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Chapter 1

Introduction

1.1 Foreword

Sometimes certain well understood natural phenomena surprise us by acting in

an unexpected manner. Not surprisingly, these anomalies attract the most interest

which results in large amount of scientific effort. Three exciting examples of these

phenomena are the Bessel beam [1], the Airy beam, [2], and the hydrogen-like

bullets. These beams seemingly defy the long understood process of diffraction

and dispersion, the spreading of light in space and time. Stranger yet, the Airy

beam is a wavefront that curves in a parabolic fashion even in vacuum. Because of

their novel properties, these beams may become valuable to applications ranging

from detection of objects [3] to microlithography [4] to biological tissue sampling

[5]. This candidacy report briefly summarizes some of the accumulated scientific

knowledge concerning the Bessel beam and the Airy beam. Finally, the hydrogen-

like bullets are put in context of other spatio-temporal bullets and then discussed

in detail.

1.2 Derivation of the Helmholtz equation

The process of diffraction is a process related to the wave characteristic of light.

It is derived from the Latin word diffringere which means “to break into pieces"

[6]. In the words of Arnold Sommerfeld, diffraction consists of any deviation a
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light ray takes from a rectilinear path that cannot be explained as reflection or

refraction. In this process, the amplitude and phase of a wavefront is altered as it

propagates because of lateral confinement [7]. Mathematically, one can begin with

Maxwell’s equations to describe the evolution dynamics of electromagnetic waves

propagating in lossless vacuum.

∇ · #»
E (x , y, z, t) = 0 (1.1a)

∇ · #»
H(x , y, z, t)µ0 = 0 (1.1b)

∇× #»
E (x , y, z, t) =−µ0

∂
#»
H(x , y, z, t)
∂ t

(1.1c)

∇× #»
H(x , y, z, t) =−ε0

∂
#»
E (x , y, z, t)
∂ t

(1.1d)

Where
#»
E (x , y, z, t) is the electric field,

#»
H(x , y, z, t) is the auxillary magnetic field,

µ0 is the permeability of free space, and ε0 is the permittivity of free space. By

convention, the ẑ direction is the propagation direction and the x̂ and ŷ are the

coordinates transverse to the propagation. By using the relationship ∇×∇× #»
E =

−∇2 #»
E +∇(∇ · #»

E ) and combining (1.1a), (1.1c), and (1.1d), one arrives at the

wave equation.

∇2 #»
E (x , y, z, t)−µ0ε0

∂ 2 #»
E (x , y, z, t)
∂ t2 = 0 (1.2)

The wave equation may be decomposed into a continuum of linearly independent

sinusoids through the Fourier transform; that is, each field can be expressed as
#»
F (x , y, z, t) = Re[

#»
F (x , y, z)exp(−iωt)]. With this method, Maxwell’s equations

can be reduced to a spatial set of differential equations known as the time harmonic

Maxwell’s equations. Time dependant fields can then be constructed from the

resulting basis set of linearly independent components [8]. Substituting the time

harmonic form for the electric field into (1.2), we arrive at the Helmholtz equation,

which is the time-independent form of the wave equation.

∇2 #»
E (x , y, z) + k2 #»

E (x , y, z) = 0 (1.3)
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Here, k = ωpµ0ε0 = 2π/λ is known as the wavenumber. The first term that

appears in (1.3) represents the curvature of E(x , y, z) and describes the process of

diffraction.

1.3 The scalar paraxial wave equation

The Helmholtz equation describes the time-independent propagation of radiation.

