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ABSTRACT
We describe a sensitive technique for measuring nonlinear refraction in a variety of materials that offers
simplicity, sensitivity and speed. The transmittance of a sample is measured through a finite aperture in the
far -field as the sample is moved along the propagation path (z) of a focused Gaussian beam. The sign and
magnitude of the nonlinearity is easily deduced from such a transmittance curve (Z- scan). Employing this
technique a sensitivity of better than A /300 wavefront distortion is achieved in n2 measurements of BaF2
using picosecond frequency doubled Nd:YAG laser pulses.

1. INTRODUCTION

We are currently developing a single beam method, which we refer to as a Z -scan, for measuring the sign
and magnitude of the nonlinear refractive index n2.[1] In practice we have found that this method has a
sensitivity comparable to interferometric methods. Here we describe this method in detail and demonstrate
how it can be applied and analyzed for a variety of materials. We also present a simple method to minimize
parasitic effects due to the presence of linear sample inhomogeneities.

Previous measurements of nonlinear refraction have used a variety of techniques including nonlinear
interferometry [2], [3], degenerate four -wave mixing [4], nearly- degenerate three -wave mixing [5], ellipse
rotation [6], beam distortion measurements [7], [8], and our recently reported Z -scan technique. The first
three methods, namely nonlinear interferometry and wave mixing are potentially sensitive techniques but
require a relatively complex experimental apparatus. Beam distortion measurements, on the other hand, are
relatively insensitive and require detailed wave propagation analysis. The Z -scan technique is based on the
principles of spatial beam distortion but offers simplicity as well as very high sensitivity.

We will describe this simple technique in Section II. Theoretical analyses of Z -scan measurements are given
in Section III for a "thin" nonlinear medium. It will be shown that for many practical cases, nonlinear
refraction and its sign can be obtained from a simple linear relationship between the observed transmittance
changes and the induced phase distortion without the need for performing detailed calculations. In Section
IV we present measurements of nonlinear refraction in a number of materials such as CS2, and transparent
dielectrics at wavelengths of 532 nm, 1.06 pm and 10.6 pm. In CS2 at 10 pm, for example, both thermo-
optical and reorientational Kerr effects were identified using nanosecond and picosecond pulses respectively.
We also describe how effects of linear sample inhomogeneities (eg. bulk index variations) can be effectively
removed from the experimental data.

2. THE Z -SCAN TECHNIQUE

Using a single Gaussian laser beam in a tight focus geometry, as depicted in Fig. 1, we measure the
transmittance of a nonlinear medium through a finite aperture in the far field as a function of the sample
position z measured with respect to the focal plane. The following example will qualitatively elucidate how
such a trace (Z -scan) is related to the nonlinear refraction of the sample. Assume, for instance, a material
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with a negative nonlinear refractive index and a thickness smaller than the diffraction length of the focused
beam (a thin medium). This can be regarded as a thin lens of variable focal length. Starting the scan from
a distance far away from the focus (negative z) the beam irradiance is low and negligible nonlinear
refraction occurs; hence, the transmittance (D2 /Dl in Fig. 1) remains relatively constant. As the sample is
brought closer to focus, the beam irradiance increases leading to self - lensing in the sample. A negative
self- lensing prior to focus will tend to collimate the beam, causing a beam narrowing at the aperture which
results in an increase in the measured transmittance. As the scan in z continues and the sample passes the
focal plane to the right (positive z), the same self- defocusing increases the beam divergence leading to beam
broadening at the aperture and, thus, a decrease in transmittance. This suggests that there is a null as the
sample crosses the focal plane. This is analogous to placing a thin lens at or near the focus, resulting in a
minimal change of the far field pattern of the beam. The Z -scan is completed as the sample is moved
away from focus (positive z) such that the transmittance becomes linear since the irradiance is again low.
Induced beam broadening and narrowing of this type have been previously observed and explained during
nonlinear refraction measurements of some semiconductors.[9],[10] A similar technique was also previously
used to measure thermally induced beam distortion of chemicals in solvents.[ 11 ]

BS

D1

SAMPLE

1

APERTURE

-z.-..+z
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Fig.1 The Z -scan experimental apparatus in which the ratio D2 /D1 is recorded as a function of the
sample position z.

A pre -focal transmittance maximum (peak) followed by a post -focal transmittance minimum (valley) is,
therefore, the Z -scan signature of a negative refractive nonlinearity. Positive nonlinear refraction, following
the same analogy, gives rise to an opposite valley -peak configuration. It is an extremely useful feature of
the Z -scan method that the sign of the nonlinear index is immediately obvious from the data, and as we
will show in the following section the magnitude can also be easily estimated using a simple analysis for a
thin medium.

