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Chapter 24

Measuring Nonlinear Refraction
and Its Dispersion

Eric W. Van Stryland and David J. Hagan

Abstract We describe methods for measuring the nonlinear refraction of
nominally transparent materials that involve propagation from the near to
the far field, which changes a phase distortion into an amplitude redistribution.
These methods include beam distortion methods and Z-scan. We also look at
methods to determine the spectral dependence of these changes in refractive
index. Recent advances here include using femtosecond white-light continua as
the source for Z-scan. The types of nonlinear refractive mechanisms are also
briefly discussed including bound-electronic, excited state or free-carrier gen-
eration, reorientation, electrostrictive, and thermal nonlinear refraction as well
as cascaded second-order nonlinearities.

24.1 Introduction

Nonlinear refraction (NLR) is the general name ascribed to phenomena that
give rise to an intensity-dependent refractive index. A wide variety of mechan-
isms can give rise to NLR, and magnitudes and response times can vary by
many orders of magnitude for the different mechanisms; however in many
cases, the nonlinear refractive index may be adequately characterized by:

nðIÞ ¼ n0 þ�nðIÞ ¼ n0 þ n2I; (24:1)

where n0 is the linear refractive index, I is the irradiance, and n2 is the nonlinear
refractive index. Nonlinear absorption (NLA) and NLR were among the very
first nonlinear optical effects reported [1–4]. The experimental study of NLR is
typically more complex than for NLA, due to the fact that its effects are usually
only observed after some amount of propagation. Essentially, the input beam to
a nonlinear material sets up a phase mask whose amplitude profile mimics the
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irradiance profile of the incoming beam. The ‘‘lens’’ thus created with this

spatially graded index then either focuses or defocuses the beam upon propaga-

tion with the imposed aberrations.
If the sample is thick compared to the focusing length, the nonlinear phase

shift may significantly alter the irradiance distribution within the sample. For

self-focusing nonlinearities this can have catastrophic consequences (optical

damage). If the sample is thin (to be defined later) the alterations in the

irradiance distribution occurs only after propagation outside the sample and

can bemeasured, usually in tshe far field. This method of measuring the beam in

the far field and comparing to the input beam can determine the sign and

magnitude of the nonlinear refraction. Z-scan is a form of this type of measure-

ment. Before describing Z-scan, however, we first look at the beam propagation

in Section 24.2. Section 24.3 describes Z-scan and its variants, while Section

24.4 introduces a relatively new technique for measuring the dispersion of

nonlinear refraction. This method, referred to as the ‘‘white-light continuum

Z-scan,’’ relies on high spectral energy density broadband femtosecond con-

tinua. Because any discussion of measurement techniques must address the

physical processes being measured, in Section 24.5 we briefly discuss several

physical mechanisms leading to nonlinear refraction. This leads to questions of

how to determine which physical mechanisms are present in any given sample,

and ways of unraveling the physics are suggested. An important part of deter-

mining the physical mechanisms is determining the dispersion of the nonlinear

refraction.

24.2 Beam Propagation

While it is possible to solve the wave equation to calculate the energy distribu-

tion at any position along a beam within a nonlinear material, [5–9] for the

purpose of quantitatively measuring nonlinear refraction, it is far simpler to use

a ‘‘thin’’ sample. By ‘‘thin’’ we mean that the input beam does not change size or

shape within the length of the sample, L. This is often referred to as the

‘‘external self-action’’ regime [10]. For this to be valid, neither diffraction nor

nonlinear refraction may cause any change of beam profile within the nonlinear

sample. The diffraction criterion is simply that the thickness of the sample

L55Z0 where Z0 is the Rayleigh range or depth of focus of the beam. The

criterion that NLR does not change the beam shape isL55Z0=�F0 whereDF0

is the maximum nonlinearly-induced phase distortion. This latter requirement

simply states that the effective focal length of the induced nonlinear lens in the

sample should be much longer than the sample thickness itself [10].
The external self-action limit simplifies the problem considerably, because

the amplitude and relative phase, D’, of the electric field E inside the nonlinear

material are then separately governed by the following pair of simple equations:
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d��

dz0
¼ 2p

�
�nðIÞ (24:2)

and

dI

dz0
¼ ��ðIÞI; (24:3)

where z’ is the propagation depth in the sample, I is the irradiance given by
I ¼ n0c"0jEj2, with n0 the linear refractive index, "0 the vacuum permittivity,
and c the speed of light in a vacuum. The value of �(I) in general includes linear
and NLA terms, while Dn includes only nonlinear terms for the index change.