However, this partial differential equation often proves difficult to solve or numeri-

cally compute. Fortunately, an approximation can be made which allows for easier

computation while still capturing most of the dynamics of the Helmholtz equa-

tion. The approximation, called the slow varying envelope approximation (SVEA)

assumes that the electric field can be described as the product of a rapidly vary-

ing beam phase and a slow varying beam amplitude profile which is expressed as

E(x , y, z) = ψ(x , y, z)exp(ikz). Substitution into (1.3) and neglecting the minus-

cule term ∂ 2ψ(x , y, z)/∂ z2 gives:

i
∂ψ(x , y, z)

∂ z
+

1

2k
∇2
⊥ψ(x , y, z) = 0 (1.4)

Where ∇2
⊥ is the transverse Laplacian. It should be noted that by invoking the

SVEA another assumption has been implicitly made called the paraxial or “small

angle" approximation [6]. This assumption assumes that the radiation propagates

mostly in the ẑ direction and is valid when k⊥/k = sin(θ)≈ θ .

3



(a)

Figure 1.1: The paraxial regime assumes that radiation propagates mostly in the ẑ
direction. Graphic taken from [9].

1.4 Gaussian beam diffraction

In order to say that radiation like Bessel and Airy beams are special, they need

to be compared to a common well understood wavefront. The standard textbook

profile is the Gaussian beam. In order to characterize the evolution dynamics,

one assumes a Gaussian wavefront with the form ψ(r, z = 0) = ψ0 exp[−i(P(z) +
(k0nr2)/2q(z))]. Here, ψ0 is the maximum envelope amplitude, n is the refractive

index of the medium, k0 = ω/c, exp(−iP(z)) = q(0)/q(z) and q(z) = z + iz0.

The parameter z0 = k0nw2
0/2 is known as the Rayleigh length and is the distance

the Gaussian beam propagates until its beam radius has reached w(z) =
p

2w0.

Finally, the value w0 is known as the beam waist and is the minimum radius of

the Gaussian beam which occurs at z = 0. With the above anstanz as an initial

condition to (1.4), it can be shown that the following expression is satisfactory for

all propagation distances [10]:

E(r, z) =ψ0

w(0)
w(z)

exp

�

−
r2

w2(z)

�

exp

�

i
k0nr2

2R(z)

�

exp
�

−i arctan
z

z0

�

exp
�

k0nz
�

(1.5)
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(a)

Figure 1.2: Gaussian beam propagation [10]

Where w(z) = w0

p

1+ (z2/z2
0) and R(z) = z(1 + z2

0/z
2). In our study of these

more exotic beams, we will compare their behavior to the propagation dynamics

of a Gaussian beam given by (1.5).
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Chapter 2

The Bessel beam

2.1 Inception of the Bessel beam

The mathematical construct of the Bessel beam was first proposed in 1987 by

Durnin [11] who was reviewing solutions to the Helmholtz equation published

by Edmund Whittaker in 1902 [12]. The solution began by casting the Helmholtz

equation (1.3) in cylindrical coordinates:

∂ 2E(r,θ , z)
∂ r2 +

1

r

∂ E(r,θ , z)
∂ r

+
1

r2

∂ 2E(r,θ , z)
∂ θ 2 +

∂ 2E(r,θ , z)
∂ z2 + k2E(r,θ , z) (2.1)

Here, r2 = x2 + y2 is the radial component in the transverse plane and θ =
arctan(y/x). The next important step is to assume a separable solution of the

form E(r,θ , z) = R(r)exp(inθ)exp(iβz), where β is a constant and n is an integer.

Substitution of this into (2.1) results in Bessel’s differential equation for the radial

function:

r2∂
2R(r)
∂ r2 + r

∂ R(r)
∂ r

+
��

k2− β2
�

r2− n2
�

R(r) = 0 (2.2)

The linear combination of the two solutions to this second order differential equa-

tion is R(r) = A0Jn(αr) + B0Yn(αr) [13], where α2 = k2 − β2. Because of the

singularity that Yn(αr) has at r = 0, it is discarded giving a full complex electric

field of:
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E(r,θ , z) = A0Jn (αr)exp (inθ)exp
�

iβz
�

(2.3)

The electromagnetic field in (2.3) was termed the Bessel beam. A short while

after, Durnin and two of his colleges published instructions for producing the first

order Bessel radiation pattern along with experimental results which confirmed the

existence of the beam 2.1 [1].