In the above picture describing the Z -scan, one must bear in mind that a purely refractive nonlinearity was
considered assuming that no absorptive nonlinearities (such as multiphoton or saturation of absorption) are
present. Qualitatively, multiphoton absorption suppresses the peak and enhances the valley, while saturation
produces the opposite effect. The sensitivity to nonlinear refraction is entirely due to the aperture, and
removal of the aperture completely eliminates the effect. However, in this case the Z -scan will still be
sensitive to nonlinear absorption. Nonlinear absorption coefficients could be extracted from such "open"
aperture experiments.
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Fig.l The Z-scan experimental apparatus in which the ratio D2/D1 is recorded as a function of the 
sample position z.
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3. THEORY

Much work has been done in investigating the propagation of intense laser beams inside a nonlinear material
and the ensuing self- refraction [12], [13]. Considering the geometry given in Fig. 1, we will formulate and
discuss a simple method for analyzing the Z -scan data based on modifications of existing theories.

In general, various order nonlinearities can be considered; however, for simplicity, we first examine only a
cubic nonlinearity where the index of refraction n is expressed in terms of nonlinear indices n2(esu) or
,y(m2 /W) through:

n=no+ 2 IEI2=no+7l (1)

where no is the linear index of refraction, E is the peak electric field (cgs), and I denotes the irradiance
(MKS) of the laser beam within the sample. [n2 and ry are related through the conversion formula,
n2(esu)= (cno /407-)ry(m2 /W), where c (m /sec) is the speed of light in vacuum]. Assuming a TEMoo Gaussian
beam of beam waist radius wo traveling in the +z direction, we can write E as:

r2 (, e_4(0)= Eo(t) eXp
l_

(Z)
2Rz) (2)

where w2(z)= w02(1 +z2 /zo2) is the beam radius, R(z)= z(l +zo2 /z2) is the radius of curvature of the wavefront at
z, zo= kwo2 /2 is the diffraction length of the beam, k =2x1-9, is the wave vector and a is the laser wavelength,
all in free space. E0(t) denotes the radiation electric field at the focus and contains the temporal envelope of
the laser pulse. The e- i «(z,t) term contains all the radially uniform phase variations. As we are only
concerned with calculating the radial phase variations 4(r), the slowly varying envelope approximation
(SVEA) applies, and all other phase changes that are uniform in r are ignored.

If the sample length is small enough that changes in the beam diameter within the sample due to either
diffraction or nonlinear refraction can be neglected, the medium is regarded as "thin ", in which case the
self- refraction process is referred to as "external self- action ". Such an assumption simplifies the problem

considerably, and the amplitude v i and phase 0 of the electric field as a function of z' are now governed in

the SVEA by a pair of simple equations:

and

d00_ On(I)
dz'

dI
dz' =I,

(3)

(4)

where z' is the propagation depth in the sample and a is the linear absorption coefficient. Note that z'
should not be confused with the sample position z. In the case of a cubic nonlinearity, Eqns. 3 and 4 are
solved to give the phase shift A0 at the exit surface of the sample, which simply follows the radial variation
of the incident irradiance at a given position of the sample z. Thus,

l
00(z,r,t) = A00(z,t) exp -wa I (5 -a)
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with

Ak0(z't) 1+z2/z02

boto(t)

04í0(t), the on -axis phase shift at the focus, is defined as,

= kn0(t)A4;°(t) 1-e-aL
'

(5 -b)

(6)

where L is the sample length, and An° = 'I0(t) with I °(t) being the on -axis irradiance at focus (ie.z =0).
Again we take I0(t) as the irradiance within the sample to account for Fresnel reflection losses.

The complex electric field after the sample, E', now contains the nonlinear phase distortion,

E' = E(z,r,t) e-aL/2 eiA,Az,r,t) (7)

By virtue of Huygen's principle one can obtain the far field pattern of the beam at the aperture plane
through a zeroth order Hankel transformation of E'.[14] We will follow a more convenient treatment
applicable to Gaussian input beams which we refer to as the "Gaussian Decomposition" (GD) method given
by Weaire et. al.[15], in which they decompose the complex electric field at the exit plane of the sample
into a summation of Gaussian beams through a Taylor series expansion of the nonlinear phase term eiA «(z,r,t)
in Eq. 7. That is,

