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ABSTRACT 
 
There is much interest in enhancement of the absorbance performance of nonlinear absorber solid-state filters. In this 
work we present an advanced reversible nonlinear filter based on a dye-doped sol-gel matrix. The absorbance 
enhancement was achieved by using a combination of two absorption mechanisms in the same molecule; a photochromic 
absorption which is induced by 2-photon absorption (2PA). The 2PA serves as the trigger for initiating the 
photochromism through Förster-resonance-energy-transfer (FRET) between the fluorescent donor and the photochromic 
acceptor. We synthesized a new bifunctional-chromophore that incorporated a carbazole-derived 2PA fluorescent donor 
and a chromene-derived photochromic acceptor, covalently linked together in a single molecule by a ~6 Å carboxyl 
group or oxygen bridge. The bifunctional-chromophore was doped in an inorganic-organic hybrid matrix prepared by the 
fast-sol-gel process. These materials solidify without shrinkage or formation of cracks and present promising properties 
as optical matrices for smart filters. The dye-doped sol-gel disc presents high transparency in the visible region 
("colorless"), which under UV-irradiation (one-photon absorption in the photochromic part of the molecule), transforms 
into a strongly absorbing filter ("dark colored"), due to the conversion of the photochromic moiety to its "open" 
absorbing form. We have demonstrated that this ring-opening can also be induced by visible-light (620 nm) using the 
2PA carbazole-derived moiety of the molecule. We have studied the fabrication routes and optical performance of these 
filters. We present studies of the 2PA mechanism of the carbazole derivative, FRET efficiency of the combined-molecule 
as well as in solutions of the individual moieties, and reversible dynamics of the photochromic moiety.   
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1. INTRODUCTION 

 
Nonlinear solid-state filters are devices, which can be highly useful in protection of optical sensors in advanced optical 
systems by controlling the exposed light intensity1. However in order to be suitable for use in such optical systems (e.g. 
observation, navigation, fire control and reconnaissance systems) these filters should comply with strict optical 
requirements on one hand and also offer significant performance on the other hand. New organic materials possess 
promising performances as nonlinear optical materials and the common way to dope organic molecules is to incorporate 
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them in different host materials such as organic polymers. Matrices based on organic materials are usually not suitable as 
opto-electronic devices due to limitations in optical quality and durability. In contrast, ceramic glassy materials are a 
favored choice for fabrication of opto-electronic devices. Ceramic materials have several intrinsic advantages over 
polymers, such as high temperature durability, resistance to chemical attack, exceptional toughness and some ceramics 
possess excellent optical properties (e.g. SiO2, TiO2, Al2O3, and ZrO2). The drawback of ceramics as matrices for 
incorporation of organic chromophores is that classical ceramic fabrication methods use high temperature which is not 
suitable for organic molecules. The sol-gel technology allows fabrication of optical glassy monoliths with desired 
dopants. There are many routes for fabrication of sol-gel monoliths. The sol-gel process is a chemical route to produce 
glassy based materials at low temperature2-5. Two main advantages of the sol-gel process are (1) the ability to incorporate 
in the sol-gel matrix various organic or inorganic functional additives and (2) the ability to produce versatile final 
configurations such as monolith/bulk glasses, thin films/coatings, nanoparticles and fibers. In addition the chemical and 
physical properties of the final product can be controlled during the process and properties such as porosity, density and 
specific linear and non-linear optical properties can be tailored. Therefore the sol-gel process can be treated as a "tool 
kit" which allows fabrication of a variety of monoliths differing in porosity and ingredients. Sol-gel technology offers the 
ability to dope an extended variety of additives, such as ceramic oxides, metal ions, inorganic compounds, metallic 
particles, quantum dots, organic dyes, and bio-molecules such as enzymes. Doping can be done in two different phases in 
the sol-gel monolith: as part of the network of the monolith or as encapsulation in the pores. Additional options can be in 
the interface. The main routes for doping are: mixing the dopants in the initial precursor solution, mixing the dopants 
with hydrolyzed sol before gelation, impregnation of dopant into the dried gel from solution or vapor state. For optical 
applications it is required that the homogeneity of the obtained samples will be on the order of several nanometers, 
otherwise there will be significant scattering effects. Recently, we developed a new class of sol-gel materials, which are 
made of a combination of silica alkoxides and organic modified silica alkoxides with final low organic content (<30%). 
The fabrication process named fast sol-gel (FSG)6 provides materials without shrinkage and cracks that can be used as 
optical devices and as adhesive materials, and can be doped with varied dopants such as carbon nanotubes and organic 
dyes7-8. 
 