(a)

Figure 2.1: Experimental setup used by Durnin, Miceli, and Eberly [1].

2.2 The diffractionless property of the Bessel beam

Perhaps the most intriguing property of the Bessel beam is that the transverse

intensity remains invariant upon propagation [1, 11]. The time averaged intensity

of a beam is proportional to the absolute square of the electric field, I ∝ |E|2.

Because the z dependence exists exclusively as a phase component in (2.3), it will

vanish when considering the intensity profile.

I(r,θ , z = 0) = A2
0J2

n (αr) = I(r,θ , z > 0) (2.4)
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(a) (b)

Figure 2.2: Example transverse intensity profiles of a) J0 and b) J1 Bessel beam.

Consequently, Bessel beams of all orders, n, are diffractionless, azimuthally sym-

metric, and consist of rings whose intensity maxima correspond to J2
n (αr) 2.2.

The claim of that a wavefront could exhibit no diffraction stirred controversy at

first. Skeptics objected that the center maximum of the J0 beam was actually both

an example of Poisson’s spot and a line image resulting from the circular aperture

used in Durnin’s experiment 2.1 [14, 15]. Others argued that conventional Gaus-

sian beams, which do not carry the diffractionless property, performed equally as

well under a clearly fair comparison [16]. Durnin and his colleges responded that

there are many ways to produce line images and these methods do not necessarily

have the properties seen in the Bessel beam [17]. Furthermore, they reaffirmed

that they “had [only] observed beams whose central maxima are remarkably resis-

tant to the diffractive spreading commonly associated with all wave propagation"

[18]. As a follow up to this scrutiny, Durnin, Miceli, and Eberly published a fair

comparison between the properties of a Gaussian and a J0 Bessel beam, mainly

showing that the J0 beam’s first maximum had virtually no spreading at the Gaus-

sian beam’s Rayleigh length for the same FWHM [19].
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2.3 Conical superposition

(a)

Figure 2.3: The Fourier spectrum of a Bessel beam is a ring in k-space [7].

The Bessel beam can be considered as the superposition of all plane waves prop-

agating on a cone which is to say that the Fourier transform of a Bessel beam is a

ring in k-space 2.3 [7]. Why is this so? To answer this question, we must make

use of the paraxial wave equation in 1D. We then guess a simple diffraction-free

solution for the electric field envelope, ψ(x , y, z) = exp(iα2z/2k) cos(αx), which

upon inspection, is shown to satisfy (1.4). Here, α2 = k2
x + k2

y .

This solution represents a pair of plane waves having: 1. k vectors of equal mag-

nitude, 2. identical components along the ẑ direction, and 3. equal and opposite

components along the x̂ direction (in general one plane wave in an arbitrary θ̂ di-

rection emanating with equal φ is a solution - see 2.4). For our example, however,

the resulting transverse intensity profile is a cosine-squared interference pattern.

(a) (b)

Figure 2.4: a) The superposition of a pair of plane waves as shown results in a b)
cosine-squared transverse intensity profile. Note that any emanating plane wave
on this cone is a valid solution
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The solution that gave rise to the diffractionless pattern shown in 2.4b had no

constraint on the azimuthal orientation of the pair of plane waves, represented

by θ . This free parameter offers a versatility if we now consider the 2D paraxial

wave equation. Any single plane wave (it need not be a pair) holding the three

properties defined previously can be arbitrarily oriented along θ and still satisfy

(1.4). More importantly, any superposition of these diffractionless solutions will

be a new diffractionless solution, leading to an infinite amount of diffractionless

beam possibilities. An arbitrary superposition of these “conical plane waves" can

be expressed by the following integral:

ψ(x , y, z) =

∫ π

−π
G(θ)exp

�

iα2

2k

�

exp
�

iα
�

x cosθ + y sinθ
��

dθ (2.5)

Where G(θ) is an arbitrary complex function which defines the arrangement of

the conical plane waves. Being able to experimentally manipulate equation (2.5)

could open possibilities for custom diffractionless beams. Some realizations of

conical superposition are displayed in 2.5. The specific case of the Bessel beam

can be interpreted as the superposition of these conical plane waves covering ev-

ery azimuthal angle; that is, G(θ) = 1 (see 2.5e). Because Bessel beams can be

constructed this way, it follows that the zeroes of the beam have a π phase shift

between adjacent rings [20].