For third-order nonlinearities, where irradiance-induced changes in refrac-
tion and absorption are directly proportional to the irradiance, the nonlinear
refractive index in the form given in Eq. (24.1) is usually used with the MKS
units system. In the Gaussian or cgs units system, n2 is usually defined as

n2
2

Ej j2
n o

esu
¼ n2If gMKS; (24:4)

where n2 is the nonlinear index of refraction, E is the peak electric field (cgs),
and I denotes the irradiance (MKS) of the laser beam within the sample. The
values of n2(esu) and n2(MKS) are related through the conversion formula,
n2(esu) ¼ ðcn0=40pÞn2(MKS).We will useMKS units in this chapter and n2will
refer to n2 (MKS).While we are using n2 here for any third-order nonlinearity, it
may not be the best description for nonlinearities that have a response slower
than the temporal changes in I [11, 12]. The nonlinear absorption may some-
times be written as,

�ðIÞ ¼ �0 þ�� ¼ �0 þ �I; (24:5)

where �0 is the linear absorption coefficient and � denotes the third-order
nonlinear absorption coefficient, which for ultrafast NLA is equal to the two-
photon absorption (2PA) coefficient. We qualify this with ‘‘sometimes’’ because
often other nonlinear processes cannot be ignored. We will discuss this further
in Section 24.5.

When the amplitude and the phase of the beam exiting the sample are known
by integrating Eqs. (24.2) and (24.3), the field distribution at the plane of
detection can be calculated using diffraction theory (Huygen’s principle). The
simplest distribution to use, and one that can be experimentally obtained, is a
Gaussian beam. Assuming this, and that there is no nonlinear absorption,
allows us to calculate the field at a position z’ within the thin sample as:

Eðz0; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I0ðz0Þ=nc"0

p
e�

r
wð Þ2 exp ik0n2I0ðz0Þe�2 r

wð Þ2
n o

; (24:6)
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where the peak, on-axis input irradiance within the sample is I0 with a spot size
w (half-width at the 1/e2 maximum in the irradiance, HW1/e2M). This shows a
peak-induced phase distortion at the center of the beam, DF0, of

��0 ¼ 2p
�
n2I0ðLÞLeff; (24:7)

with, Leff ¼ ðl� e�aLÞ=�. Taking account of the possible temporal structure of
the field gives an electric field at the exit of the sample as Ee(Z,r,t), where Z is
the position of the sample measured with respect to the input beam waist (in
anticipation of Z-scan). In general for radially symmetric systems, a zeroth
order Hankel transform of the input electric field will give the field distribution
at a distance d from focus.

E Zþ d; r; tð Þ ¼ 2p
i�d0

ei
pr
�z

Z 1

0

E Z; r0; t� d0

c

� �
ei

pr02
� d0 J0

2prr0

�d0

� �
r0dr0; (24:8)

where d0 ¼ d� Z is the distance from the sample to the position where the field
is monitored (again written in this way in anticipation of Z-scan). Here J0(x) is
the zeroth-order Bessel function. There are other ways to calculate the far-field
irradiance distribution for Gaussian input beams. See, for example, Ref. [13].

The effects of self-lensing can be easily seen by monitoring the distribution
on a camera placed in the far field as shown in Fig. 24.1. Here the sample is
placed at or near the beam waist of a Gaussian spatial distribution beam. The
peaks are normalized to the same value, and the wings of the beam clearly show
the spatial broadening in the far field at high irradiance. This is due to self-
focusing in NaCl for which n2 > 0 (known from other data) [14]. For this

Fig.24.1 Far field fluence distribution after transmission through a 0.5-cm-thickNaCl sample
placed at the beamwaist of a �=532 nm,�40 psec FWHMpulse (a) at I= 4.7GW/cm2 (left)
and (b) I = 57 GW/cm2 (right). Taken from Ref. [14].
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geometry, the sign of the nonlinear refraction cannot be deduced from the
far-field distribution. In Fig. 24.1(a) the induced-phase distortion is quite
large (�0.5 �), showing that the sensitivity using this method is not high. The
invention of the Z-scan technique provided a simple and sensitive method to
determine the sign of the nonlinear refraction which was previously difficult to
determine. In order to deduce the sign of the nonlinear refraction the sample can
be placed prior to and after the input beam waist. As described in Section 24.3,
the beam distortion will then show opposite changes for different signs of Dn.
This is key to the success of the Z-scan technique discussed next.