Many materials and molecules were already studied as candidate dopants for a nonlinear optical ( NLO) filter, such as 
inorganic nano-crystals9,10, quantum dots11,12, carbon based nano-particles13,14, and organic dyes presenting 2-photon 
absorbing (2PA) or excited state absorbing (ESA) properties15-17. The desire requirements from NLO filters are to 
transmit light with lower irradiance input and become strong absorbing at higher irradiance. The expected performance 
from the NLO filter is to present a broadband nonlinear absorption which can be use for optical limiting applications in 
the visible spectrum.  Already have been proposed many mechanisms such as 2PA18,19, ESA20,21, reverse saturable 
absorption (RSA)22,23, nonlinear scattering24,25, etc. Most of the materials were studied in solution or suspension state9,11,-

14,17-20 and the minority in solid matrix, mainly in organic polymer 21,22,26-29 and lately also in sol-gel based matrices30-32.  
Unfortunately most of these extensive studies did not result in NLO filters which appropriate for optical limiting 
applications in real optical systems. From the point of the functional NLO material, in most cases, the obtained optical 
limiting was not sufficient for practical applications, and from the matrices point of view a filter contain solvent is not 
desire and organic matrices are lack due to  limitations in optical quality and durability. 
 
Since the performance obtained when using only one of these nonlinear mechanisms may not meet the application 
requirements, due to insufficient nonlinearity of the materials. Previously, it was suggested to use additional mechanisms 
in order to enhance the performance33. This can be achieved by two separate mechanisms, such as has been demonstrated 
in multiphasic nanoporous glass34 or two coupled mechanisms via resonance energy transfer (RET)35,36. Previously, a 
2PA mechanism coupled via RET with reverse saturable absorption (RSA) has been demonstrated in solution35. In this 
paper we suggest a mechanism to enhance 2PA performance by coupling it with photochromic material where all doped 
in a solid-state matrix based on sol-gel technology with improve optical properties. In this case, the 2PA serves as the 
trigger for initiating the photochromism through a Förster-resonance-energy-transfer (FRET) between the fluorescent 
donor and the photochromic acceptor. FRET is a mechanism describing the energy transfer from an excited donor to an 
acceptor through nonradiative dipole-dipole coupling37,38. Photochromism, defined as a reversible transformation within 
a unimolecular species, induced in one or both directions by electromagnetic radiation39, attracts considerable interest 
owing to the potential use of this phenomenon in various applications. Among such applications, the development of 
optical data storage materials40 optical limiting41 and manipulating supramolecular self-assemblies42 should be 
mentioned. Using two-photon absorption (2PA) instead of one-photon absorption for inducing photochromic 
transformations offers further advantages and opens new possibilities in data recording and biomedical applications43. 
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viscous sol-gel resin is quickly produced which, after a fast and simple curing process, leads to the final glass-like 
product. Avoiding the use of a common solvent as well as the continual removal of the liquid phase formed during the 
reaction, significantly decreases the processing time and eliminates the contraction volume and fracture formation. The 
obtained viscous sol-gel resin can be either immediately solidified or dilute by a solvent, such as THF, for later use. The 
FSG technique allows reproducible preparation of materials with well controlled properties. By changing the ratio of the 
precursors or the organic residues, the end product can be varied between a silicone rubber and a silica glass. Thus, the 
mechanical and optical properties of an FSG resin can be custom designed for required specifications between these two 
extremes. In the current work, we transform the sol-gel matrix to a more hydrophobic environment in order to increase 
the solubility and stability of the dopant chromophores in the sol-gel matrix. This issue regarding photochromic materials 
in sol-gel matrices was discussed previously by Levi et. al.47. Therefore, an alkoxide acrylic precursor (3-
methacryloxypropyl-trimethoxysilane (MAPTMS), a precursor with one organic and three inorganic polymerizable tails, 
was added. In this case, the molar ratio of the precursors (TMOS:MTMS:MAPTMS) was 1:5.6:0.4. The chromophores 
PC1 and PC3 were dissolved in THF solution at concentrations ranging from 10-5 – 10-3 M. Then, the chromophores-
THF solution was added to the diluted sol-gel solution in THF, in ratio 1:1. In order to achieve solid discs the THF was 
evaporated almost to completion for a few minutes in open air.  Afterward, the obtained viscous gel was poured into a 
35-mm diameter Petri dish, and covered with a lid. Bubbles were removed under slow evacuation conditions in pumped 
desiccators and then the resin was cured at room temperature for 48 hr and final curing at 65 ºC for 24 hr. We obtained 
optically clear (and colorless) solid disk without shrinkage and cracks.  
 