10



(a) (b)

(c) (d)

(e)

Figure 2.5: Superposition of conical plane waves result in diffractionless beams. In
each picture, a black dot indicates the position of a single plane wave on the base
of a cone. This is alongside the resulting transverse intensity profile for each.
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2.4 Self-healing property of Bessel beams

Another property of the Bessel beam is its self-healing property [21]. Analogous

to a starfish or lizard that can completely regenerate body parts, the Bessel beam

has the ability to renew portions of its electric field which have been removed.

The application of Babinet’s principle explains this interesting property [22]. One

knows that the complex amplitude of an unadulterated Bessel beam, EBess, follows

(2.3) for z ≥ 0. We then assume that an obstacle blocks portions of the Bessel beam

at z = 0. This obstacle, if it were an aperture, would evolve a complex amplitude,

EO bs, which would be describable by the Fresnel diffraction integral.

Eobs(x , y, z) =
exp (ikz)

iλz

×
∫ ∞

−∞

∫ ∞

−∞
Eobs(x

′, y ′, z = 0)exp
�

ik

2z

�

�

x − x ′
�2+

�

y − y ′
�2�
�

dx ′dy ′
(2.6)

According to Babinet’s principle, the disturbed Bessel beam will have a complex

electric field that is equal to the difference between the undisturbed Bessel beam’s

and the obstacle’s diffraction pattern; that is, EDistur b = EBess − EObs. The total time

averaged intensity is given by
�

�EDistur b

�

�

2
or:

IDistur b = EDistur bE?Distur b =
�

�EBess

�

�

2
+
�

�EObs

�

�

2− EBessE
?
Obs − EObsE

?
Bess (2.7)

Equation (2.7) consists of four terms which combine to give the total intensity

of the disturbed field; however, the term EBess which follows (2.3), is invariant

under propagation while the complex amplitude of the obstacle, Eobs, decreases

with a factor of 1/z as seen in (2.6). Thus in the limit that z → ∞, the complex

amplitude of the obstacle approaches zero. Under these conditions (2.7) becomes

the intensity of the Bessel beam only and we see that the effects of the disturbance

have been repaired.

To illustrate this self-healing property, a simulation is reported where the second

and third ring of the J0 Bessel beam is removed and allowed to propagate. This

is then compared to an undisturbed Bessel beam 2.6. It should be noted that due

to the finite window of the simulation, the Bessel beam will not exhibit perfect

12



diffractionless behavior - this is strictly a numerical artifact. Looking at both 2.6c

and 2.6d one can see that by z = 400m the two transverse beam profiles are nearly

the same.

(a) (b)

(c) (d)

Figure 2.6: a) The initial profile of a J0 Bessel beam along Y = 0. b) The initial
profile of a J0 Bessel beam along Y = 0 with the second and third ring removed.
c) Side profile showing propagation of unadulterated Bessel beam. d) Side profile
of the disturbed Bessel beam showing self-healing as z→∞

2.5 Finite power Bessel beams

In experimental practice, the complex field given in (2.3) cannot be produced.