In addition, it is also difficult to separate the contributions of NLA andNLR
with only beam distortion measurements. Even two-photon absorption alone
leads to beam shape changes with propagation. For example, a Gaussian beam
is spatially broadened after propagation through a 2PA material because the
center portion of the Gaussian is preferentially absorbed and therefore the
diffraction is reduced. This effect is hence similar to self-focusing.

24.3 Z-Scan

Since its invention in 1990, the Z-scan method has quickly gained acceptance as
a rapid and sensitive technique for separately determining the nonlinear
changes in index and changes in absorption [15–17]. This is primarily due to
the simplicity of the technique. In most experiments the index change, Dn, and
absorption change, D�, can be determined directly from the data without the
need for computer fitting. However, the physical mechanisms for Dn and D�
cannot be unambiguously determined without other information.

The standard ‘‘closed aperture’’ Z-scan apparatus (i.e., aperture in place in
the far field) for determining nonlinear refraction is shown in Fig. 24.2. The
input beam is focused and the sample is moved through this focal position in the
Z (propagation) direction while the transmittance is monitored in the far field

Fig. 24.2 ‘‘Closed aperture’’ Z-scan apparatus. The sample is scanned along ‘‘Z,’’ monitoring
the transmittance. The solid lines denote the linear focusing while the dotted lines depict the
effects of the sample on this propagation assuming a self-focusing nonlinearity. The ratio of
the outputs of detectors D2 and D1 is monitored.
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through an aperture. The required scan range in an experiment depends on Z0

and on the sample thickness L. If w0 is the focal spot size (HW1/e2M), Z0 is
defined as pw0

2/� for a Gaussian beam. For thin samples, the scanning range in
Z should be � 10 Z0 although all the information is theoretically contained
within a scan range of –Z0. This allows the full shape of the Z-scan to be
observed and makes interpretation simpler.

A closed aperture Z-scan for a thin sample of BaF2 exhibiting purely non-
linear refraction at 532 nm, is shown in Fig. 24.3 (left) (solid line). For this
material, the change in refractive index, Dn> 0, resulting in self-focusing which
leads to a valley followed by a peak in the normalized transmittance as the
sample, is moved away from the lens in Fig. 24.2 (increasing Z). The normal-
ization is performed so that the transmittance is unity for the sample far from
focus where the nonlinearity is negligible (i.e., for |Z|>>Z0 ). The positive
lensing in the sample placed before the focus moves the focal position closer
to the sample resulting in a greater far-field divergence and a reduced aperture
transmittance. On the other hand, with the sample placed after focus, the same
positive lensing reduces the far-field divergence allowing for a larger aperture
transmittance. The signal for the samemagnitude of NLR but with the opposite
sign (self-defocusing) is its mirror image, i.e., peak followed by valley (Fig. 24.3,
right). Clearly, with the sample at focus the effect of NLR on the transmitted
beam is minimized. This explains why the transmitted beam profile shown in
Fig. 24.1 shows a very small change despite a quite large nonlinear phase shift.

The change in normalized transmittance for the Z-scan is linear in the
induced phase distortion. This is best seen by looking at the change in

Fig. 24.3 (left) Z-scan of BaF2 at �=532 nm with�40 ps (FWHM) pulses with the irradiance
turned down to show the signal-to-noise ratio allowing phase distortions of � �/300 to be
measured. The overall phase distortion in BaF2 is��/14. Taken from Ref. [16]; (right) Closed
aperture Z-scan transmittance curves for ZnSe at 1064 nm (closed circles) and 532 nm (open
circles), clearly showing the dispersion of n2 as it changes from positive at 1064 nm to negative
at 532 nm. The second figure is from [18]
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transmittance calculated by the difference between the normalized transmit-
tance at the peak, Tp, and valley, Tv, i.e., DTpv ¼ Tp � Tv. The relation between
the induced phase distortion, DF0, and DTpv for a third-order nonlinear refrac-
tive process in the absence of NLA is empirically determined to be,

�Tpv ffi 0:406ð1� SÞ0:27 ��0j j; (24:9)

where S is the transmittance of the aperture in the absence of a sample [16]. This
relation is accurate to within –3% for DTpv < 1. As an example, if the induced
optical path length change due to the nonlinearity is �/250, DTpv �1% for an
aperture transmittance of S = 0.4. Figure 24.3 shows an experimental sensiti-
vity of better than �/300.