 
 
 
 
 
 
 
   (a)                                                                  (b)                        

 
 
 
 
 
 
 
 
 
 
 
 
       (c)                                                (d) 
 
 
 
 
 
 

 
 

               (e) 
 
Figure 2: Molecular structures of the photochromes; chromene (naphthopyran)-derived photochrome PC1 the bifunctional-
chromophore (a) and the model photochrome without the 2PA moiety (b), chromene (naphthopyran)-derived photochrome PC3 the 
bifunctional-chromophore (c) and the model photochrome without the 2PA moiety (d), and the 2PA chromophore carbazole-derived, 
2,7-bis(carbazolyl)fluorine (e).          
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(b) 
 
 
 
 
Figure 3: Molecular structures of the equilibrium between the "closed-ring" form and the "open-ring" form, obtained after UV 
irradiation, for the chromene (naphthopyran)-derived photochrome PC1 (a) and PC3 (b). 
 
The photochromic behavior of the doped sol-gel discs was tested under UV-irradiation from a Blue Wave 200 UV lamp 
manufactured by Dymax (with 7 W/cm2 at the UV region). The spectral properties were measured using Ocean Optics 
fiber spectrometer, QE-65000 in the spectral range 200 -1000 nm using a DT-MINI-2-GS Ocean Optics lamp as a 
source. The FRET studies were done using 325 nm CW laser for one photon excitation and by using femtosecond pulse 
laser at 620 nm for 2-photons excitation. 
 
 

3. RESULTS AND DISCUTION  
 

Sol-gel disc samples (radius of 3.5 cm and thickness of 1 mm) doped with the photochromic derivatives PC1 or PC3 
(concentration of ~1 x 10-3 M) present under UV light illumination a significant high contrast reversible change from a 
colorless disk ("closed" form) to a “Red” or "Purple" ("open-ring" form) disc, for PC1 and PC3 respectively, seen in 
Figure 4 (a & c). The characteristic absorption spectrum of the reversible change is presented in Figure 4 (b & d). The 
absorption was measured before and after illumination with the UV lamp. The obtained spectra under this illumination 
intensity exhibit molar absorption extinction coefficients of ~15,000 M-1cm-1 at 460 nm ("Red") for PC1 and ~15,000 M-

1cm-1  at 520 nm ("Purple") for PC3. The open photochrome decays spontaneously back to the closed form in a few 
minutes. The doped sol-gel glass discs present reversible color changes for many cycles. 
 
The concept of photochromism induced by 2PA and FRET was demonstrated with a sol-gel disc doped with PC1a 
derivative, a bifunctional-chromophore. A femtosecond laser pulse at 620 nm was used for excitation of the 2PA 
carbazole derivative moiety in the bifunctional-chromophore. The 2PA was followed by a FRET mechanism from the 
carbazole moiety which serves as the donor to the chromene photochrome moiety which serves as acceptor. The 
resulting process was a color change in the sol-gel glass disc in the size of the laser beam from "colorless" to "red" due to 
the ring-opening in the photochromic moiety which occurs during the femtosecond pulse used. The sol-gel glass disc, 
with PC1 concentration of 0.6 x 10-3 M/L and thickness 1 mm, present a color change (can be seen in figure 5a), were the 
colored area is in the size of the excited beam laser (circled). In this case the decay to the initial state (fading of the color) 
takes about 4 minutes as result of a thermally reversible process (seen in 5b). The obtained spectrum of the "open-ring" 
derivative peaks at 460 nm and its decay with time is also presented (Fig. 5c). 
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(a)                                              (b) 
 