00
Li0O(z't)JmeiA¢(z,r,t) _ L e-2mr2/w2(z)

, m!
M=0

(8)

Each Gaussian beam can now be simply propagated to the aperture plane where they will be resummed to
reconstruct the beam. When including the initial beam curvature for the focused beam, we derive the
resultant electric field pattern at the aperture as:

Ea(r,t) = E(z,r=0,t) e-«L/2

00
(i000(t))m/ , m!

m=0

1

1g2+
dá2 , 2 exp (- w2 2Rm J

2+
iBml,r2

m m
(9)

where d is the propagation distance in free space from the sample to the aperture plane, and g =1 +d /R ,

R =R(z) being the beam radius of curvature at the sample. As long as the far field condition is met, d can
be considered independent of the sample position z resulting in symmetric Z- scans. The remaining
parameters in Eq. 9 are expressed as:

WZ = w2(z)mo 2m+1
dm = k mO , [ d2

w2m = w2m0 g2+ d2
m

g -1
1

Rn, = d [1- , and Om = tan-1 d/
C

dm 1.
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/ A

————
HI.

m=0
(g)

Each Gaussian beam can now be simply propagated to the aperture plane where they will be resummed to 
reconstruct the beam. When including the initial beam curvature for the focused beam, we derive the 
resultant electric field pattern at the aperture as:

Ea (r,t) = E(z,r=0,t) e-W2 ^ ^p- g^ * exp -^ - g- + i*m , (9)
m=0 ^ mj ^ m m J

where d is the propagation distance in free space from the sample to the aperture plane, and g=l+d/R , 
R=R(z) being the beam radius of curvature at the sample. As long as the far field condition is met, d can 
be considered independent of the sample position z resulting in symmetric Z-scans. The remaining 
parameters in Eq. 9 are expressed as:

, = kw^= = _ 
mo 2m+l ' m 2 ' m "" m°

= d I1 ' g«+dVd«m

d
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The expression given by Eq. 9 is a general case of that derived in Ref. [151 where they considered a
collimated beam (R =oo) for which g =1. We find that this GD method is very useful for the small phase
distortions detected with the Z -scan method since only a few terms of the sum in Eq. 9 are needed. The
method is also easily extended to higher order nonlinearities.

The transmitted power through the aperture is obtained by spatially integrating Ea(r,t) up to the aperture
radius ra, giving,

ra
ce0n0

PT(040(t)) = 2 IEa(r,t)12 rdr .

0

Including the pulse temporal variation, the normalized Z -scan transmittance T(z) can be calculated as:

T(z) -

roo
PT (0(1)0(t)) dt

00

r00

S
P1(t) dt

00

(10)

where P1(t) = irw02I0(t) /2 is the instantanous input power (within the sample) and S is the aperture
transmittance in the linear regime.
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Fig.2 Calculated Z -scan transmittance curves for a cubic nonlinearity with either polarity and a small
aperture (S= 0.01).

We first consider an instantaneous nonlinearity and a temporally square pulse to illustrate the general
features of the Z -scan. This is equivalent to assuming cw radiation and the nonlinearity has reached the
steady state. The normalized transmittance, T(z), in the far field, is shown in Fig. 2 for 040 = ± 0.1 and a
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small aperture (S= 0.01). They exhibit the expected features, namely a valley -peak (v -p) for the positive
nonlinearity and a peak -valley (p -v) for the negative one. For a given 04;o, the magnitude and shape of
T(z) do not depend on the wavelength or geometry as long as the far field condition for the aperture plane
is satisfied. The aperture size S, however, is an important parameter since a large aperture reduces the
variations in T(z). This reduction is more prominent in the peak where beam narrowing occurs and can
result in a peak transmittance which cannot exceed (1 -S). Needless to say, for very large aperture or no
aperture (S=1), the effect vanishes and T(z) = 1 for all z and A4í0. For small IA(1)01, the peak and valley
occur at the same distance with respect to focus, and for a cubic nonlinearity this distance is found to be
^_20.85z0. With larger phase distortions (IA4)01 >1) this symmetry no longer holds and both peak and valley
move toward ±z for the corresponding sign of nonlinearity ( ±A4í0) such that their separation remains
relatively constant given by,

AZp-v - 1.7z0 (12)

We can define an easily measurable quantity ATp_v as the difference between the normalized peak and
valley transmittance: Tp - Tv. The variation of this quantity as a function of 1A(1)01, as calculated for
various aperture sizes is illustrated in Fig. 3. These curves exhibit some useful features. First, for a given
order of nonlinearity, they can be considered universal. In other words, they are independent of the laser
wavelength, geometry (as long as the far field condition is met) and the sign of nonlinearity. Second, for
all aperture sizes, the variation of ATp_y is found to be linearly dependent on 16401. Particularly for on
axis (S^0) we find,