This interferometric sensitivity is one of the most useful features of the
Z-scan technique. At first sight this appears rather remarkable given that it is
a single-beam method. However, Z-scan is based on propagation to the far
field. Propagation results in diffraction, and diffraction is really an interference
phenomenon, i.e., interference between different spatial portions of the beam,
here the center of the beam interfering with the wings. Thus, Z-scan is effectively
a single-beam interferometer and the sensitivity is a result of this interference. In
addition, although the optics used are not as good as the sensitivity of the experi-
ment, we must remember that we are looking at the change in phase and not the
absolute phase.

The size of the aperture in a Z-scan experiment is specified by its transmit-
tance, S, in the linear regime, i.e., when the sample has been placed far away
from the focus. The sensitivity to the induced-phase distortion depends on S,
going from its highest value for S very small to 0 for S = 1 (so-called ‘‘open
aperture’’ Z-scan, which is only sensitive to nonlinear absorption, as discussed
later). However, values of S from 0.1 to 0.4 work well for only a small loss in
sensitivity as seen from Eq. (24.9). This allows a large signal on the detector and
averaging over any local spatial beam inhomogeneities.

Equation (24.9) does not include the time averaging that occurs upon detec-
tion for short pulse inputs that are normally used in Z-scan experiments. The
linear relationship between DTpv and DF0 allows us to use a simple multiplica-
tion factor,A�, which for pulses much shorter than the nonlinear response time,
e.g., bound-electronic responses, is given by:

A� ¼

Rþ1

�1
f2ðtÞdt

Rþ1

�1
fðtÞdt

; (24:10)

where f(t) is a function describing the irradiance pulse shape in time. For NLR
with an instantaneous response, A� depends on the pulse shape. For example,
for Gaussian pulses A� ¼ 1=

p
2. However for pulses much shorter than the
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response time of the material nonlinearity, A� = 1/2 independent of the pulse
shape. The temporal averaging must be reevaluated in cases involving higher-
order nonlinearities.

The accuracy of the measurements of DF0 and thus n2 depend on how well
the laser beam parameters are known, i.e., pulse energy (or power), and tem-
poral and spatial properties [19]. In addition, the Z-scan signal is sensitive to all
nonlinear optical mechanisms that give rise to a change of the refractive index
(and absorption). Thus, it is not possible from single measurements to deter-
mine the origin of the nonlinearity (or nonlinearities). Other information such
as the temporal dependence measured in pump-probe experiments is needed
for this.

Another quite useful feature of the Z-scan signal is that the distance between
peak and valley inZ, DZpv gives a direct measure of the diffraction length of the
incident beam. Assuming a third-order nonlinear response using a Gaussian
spatial profile beam,

�Zpv

�� �� � 1:7Z0: (24:11)

Given a known thin sample nonlinear response, this is a fast method for
determining the spot size and helps to self-calibrate the irradiance for Z-scan.

The previous discussion assumed no nonlinear absorption. Another invalu-
able feature of Z-scan is its capability to separately and simultaneously measure
NLR and NLA. This can be done even when both are present. We do not
discuss this in detail here, but by performing two Z-scans, one ‘‘closed aperture’’
(S small) and one ‘‘open aperture,’’ S= 1, the phase distortion can be extracted.
This is easily accomplished in a single experiment using a beam splitter where
one of the beams is sent to a detector with an aperture in place and the other
beam goes to a detector set to collect all of the transmitted light. The open
aperture Z-scan is insensitive to the induced-phase distortion for thin samples,
and thus the NLA can be easily determined. The closed aperture Z-scan can
then be fit with the knownNLA and unknownNLR. However, a quick method
to obtain the NLR is to divide the closed aperture Z-scan data (after normal-
ization) by the open aperture Z-scan data (again after normalization). The
resulting curve can be used to determine DF0.