This is because a true Bessel beam is an ideal construct analogous to the plane

wave, and like the plane wave, carries an infinite amount of power [23]. Real-

izing the importance of modeling a Bessel-like beam with a finite norm, Gori et

al. introduced the Bessel-Gauss beam shortly after the introduction of the Bessel

beam in 1987 [24]. This modification begins with a J0 Bessel beam which has been

apodized by a Gaussian profile:

13



ψ(r, z = 0) = A0J0(αr)exp
�

−r2/w2
�

(2.8)

It can be shown that by using (2.8) as an initial condition to the paraxial wave

equation, the following holds for all propagation distances:

ψ(r, z) =−
ikA0

2zQ
exp

�

ik

�

z+
r2

2z

��

J0

�

iαkr

2zQ

�

exp

�

−
1

4Q

�

α2+
k2r2

z2

��

(2.9)

Where Q = w−2 − ik/2z. One of the ramifications of apodizing a Bessel beam

is that its diffractionless property is compromised. This is apparent in the 1/z

factor appearing in (2.9). However, the Bessel-Gauss beam still experiences smaller

amounts of diffraction compared to a Gaussian beam of the same FWHM [19].
Because of this, the term quasi-diffractionless has been adopted. It is worth noting

that quasi-diffractionless beams mostly retain their self-healing property as well,

but in the limit of infinite propagation, their intensity approaches zero.

2.6 Efficient production of Bessel beams

The experimental procedure introduced by Durnin et al. [1] was done by allowing

an incident plane wave to pass through a circular opening and then focused with a

lens 2.1, a method that expanded off a similar procedure studied by John McLeod

[25]. The idea is that the plane wave incident on the circular opening creates a

ring of point sources. This is then focused with a lens which results in a scaled

Fourier transform of the ring at focus. As stated earlier in section 2.3, the Fourier

transform of a Bessel beam is a ring in k-space, therefore, this simple method

produces a Bessel beam. Unfortunately, such a method is inefficient at collecting

large amounts of light [26]. Furthermore, a circular aperture causes rapid on-axis

intensity oscillations giving erratic intensity variations [7]. An optical element,

called an axicon, can produce a Bessel beam and avoid these problems 4.9 [3, 7,

25, 26].
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Figure 2.7: Axicon lens producing a Bessel beam [27]

It is worth noting that other methods exist which produce Bessel beams such

as using a spatially filtered Fabry-Perot resonator [28] or a computer generated

hologram [29]; however, the axicon lens remains the simplest and most efficient

method [7].
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Chapter 3

The Airy Beam

3.1 The inception of the (1+ 1)D and (2+ 1)D Airy

beam

The origins of the Airy beam are rooted in quantum mechanics. In 1978, Berry

and Balazs theoretically developed a unique solution to the Schrodinger equation

which showed that a free accelerating particle could evolve [30]. Because of the

isomorphism between the Schrodinger equation and the paraxial wave equation,

Siviloglou and Christodoulides were able to greatly extend this idea into the field

of optics where it flourished. They introduced the finite energy Airy beam by as-

suming an initial electric field envelope of the form: ψ(s,ξ = 0) = Ai(s)exp(as)
[2]. Here, a is a decay factor and s = x/x0 and ξ = z/kx2

0 are coordinates corre-

sponding to a normalized version of the paraxial wave equation:

i
∂ψ(s,ξ)
∂ ξ

+
1

2

∂ 2ψ(s,ξ)
∂ ξ2 = 0 (3.1)

The solution to (3.1) with the apodized Airy beam initial condition is given by [2]:

ψ(s,ξ) = Ai

�

s−
�

ξ

2

�2

+ iaξ

�

exp

�

as−
�

aξ2

2

�

−
�

iξ3

12

�

+

�

ia2ξ

2

�

+
�

isξ

2

�

�

(3.2)

The analytic solution given by (3.2) carries some of the intriguing characteris-
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tics of the Bessel beam. For example, it exhibits its diffractionless [30] and self-

healing properties [31]. However, it is unique because it is the only diffractionless

(1+ 1)D1solution to the paraxial wave equation and cannot be constructed from

the conical superposition of plane waves [32]. Lastly, it has the additional property

of freely accelerating or bending which is discussed in the next section.

To demonstrate the quasi-diffractionless properties of the (1+1)D finite Airy beam,

assume the following parameters: x0 = 100µm and λ= 500nm. From this, we ob-

tain a Gaussian Rayleigh range of z0 = kx2
0 = 12.56cm. This corresponds to a main

airy lobe FWHM of 171µm which remains quasi-diffractionless upon propagation

for roughly 6, 8, and 10 Gaussian Rayleigh ranges for a = .10, .05, .01 respectively.