ATp_ ce 0.405 I D4í01 for I A4)01 < , (13 -a)

to be accurate to within 0.5 percent. As shown in Fig. 3, for larger apertures, the linear coefficient 0.405
decreases such that with S=0.5 it becomes 0.34 and at S=0.7 it reduces to 0.29. Based on a numerical fitting,
the following relationship can be used to include such variations within a ±2% accuracy;

ATp_v 0.405(1-S)o.25 I p4;0I for 1 A4)01 < a . (13-b)

1.20

0.80

0.40

0.00
00 x/4 x/2 3x/4

Phase Change (rad.)

Fig.3 Calculated ATp_v as a function of the phase shift at the focus (A4)0). The sensitivity, as
indicated by the slope of the curves, decreases slowly for larger aperture sizes (S >0).
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wavelength, geometry (as long as the far field condition is met) and the sign of nonlinearity. Second, for 
all aperture sizes, the variation of ATp.v is found to be linearly dependent on |A$0 |. Particularly for on 
axis (S~0) we find,

ATp_v * 0.405 |A$0 for |A*J < (13-a)

to be accurate to within 0.5 percent. As shown in Fig. 3, for larger apertures, the linear coefficient 0.405 
decreases such that with S=0.5 it becomes 0.34 and at S=0.7 it reduces to 0.29. Based on a numerical fitting, 
the following relationship can be used to include such variations within a ±2% accuracy;

ATp.v s 0.405(1 -S)°-25 |A*0 | for |A*0 | < TT . (13-b)

1.20
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0.40

0.00
0.0 /4 ir/2 3*/

Phase Change (rad.)

Fig.3 Calculated AT v as a function of the phase shift at the focus (A$Q). The sensitivity, as 
indicated by the slope of the curves, decreases slowly for larger aperture sizes (S>0).
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The implications of Eqns. 13 -a and 13 -b are quite promising in that they can be used to readily estimate
the nonlinear index (n2) with good accuracy after a Z -scan is performed. What is most intriguing about
these expressions is that they reveal the highly sensitive nature of the Z -scan technique. For example, if
our experimental apparatus and data acquisition systems are capable of resolving transmission changes ATp_,
of =1 %, we will be able to measure phase changes corresponding to less than x/250 wavefront distortion.
Achieving such sensitivity, however, requires relatively good optical quality of the sample under study. We
describe in the experimental section IV a means to minimize problems arising from poor optical quality
samples.

We can now easily extend the steady state cw results to include transient effects along with pulsed radiation
by using the time averaged index change (Ano(t)) where,

f00

Ano(t) Io(t)dt
00

(Ano(t))-

JIo(t)dt
00

(14)

The time averaged (A4;0(t)) is related to (Ano(t)) through Eq. 6. With a nonlinearity having instantaneous
response and decay times relative to the pulsewidth of the laser, one obtains for a temporally Gaussian
pulse:

(Ano(t)) = Ono /N/2 , (15)

where Ono now represents the peak -on -axis index change at the focus. For a cumulative nonlinearity
having a decay time much longer than the pulsewidth (eg. thermal), the instantaneous index change is given
by the following integral:

Ano(t)=AJ Io(t')dt' ,

-00
(16)

where A a constant which depends on the nature of the nonlinearity. If we substitute Eq. 16 into Eq. 14
we obtain a fluence averaging factor of 1/2. That is,

(Ano(t)) =
2

A F , (17)

where F is the pulse fluence at focus within the sample. Interestingly, the factor of 1/2 is independent of
the temporal pulse shape.