The DTpv for this curve is essentially the same as the curve for a material with
the same NLR but without NLA as long as the ratio of NLA to NLR does not
get too large. The criteria for this are given in Ref. [16]. Typical curves for
‘‘open’’ and ‘‘closed’’ aperture Z-scans and their division are shown in Fig. 24.4
where DF0=–0.5. Other methods such as degenerate four-wave mixing
(DFWM) present difficulties in separating the effects of NLR from NLA.

There have been a great number of publications discussing variations of the
Z-scan technique. These include: using different beam profiles to increase the
sensitivity [21]; eclipsing the Z-scan (EZ-scan) [22], which provides enhanced
sensitivity by using a central obscuration disk instead of an aperture; the
‘‘2-color Z-scan’’ that collinearly focuses two beams of different wavelength to
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measure nondegenerate nonlinearities by Z-scanning [23, 24]; and the time-
resolved pump-probe Z-scans, where refractive changes induced by a strong
pump pulse are measured [25, 26]; etc. Simple methods have also been devel-
oped for analyzing Z-scans where the sample is too thick for the external self-
action approximation to hold [27–30].

24.4 Measuring Nonlinear Dispersion

In principle the dispersion of the nonlinear refractive index can be determined
by performing Z-scans at many wavelengths, and excellent results have come
from such measurements [31]. The same is true of determining nonlinear
absorption spectra. Unfortunately, however, this can be difficult and time
consuming. It is usually difficult to tune a laser or optical parametric source
while keeping the same beam parameters. Hence, careful and time-consuming
beam characterization is required at each wavelength to determine the irradi-
ance. The Z-scan helps in determining the spot size (assuming prior knowledge
of the order of the nonlinear response), but it gives no information about the
temporal dependence. In addition, experience shows that these beam para-
meters can change from day to day as the laser/parametric source is tuned
repeatedly.

Advances in white-light-continuum (WLC) generation [32–34] have resulted
in an alternative source for Z-scans in the visible and near IR. Because of the
sensitivity of the Z-scan, for many materials only a few nJ of energy are needed
when using femtosecond pulses. The spectral energy density of the continuum
turns out to be sufficient for measuring materials showing strong nonlinearities
[35–37]. However, for materials with low nonlinearities, higher spectral irradiance
is sometimes needed. ProducingWLC in�1-m-long cells filled with high-pressure
noble gas–filled cells gives much higher spectral irradiance than in solids and

Fig. 24.4 Calculations of closed (solid line, S = 0.5) and open (dashed line) aperture Z-scan
data along with their ratio (dotted line) for (left) self-defocusing and (right) self-focusing
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liquids [38, 39]. For example, the WLC spectrum produced by focusing 0.7 mJ of
775 nm,�140 fs pulses into a 1-m-long chamber filledwithKrypton gas at 2.4 atm
produces a useful continuum from 400 nm to > 800 nm [39, 40]. This continuum
has sufficient spectral energy density over this spectral range for Z-scan. The
calculatedRayleigh range within the sample is 8.5 cm [39]. In any�10 nm spectral
band there are many nJ of energy in �100 fs pulses, which is sufficient for
measuring NLR in most materials, e.g., organic dyes in solution [39]. In both
methods of continuum generation it is important to maintain good spatial pro-
files. This requires careful control of the input beam parameters and energy to
assure ‘‘single filament’’ operation.

The WLC are often produced by mechanisms that include self-focusing and,
in particular, ‘‘small-scale’’ self-focusing can lead to multifilament operation
which results in unusable spatial profile beams (see the chapter by Campillo in
this book). A single filament operation results in high quality Gaussian-shaped
beams. The spatial profile for the continua produced in Kr are Gaussian over
the entire 400–800 nm spectral range; however, for longer wavelengths, while
there is considerable energy, the spatial profile becomes doughnut-shaped,
making Z-scans more difficult to analyze. We briefly describe this WLC
Z-scan method below [39].