Fig. 4.10 contains plots which illustrate equation (3.2) for these values of a.

Airy beams in two dimensions can be represented as the product of two orthogo-

nal one dimensional versions [2, 33]. Fig. 3.2 shows the transverse intensity of

this profile for three different propagation distances and a constant apodization

parameter of a = .07.

1The notation (n+ 1)D refers to the n coordinates involved in addition to the propagating ẑ
direction
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(a)

(b)

(c)

Figure 3.1: Propagation of a finite Airy beam with various decay parameters. a)
decay of a = .01, b) decay of a = .05, c) decay of a = .10
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(a)

(b)

(c)

Figure 3.2: 2D transverse intensity profile of Airy beam at various propagation
distances. a) z = 0.00cm, b) z = 55.30cm, c) z = 75.40cm

A few months after setting the theoretical framework of the Airy beam, Siviloglou

et. al followed up with the experimental observation of both the (1 + 1)D and
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(2+ 1)D Airy beams [34]. The method to realizing these wavefronts was similar

to the approach discussed with the Bessel Beam 2.1. The k-space of the finite Airy

beam, a Gaussian beam modulated with a cubic phase 3.3, was arranged using

a spatial light modulator (SLM). Then, a convergent lens was used to focus the

radiation, approximately creating the Fourier transform of the wavefront. In the

case of the (1 + 1)D beam, a cylindrical lens was used in order to focus in one

dimension only. Note that the use of a phase mask to induce the cubic phase is an

alternative method that will pass more light than a SLM.

Figure 3.3: Phase masks used to apply a cubic phase modulation on a Gaussian
beam. Left: (1+ 1)D phase mask. Right: (2+ 1)D phase mask. In each, black
corresponds to zero phase shift and white to a 2π phase shift.

3.2 The freely accelerating property of the Airy beam

Airy beams are unique in the sense that they lack parity symmetry and tend to

freely accelerate and bend during propagation even though no force acts upon

it. This process is apparent in 4.10 and 3.2. Specifically in 3.2, the bending is

illustrated by the diagonal movement of the main Airy lobe as it propagates. This

unique property is elucidated on the basis of the equivalence principle which has

been used to successfully explain other similar situations [35, 36]. One might also

claim that this feature violates Ehrenfest’s theorem. However, although the main

features of the Airy profile are freely accelerating, the center of gravity of the entire

profile moves with constant velocity [37].
Because of the (ξ/2)2 term in (3.2), the Airy beam bends in a parabolic fashion and

is akin to the projectile motions of an object under the influence of gravity [32]. By

supposing an initial condition of the form ψ(s,ξ = 0) = Ai(s)exp(as)exp(ivs) and
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applying (3.1), one can find a solution similar to (3.2) that contains the parameter

v. This parameter is analogous to the initial launch angle of a projectile. Control

over an Airy beam’s launch angle could allow for the circumvention of objects

(Fig. 12) [32]. Recently, the freely accelerating property of Airy beams has been

utilized to realize curved ultraintense plasma channels in air [38]. This could offer

new angles to remote spectroscopy, terahertz wave generation, and few cycle pulse

compression [39, 40, 41, 42].

Figure 3.4: Controlling the initial angle of an Airy beam can be used to circumvent
objects [32].

3.3 Autofocusing beams

One of the most important characteristics of optical beams is their focusing dynam-

ics in free space; that is, how they collapse under linear conditions. A wavefront

will focus or defocus depending on its initial phase and amplitude distribution. For

example, in 1.2 we saw that a standard Gaussian wavefront has a complex electric

field given by (1.5). The peak intensity of such a beam follows a Lorentzian dis-

tribution - a somewhat gently rising and falling function. However, in applications

such as corneal refractive surgery [43] or optical filamentation [44], a beam which

instead suddenly spikes in intensity and then subsides quickly is more desirable.