4. EXPERIMENTAL RESULTS

We examined the nonlinear refraction of a number of materials using the Z -scan technique. Fig. 4 shows a
Z -scan of a 1 mm thick cuvette with NaCI windows filled with CS2 using 300 ns TEA CO2 laser pulses
having an energy of 0.85 mJ. The peak - valley configuration of this Z -scan is indicative of a negative
(self- defocusing) nonlinearity. The solid line in Fig. 4 is the calculated result using (A(1)0) = -0.6 which gives
an index change of (Ano)_ -1 x 10-3. As mentioned earlier such detailed theoretical fitting is not neccessary
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for obtaining (An°) (only AT , is needed). The defocusing effect shown in Fig. 4 is attributed to a
thermal nonlinearity resulting from linear absorption of CS2 (a 0.22 cm -1 at 10.6 pm). The risetime of a
thermal lens in a liquid is determined by the acoustic transit time, r=w°/v8, where v8 is the velocity of
sound in the liquid [17]. For CS2 with v8 1.5 x 106 cm /sec and having we260 pm, we obtain a risetime
of r.-240 ns which is almost an order of magnitude smaller than the TEA laser pulsewidth. Furthermore, the
relaxation of the thermal lens, governed by thermal diffusion, is of the order of 100 ms.[17] Therefore, we
regard the nonuniform heating caused by the 300 ns pulses as quasi- steady state, in which case, from Eq.
17, the average on -axis nonlinear index change at focus can be determined in terms of the thermo -optic
coefficient, dn/dT, as:

(An ) dn F°a° - dT 2pC ' (18)

where F° is the fluence, p is the density, C is the specific heat and 1/2 denotes the fluence averaging
factor. With the known value of pC, 1.3 J / °Kcm3 for CS2, we deduce dn/dT ^e -(8.3 ±1.0)x10-4 0C-1
which is in good agreement with the reported value of -8x10 -4 °C- 1.[16]

1.10

ú 1.05

..

F
b
Ñ 0.95

E

Z 0.90

0.85
-10.0 -5.0 0.0

Z (mm)
5.0 10.0

Fig.4 Measured Z -scan of a lmm thick CS2 cell using 300 ns pulses at a =10.6 pm indicating thermal
self- defocusing. The solid line is the calculated result with A4° = -0.6 and 60% aperture (S =0.6).

With ultrashort pulses, nonlocal nonlinearities such as thermal or electrostriction are no longer significant.
Particularly, in CS2, the molecular reorientational Kerr effect becomes the dominant mechanism for
nonlinear refraction. CS2 is frequently used as a standard reference nonlinear material.[ 18,19] We have
used picosecond pulses at 10.6 pm, 1.06 pm and at 0.53 pm to measure n2 in CS2. We obtain the same
value of n2, within errors, at all three wavelengths, (1.5 ±0.6)x10 -11 esu at 10.6 tim, (1.3 ±0.3)x10 -11 esu at
1.06 pm and (1.2 ±0.2)x10-11 esu at 0.53 pm. The external self- focusing arising from the Kerr effect in CS2
is shown in Fig. 5, where a Z -scan of a lmm cell using 27 ps (FWHM) pulses focused to a beam waist w°
of 26 pm from a frequency doubled Nd:YAG laser is illustrated. Its valley -peak configuration indicates the
positive sign of n2. With ATP_ = 0.24, and using Eq. 13 -b with a 40 percent aperture (S = 0.4), one
readily obtains a (An°) = 5.6 x 10-6. Using the peak irradiance of 2.6 GW /cm2, this value of (An°)
corresponds to an n2 (1.2 ± 0.2)x 10-11 esu. The main source of uncertainty in the value of n2 is the
absolute measurement of the irradiance. A plot of AT versus peak laser irradiance as measured from
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With ultrashort pulses, nonlocal nonlinearities such as thermal or electrostriction are no longer significant. 
Particularly, in CS2 , the molecular reorientational Kerr effect becomes the dominant mechanism for 
nonlinear refraction. CS2 is frequently used as a standard reference nonlinear material.[18,19] We have 
used picosecond pulses at 10.6 /mi, 1.06 /mi and at 0.53 /mi to measure n2 in CS2 . We obtain the same 
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is shown in Fig. 5, where a Z-scan of a 1mm cell using 27 ps (FWHM) pulses focused to a beam waist w0 
of 26 /mi from a frequency doubled Nd:YAG laser is illustrated. Its valley-peak configuration indicates the 
positive sign of n2 . With ATp.v = 0.24, and using Eq. 13-b with a 40 percent aperture (S = 0.4), one 
readily obtains a (An0) - 5.6 x 10~ 5 . Using the peak irradiance of 2.6 GW/cm2 , this value of {An0> 
corresponds to an n2 - (1.2 ± 0.2)x 10' 11 esu. The main source of uncertainty in the value of n2 is the 
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various Z -scans on the same CS2 cell is shown in Fig. 6. The linear behavior of this plot follows Eq. 13 as
derived for a cubic nonlinearity.
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Fig.5 Measured Z -scan of a 1mm thick CS2 cell using 27 ps pulses at a =532 nm. It depicts the self -
focusing effect due to the reorientational Kerr effect.
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Fig.6 Tp_ in percent as a function of the peak irradiance from the Z-scan data of CS2 at 532 nm,
indicative of the reorientational Kerr effect.