It is not possible to simply replace the source in the standard Z-scan with the
WLC. The problem is that nondegenerate nonlinearities will accompany the
degenerate response and, for example, the overall NLR will be considerably
increased with no simple way to distinguish the relative contributions of degen-
erate and nondegenerate NLR. The simplest way around this is to simply
spectrally filter the input using narrow band filters, NBF’s (or ‘‘spike’’ filters).
Other methodologies for spectrally dispersing in space or even in time using
group velocity dispersion are possible [36], but are more complicated for
measuring NLR given the importance of the spatial profiles in closed aperture
Z-scans. The spectral selection can be done by simply introducing NBFs into
the beam prior to the sample with care to ensure that they do not disturb the
spatial or temporal profile. Automation of such filtering can be done using
computer-controlled motorized filter wheels [39].

In addition, there are variable frequency filters available in certain frequency
bands (e.g., the entire visible spectrum) where the tuning is continuous
(so-called ‘‘linear variable filters’’). These filters combine spatially varying
high pass and low pass filters that are combined to give a spatially varying
and wavelength-adjustable NBF. These can be moved laterally changing the
transmitted narrow wavelength range continuously. A requirement for any of
these NBFs is that the band pass is wide enough to allow short pulse transmit-
tance. For the �100 fs pulses of many sources, e.g., Ti:sapphire, the �10 nm
bandwidth works well.

With knowledge of the energy, beam size, and pulse duration for each
spectral component of the WLC source, standard Z-scans can be performed.
The pulsewidths for each spectral region can be determined by various standard
techniques [41, 42]. The measured pulsewidths for the aforementioned WLC
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produced in Kr averaged around 90–100 fs and had a time-bandwidth product
of �0.44 for the 10-nm bandpass filters. The advantage of this methodology is
that in practice, these WLC are very reproducible from one day to the next so
that once characterized, measurements on multiple samples can be rapidly
taken over the entire spectral range of the WLC. A typical experimental
arrangement is shown in Fig. 24.5.

An example of data taken with this method, displaying data for ZnSe, is
shown in Fig. 24.6 (energy gap (Eg) = 2.7 eV with a thickness of 0.5 mm). Here
the group velocity dispersion at the shortest wavelengths (<550 nm) is important
to take into account as it affects the pulsewidth within the sample (at 480 nm a
28% change is calculated for the pulse between the front and back surfaces, this
is the largest effect for ZnSe which linearly absorbs at shorter wavelengths).

The values of � and n2 corresponding to ZnSe obtained from fits at different
wavelengths are presented in Fig. 24.7 along with the theoretical predictions of
Refs. [40, 44].

The important point to make concerning these data for n2 is that the NLR
can be measured in the presence of relatively strong NLA and with either
positive or negative sign of n2. In this case, n2 changes from positive to negative
as the ratio of (�h!/Eg goes above � 0.7 Eg. This feature of the Z-scan enabled
the elucidation of nonlinear Kramers-Kronig relations for ultrafast nonlinea-
rities to connect n2 to two-photon absorption [45].

24.5 Physical Mechanisms Leading to Nonlinear Refraction

We have discussed two of the primary methods for measuring nonlinear refrac-
tion related to propagation of a beam with a near-field phase mask to the far
field to redistribute the energy of the beam in space. There are many physical

Fig. 24.5 WLCZ-scan experimental set-up: L, lens;M, mirror;WP, half-waveplate; P, polarizer;
FW, filter wheel; BS, beamsplitter; D, detector; A, aperture; S, sample. Taken from Ref. [35]

24 Measuring Nonlinear Refraction and Its Dispersion 583



processes that can lead to the initial phase mask. In this section we briefly

discuss a few of these. We begin with the ultrafast, bound-electronic nonlinear

refraction from the third-order nonlinear susceptibility, which is accurately

Fig. 24.6 Z-scan data at 480 nm, 550 nm, 750 nm, and 800 nm (a) open aperture and (b) closed
aperture (the result of the division with open aperture). Taken from Ref. [39]

Fig. 24.7 2PA and n2 coefficients of ZnSe obtained from theory and from the experimental
data fitting. Taken from Ref. [39]
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described by the coefficient n2 in Eq. (24.1). This n2 is related to the nonlinear
absorption of 2PA, etc., through causality and nonlinear Kramers–Kronig
relations as described in Refs. [44, 45].