 
 
 
 
 
 
 
 
 
(c)                                                                                                                       (d) 
 
Figure 4: Photos of the reversible color change of sol-gel disc samples (radius of 3.5 cm and thickness of ~1 mm) doped with 
photochromic derivatives PC1 (a) or PC3 (c) before and after UV-irradiation. Characteristic absorption spectra of the reversible color 
change for PC1 (b) and PC3 are shown in (b) and (d) respectively ("closed form" full line curve "open form" dash-dot curve). After 
UV-irradiation PC1 derivative presents a "Red" color with absorption peak at 460 nm, PC3 presents a "dark Purple" color with 
absorption peak at 520 nm. 
 
 
 
 
 
 
 
 
 
 
(a)               (b)             (c) 
 
Figure 5: (a) Photo of the reversible color change of sol-gel disc samples due to excitation by a femtosecond pulsed laser at 620 nm 
resulting in photochromism induced by 2PA-FRET mechanism in the laser beam area (circled). (b) The color fades   in ~4 minutes as 
a result of a thermally reversible process. (c) The obtained spectrum of the "open-ring" derivative peaking at 460 nm and its decay 
with time. 
 
To determine the FRET efficiency of the bifunctional-chromophore within the sol-gel matrix we compared between 
sample doped with the bifunctional-chromophore, PC1a, to a sample doped with a mixture of the two chromophores, the 
2PA donor and the model photochrome without the 2PA moiety, PC1b, the acceptor48. In order to extract the FRET 
efficiency a 2-level model was developed49 in which the closed- and open- molecular forms are treated as ground and 
excited states (shown in the inset of Fig. 6a). In this case the total process efficiency, Φtotal, can be expressed by the 
following equation: 
 
(1)  Φtotal = ADonor*ΦFRET*ΦPC+ AAcceptor*ΦPC 
 
Where ADonor and AAcceptor are the partial absorption by the donor and the acceptor, ΦFRET is the net FRET efficiency and 
ΦPC is the net photochromic efficiency (closed to open form). In this way the total process efficiency was extracted from 
the data of the sample of bifunctional-chromophore in sol-gel, while the partial photochromic efficiency was extracted 
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from the data of the sample with mixed chromophores in sol-gel. The 2-level model gives 5% total efficiency from the fit 
for the bifunctional-chromophore in sol-gel, and 15% photochromic efficiency from the fit for the of the individual donor 
and photochrome mixture in sol-gel, which results in 23% FRET efficiency. Fig. 6b shows the accumulative opening 
time dynamics of the bifunctional-chromophore in sol-gel excited from complete closed-form with different excitation 
intensity, I0, where ΔOD reaches steady state around 300s. Applying similar efficiencies obtained from steady state fit, 
the 2-level model also gives reasonable theoretical predictions regarding the opening photokinetic measurements, and the 
small discrepancy between the curves is possibly due to the fact that the 2-level model only allows for one effective time  
constant considered in this multi-exponential reversing process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: (a) The dependence of the steady state ΔOD (460nm) on excitation irradiance I0 (325nm) for the bifunctional-chromophore 
and the mixture doped sol-gel, fit by a 2-level model (inset) to obtain total efficiency (from the bifunctional-chromophore in sol-gel) 
and the photochrome efficiency (from the mixture sol-gel). (b) The opening photokinetic measurements for the composite sol-gel with 
different excitation irradiances are fit by the 2-level model. 

 
 

4. CONCLUSION 
 

We present a route for fabrication of nonlinear optical solid-state filter composed of chromophores doped in a sol-gel 
matrix with improved optical properties. In order to enhance the nonlinear optical absorption performance two 
absorption mechanisms were coupled together via resonance energy transfer (RET); 2-photon absorption (2PA) and 
photochromism. We demonstrate photochromism induced by 2PA followed by Förster-resonance-energy-transfer 
(FRET) for a new bifunctional-chromophore doped in a sol-gel matrix. Under excitation with a visible laser beam (620 
nm) a reversible color change from colorless to red is obtained with absorption spectrum peaked at 460 nm due to an 
"open-ring" of the photochromic moiety. By applying a 2-level model analysis, the FRET efficiency (23%) can be 
estimated from the simple UV-excitation (1PA) based photokinetic measurements.  
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