3.60

Transparent dielectric window materials have relatively small nonlinear indices. Recently, Adair et. al. [21 ]
have performed a careful study of the nonlinear index of refraction of a large number of such materials in
a nearly degenerate- three -wave- mixing scheme at x^-1.06 µm. Using the Z -scan technique, we examined
some of these materials at 532 nm. For example, the result for BaF2 (2.4mm thick) is shown in Fig.7, using
the same beam parameters as for CS2. This Z-scan was obtained by purposely lowering the pulse energy to
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Transparent dielectric window materials have relatively small nonlinear indices. Recently, Adair et. al. [21] 
have performed a careful study of the nonlinear index of refraction of a large number of such materials in 
a nearly degenerate-three-wave-mixing scheme at A^l.06 nm. Using the Z-scan technique, we examined 
some of these materials at 532 nm. For example, the result for BaF2 (2.4mm thick) is shown in Fig.7, using 
the same beam parameters as for CS2 . This Z-scan was obtained by purposely lowering the pulse energy to

SPIE Vol. 1148 Nonlinear Optical Properties of Materials (1989) / 49

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/30/2015 Terms of Use: http://spiedl.org/terms



2 pJ in order to observe the resolution and the sensitivity of this measurement. With a OTp_ 0.035, this
Z -scan corresponds to a )/75 induced phase distortion. For a unity signal -to- noise -ratio for our particular
laser system, it is seen from Fig. 7 that the sensitivity to phase distortion is better than A/300. For laser
systems having better amplitude and pulsewidth stability, the sensitivity should be correspondingly increased.
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Fig.7 Measured Z -scan of a 2.4 mm thick BaF2 sample using 20 ps pulses at a =532 nm indicating the
self- focusing due to the electronic Kerr effect. The solid line is the calculated result with
A(I)0=0.085 corresponding to --a/75 total phase distortion. The error bar shown corresponds to
approximately A /480 induced phase distortion.

Aside from the statistical fluctuations of the laser irradiance, surface imperfections or wedge in the sample
may lead to systematic transmittance changes with z that could mask the effect of nonlinear refraction. We
found, however, that such "parasitic" effects may be substantially reduced by subtracting a low irradiance
background Z -scan from the high irradiance scan. A simple computer simulation of this process assuming
that the surface imperfections do not disturb the circular symmetry of the beam or cause any beam steering,
indicated that background subtraction indeed recovers the original OTp_" arising from the nonlinear
refraction effect even for quite large surface disturbances o¢8 of up to 7r.

Returning to the Z -scan of Fig.7, we obtain n2 ^- (0.8 ±.15) x10 -13 esu for BaF2 at 532 nm, which is in close
agreement with the reported values of 0.7x10-13 esu [21] and 1.0x10 -13 esu [3] as measured at 1.06 µm using
more complex techniques of nearly degenerate- three -wave- mixing and time- resolved -nonlinear-
interferometry, respectively. Similarly for MgF2, we measure n2fA.25x10 -13 esu at 532 nm as compared to
the reported value of 0.32x10-13 esu at 1.06 pm for this material as given in [21]. Dispersion in n2 for
these materials between 1 and 0.5 pm is expected to be minimal. It should be noted that the n2 values
extracted from the Z -scans are absolute rather than relative measurements. If the beam parameters are not
accurately known, however, it should be possible to calibrate the system by using a standard nonlinear
material such as CS2.

5. CONCLUSION

We have demonstrated a simple single beam technique that is sensitive to less than A/300 nonlinearly
induced phase distortion. Using the Z -scan data the magnitude and sign of the nonlinear refraction can be
simply determined. We have derived relations that allow the refractive index to be obtained directly from
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extracted from the Z-scans are absolute rather than relative measurements. If the beam parameters are not 
accurately known, however, it should be possible to calibrate the system by using a standard nonlinear
material such as CS2 .

5. CONCLUSION

We have demonstrated a simple single beam technique that is sensitive to less than A/300 nonlinearly 
induced phase distortion. Using the Z-scan data the magnitude and sign of the nonlinear refraction can be 
simply determined. We have derived relations that allow the refractive index to be obtained directly from
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the Z -scan data without resorting to computer fits. We have applied this technique to several materials
displaying a variety of nonlinearities on different time scales. It is expected that this method will be a
valuable tool for experimenters searching for highly nonlinear materials.
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