The Z-scan method was essential in allowing NLR to be measured in
the presence of NLA in order to see the change in sign of n2 at photon
energies of about 0.7 of the bandgap energies in semiconductors. This sign
change of n2 was a crucial element leading to the full understanding of
nonlinear Kramers– Kronig relations [45]. Measurements of these ultrafast
responses can now be easily distinguished from slower nonlinearities with
the use of femtosecond pulses; however, longer pulses often show other
nonlinearities that can mask the faster responses. For semiconductors these
include free-carrier nonlinearities from carriers produced via 2PA. Free-
carrier refraction becomes substantial for picosecond or longer pulses, and
is always negative. (An oscillator is produced with a zero resonance
frequency so that one is always above resonance.) For 2PA created car-
riers, this is an effective fifth-order nonlinearity resulting from the third-order
2PA in combination with the first-order change in the refractive index [18]. In
this case, the index change, is given by

�nðtÞ ¼ n2IðtÞ þ �rNðtÞ; (24:12)

where �r is the free carrier refraction coefficient, and N(t) is the photoexcited
carrier density. For 2PA excitation, N(t) is governed by

dN

dt
¼ �I2

2�h!
�N

�
: (24:13)

For semiconductors, the lifetime, � , is typically on the order of nanoseconds,
so for picosecond pulses these carriers accumulate with time during the pulse.
Because the carrier refraction is quadratic in I, above some input irradiance the
carrier refraction will dominate the NLR. For long pulses, the free-carrier
effects are almost always dominant unless very low irradiance can be used
with a very sensitive technique [18].

In Fig. 24.8, we show streak camera measurements of the transmitted spatial
beam profile of a 15 mJ, 30 ps, 532 nm pulse through a 2-mm-thick sample of
ZnSe, which exhibits 2PA at this wavelength. We see from the beam profiles,
measured every 9.3 ps, that the beam distortion due to nonlinear refraction is
much stronger later in the pulse than at early times, as expected where free
carrier refraction dominates the bound electronic n2.

However, extracting values for the n2 and free carrier refraction coefficient
from the data in Fig. 24.8 is not particularly easy. It is preferable to perform a
series of Z-scan experiments in order to extract these coefficients. This can be
done by taking advantage of the quadratic and linear irradiance dependences
of the respective carrier and bound electronic contributions to NLR. First,
Z-scans can be taken at low irradiance where the bound electronic n2 dominates.
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As always, we have to perform open and closed aperture Z-scans. In Fig. 24.9,

we show open and closed aperture Z-scans on ZnSe with 30-ps pulses at 532 nm.

The open aperture Z-scan [Fig. 24.9 (a)] gives us the 2PA coefficient. We find

that absorption due to free carriers is negligible in this experiment. This value

for the 2PA coefficient is used in fitting a value of n2 to the closed aperture

Z-scan shown in Fig. 24.9(b). [18]
At higher energies, free carrier refraction becomes significant, eventually

dominating. The values obtained for � and n2 at low energies may then be

used to fit the final remaining parameter, which is �r, the free carrier refrac-
tion coefficient. Results of this fitting for higher energies are shown in

Fig. 24.10. It should be noted that in these experiments, even at these higher

energies, absorption due to the 2PA-excited carriers was insignificant. How-

ever, should free-carrier absorption be significant, its value can be found

from high-energy open aperture Z-scans, and the rest of the procedure

remains the same.
The nonlinearities seen here are also observed in organic dyes; however, the

interpretation is nonlinear absorption and refraction from the 2PA generated

excited states as opposed to free carriers. Here the sign of the NLR will depend

on which side of resonance is the input photon energy [43].

Fig. 24.8 Spatial energy
distribution at 11 cm behind
a thin (0.2 cm) ZnSe sample
at 9.3-ps time intervals as
detected by a streak-camera
vidicon system for an input
energy of 15.2 mJ. Taken
from Ref. [46]
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Irradiance dependence studies using beam propagation effects can help in
determining the responses along with pulsewidth-dependent studies; however,
complementary methods that provide direct information on the temporal
response of the nonlinearity such as pump-probe techniques and four-wave
mixing are also useful in determining the physical processes involved. [48, 49]

