 0, β = − 1, we arrive to the ordering proposed by
BenDaniel and Duke,31

Ĥkin = p̂
1

2m (x)
p̂, (6)

while with the choice α = − 1, β = γ = 0, we get

Ĥkin = 1

4

[
1

m (x)
p̂2 + p̂2 1

m (x)

]
. (7)

Although there is no apparent reason in selecting any particular ordering for the kinetic position-
dependent-mass Hamiltonian, here we will choose to work with BenDaniel and Duke’s proposal.
Physical arguments supporting this choice were put forward by Lévy-Leblond.32

We now consider the complete quantum Hamiltonian of a particle with position-dependent mass

Ĥ = p̂
1

2m (x)
p̂ + V (x) . (8)
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We then use the transformation

ĤT = T̂ † Ĥ T̂ , (9)

with

T̂ = exp

{
− i

2
[ p̂g (x̂) + g (x̂) p̂]

}
, (10)

where g(x) is a well behaved function that will depend on position. Using the Hadamard lemma,30

one can show that the momentum operator transforms according to

T̂ † p̂T̂ = 1

2
[ p̂G(x) + G(x) p̂] , (11)

where

G(x) =
∞∑

k=0

(−1)k Gk(x)

k!
, (12)

for which

Gk+1(x) = g2(x)
d

dx

Gk(x)

g(x)
, G0 = 1. (13)

On the other hand, for the position operator, we obtain

T̂ x̂ T̂ † = x + F(x), T̂ † x̂ T̂ = x + f (x), (14)

where

F(x) =
∞∑

k=1

(−1)k fk(x)

k!
, f (x) =

∞∑
k=1

fk(x)

k!
, (15)

with

f1(x) = g(x), fk+1(x) = g(x)
d fk(x)

dx
. (16)

From Eq. (11), we note that

T̂ p̂2T̂ † = p̂G p̂ − 1

4

d2G2

dx2
+

(
dG

dx

)2

. (17)

From the above equations, we can then write

ĤT = T̂ † Ĥ T̂ = p̂2

2
+ W (x), (18)

where the transformed potential W (x) is given by

W (x) = Ṽ [x + f (x)] , (19)

and where

Ṽ (x) = V (x) + 1

8

d2G2

dx2
− 1

8

(
dG

dx

)2

. (20)

Up to this point, we have succeeded in eliminating the position dependency of the mass. Note that
both Hamiltonians, Ĥ and ĤT, have the same sets of eigenvalues since they are related by a similarity
transformation. Therefore, by finding the eigenvalues of ĤT we can directly obtain the eigenvalues
corresponding to the position dependent mass Hamiltonian Ĥ .
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FIG. 1. Plot of the mass function (21) for α = 1 and β = 1

2
, 1, 2.

IV. AN EXAMPLE

Let us consider a mass that decays with the position in an exponential-like fashion, i.e., let

m(x) = 1(
1 + αβeβx

)2 . (21)

Figure 1 depicts this mass dependence on position when α = 1, and for three different values of the
parameter β.

This particular dependence of the mass on position suggests the auxiliary function g(x) = αeβx,
in which case the similarity transformation takes the form

T̂ = exp
[
−i

α

2

(
p̂eβx + eβx p̂

)]
. (22)

From here one finds that

f (x) = − 1

β
ln

(
1 − αβeβx

)
(23)

and

G (x) = 1 + αβeβx , (24)

that is consistent with G2 = 1

m
.

With this particular choice for a position dependent mass (21), we also choose the following
potential:

V (x) = a0 + a1e−βx + a2e−2βx + a3eβx + a4e2βx , (25)

with real arbitrary coefficients. If a2 = a2
1

4a0
, a3 = − 1

4αβ3, and a4 = − 3
8α2β4, the transformed

potential function W (x) is given by the Morse potential

W (x) = De
[
1 − e−β(x−γ )]2

, (26)

where De = (2a0 − αβa1)2

4a0
and γ = 1

β
ln

(
a1

αβa1 − 2a0

)
.
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FIG. 2. Plot of the potential (25) for α = 1 , β = 1

2
, 1, 2, and a0 = a1 = 1.

In Figure 2, we plot the original potential (25) as a function of the position for the same values
as in Figure 1, when a0 = a1 = 1. The solution of the transformed equation can now be obtained
given that the mass is constant and the potential involved is of the Morse type that is known to admit
analytical solutions.

V. CONCLUSIONS

By means of a squeeze-like unitary transformation, we have related a position dependent mass
Hamiltonian to a Hamiltonian with constant mass. By doing so, we can use standard methods for an-
alyzing quantum mechanical problems of this type. Importantly, the eigenvalues of the transformed
Hamiltonian are the same as those associated with the original position dependent problem. Mean-
while the eigenfunctions of these two Hamiltonians are related by a similarity transformation-given
by the squeeze-like operator (10).
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