Fig. 24.9 Normalized Z-scan data of a 2.7-mm ZnSe sample measured with 27 ps (FWHM)
pulses and �=532 nm at low irradiance (I0=0.21 GW/cm2). The solid curves are the
theoretical fits. (a) Open-aperture data (S=1) were fitted with b=5.8 cm/GW.
(b) 40%-aperture data were fitted with b=5.8 cm/GW and n2=–6.8 � 10-14 cm2/W.
Taken from Ref. [18]
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Fig. 24.10 Closed-aperture Z-scan data (S=0.4) and theoretical fits (solid curves) of the ZnSe
sample taken at high irradiance levels of (left) I0=0.57 GW/cm2 and (right) I0= .4 GW/cm2,
where free-carrier refraction is significant. The data were fit with b=5.8 cm/GW, n2=–6.2�
10–14 cm2/W and �r=–0.8 � 10-21 cm3. Taken from Ref. [18]
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Examples of NLR processes that are easily confused with the bound electro-
nic n2 because they are effectively third-order, are excited-state refraction from
linear absorption–created states (or free carriers), and the refraction associated
with saturation. Both are related to population redistribution via causality, i.e.,
Kramers–Kronig relations [45]. In the case of excited-state refraction, excited
states (or free carriers) are produced via linear or 1-photon absorption, and then
the refractive index changes due to these excited states (or free carriers) or due to
the reduction in the number of ground state absorbers [50]. Here again, the
pulsewidths used are important, specifically in relation to the excited-state
dynamics. If the pulsewidth is much longer than the decay times, the process
will appear just like the ultrafast n2, while if the pulses are shorter, the material
nonlinearity grows within the pulse.

In addition, cascaded second-order nonlinearities [51] appear as third-order
responses for low inputs. Here, using second-harmonic generation (SHG) as the
example, the loss of two photons at the fundamental frequency to produce the
SHG is analogous to 2PA, and the change in phase of the beam for nonphase
matched operation is analogous to an index change below or above 2PA reso-
nance (the sign of the effective n2 from cascading changes from below phase
match to above going through zero on phase match) [51].

Some other nonlinear refraction mechanisms including electrostriction and
thermal nonlinear refraction are nonlocal requiring propagation in the trans-
verse direction in the beam, again making the temporal response key [52].

The last nonlinearity to mention here is molecular reorientation, also
known as the AC Kerr effect. In this nonlinearity, responsible for the �2 ps
nonlinear response of CS2, the input beam’s electric field applies a torque to
the molecules which causes a reorientation of the induced dipoles, which then
increases the polarizability and thus the index along the direction of the
applied field [53]. This nonlinear response of CS2 is often used as a standard
response to compare with; however, this only works for pulses long with
respect to their response time.

24.6 Conclusion

Although it has been shown that relative measurements of n2 can be performed
[54] for absolute measurements, in order to give reliable values of the nonlinear
refractive index, it is important to note the importance of accurately measuring
the laser mode and pulse parameters because n2 is irradiance dependent. Thus,
given the pulse energy, we need to know both the beam area (i.e., spatial beam
profile) and the temporal pulsewidth (i.e., temporal shape) in order to deter-
mine the irradiance. Any errors in the measurement of irradiance translate to
errors in the determination of n2 as well as any other nonlinear coefficients.

Using beam propagation to allow the induced phase mask from nonlinear
refraction to propagate to give a redistribution of irradiance can greatly
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facilitate measurements of n2. Indeed, viewing this propagation or diffraction as
an interference between different portions of the beam is what leads to the
interferometric sensitivity of the Z-scan. One of the most useful features of this
method is its ability to separately measure NLR and NLA, even when both are
present. We do not discuss this in detail here (details are given in Ref. [16]) but
by performing two Z-scans, one ‘‘closed aperture’’ (S small) and one ‘‘open
aperture,’’ S=1, the phase distortion can be extracted. Many other methods
such as degenerate four-wave mixing (DFWM) have a difficult time in separat-
ing the effects of NLR from NLA. Determining the sign of n2 is key to under-
standing nonlinear Kramers–Kronig relations.

A series of Z-scans at varying pulsewidths, frequencies, focal geometries,
etc., along with a variety of other experiments, are often needed to unambigu-
ously determine the relevant mechanisms. It is always advisable to use several
complementary characterization techniques if possible to verify the nonlinear
response, and the dispersion of the nonlinear refraction is key to understanding
the physical mechanisms. In addition, the spectrum of nonlinear absorption can
help determine the dispersion of nonlinear refraction as these quantities are
related by causality. Simultaneous knowledge of both will further help in
understanding these phenomena.
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