A good candidate to meet these criteria is a radially symmetric arrangement of

(1+ 1)D Airy beams in free space [45]:
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ψ(r, z = 0) = Ai
�

r0− r
�

exp
�

a
�

r0− r
��

(3.3)

Where r0 is the initial radial displacement of the main ring. Note that for r ≤ r0

equation (3.3) decays exponentially and for r ≥ r0 the slowly decaying Airy oscil-

lations occur. As an example, consider a case where r0 = 1cm and a = .05mm−1

3.5.

Figure 3.5: Initial intensity distribution of equation (3.3) along Y = 0 for r0 = 1cm
and a = .05mm−1 . Values are scaled to an initial peak value of unity

The complex electric field envelope shown in 3.5 will evolve according to the Fres-

nel diffraction integral that was introduced in (2.6); however, this integral can

be simplified because of the azimuthal symmetry of the circular Airy beam. The

simplified integral is given by:

ψ(r, z) =
1

2π

∫ ∞

0

ψ̃(kr , z = 0)kr J0(kr r)exp

�

−
ik2

r z

2

�

dkr (3.4)

Where ψ̃(kr , z = 0) is the Hankel transform of (3.3)

ψ̃(kr , z = 0) =

∫ ∞

0

ψ(kr , z = 0)rJ0(kr r)dr (3.5)

Numerical computation of ψ(r, z) can be accomplished using a symmetric split-
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step beam propagation method [46]. A cross section of the resulting propagation

dynamics, illustrated in Fig. 3.6, has the following properties: 1. The center profile

of the wavefront abruptly focuses to an intensity that is 120 times the initial peak

intensity. 2. After coming to the sudden focus, the peak intensity drops off rapidly.

3. The focusing occurs in the absence of nonlinear effects. 4. After focusing, the far

field diffraction pattern approximately forms a finite first order Bessel beam [47].
The form of the beam given by 3.3 can be generalized to include an entire family of

abruptly autofocusing beams. These beams can be understood via the concept of

caustics, and careful manipulation of their sub linear chirps allows for one to pre-

engineer a wavefront resulting in customizable autofocusing characteristics [48].
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Figure 3.6: (Above) Cross section along Y = 0 showing the propagation dynamics
of the radial Airy distribution given by (3.3). (Below) central intensity along Y =
X = 0 shows the abruptly focusing characteristic of this wavefront. As before,
intensity values are scaled to the initial peak intensity value
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Chapter 4

Hydrogen-like symmetry bullets

4.1 Brief overview of spatio-temporal beams

In the spatio-temporal domain, the prospect for optical bullets that can simulta-

neously negotiate both dispersion and diffraction effects in the bulk has been ac-

tively pursued by several research groups in both the linear and nonlinear regimes

[49, 50, 51]. In general, an optical wavepacket propagating in a homogeneous

dielectric medium will expand because of diffraction effects while at the same time

its temporal profile will broaden because of dispersion. In the linear domain, spe-

cific wave solutions are known to exist under normally and anomalously disper-

sive conditions. For normal dispersion, these solutions exhibit an X-wave structure

[52, 53] - a direct outcome of the bidispersive nature of the underlying wave equa-

tion [54]. In the anomalous domain, spherical O-waves [51, 55] are allowed and

Bessel-X pulses are possible under specific conditions [56]. Recently, 3D Airy-Bessel

bullets that are impervious to both dispersion and diffraction have been suggested

[2] and successfully demonstrated in dispersive media [57]. This versatile class of

optical wavepackets was made possible by exploiting the fact that non-spreading

Airy waves can exist even in one dimension. This class of Airy-Bessel bullets is

possible irrespective of the dispersion properties of the material itself.

The quest for such spatio-temporal entities is clearly intertwined with experimental

capabilities of simultaneously shaping their ~k−ω spectra. Over the years, various

techniques have been developed to address these needs in either the spatial or
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temporal domain [58, 59]. Lately, methods that allow for the generation of quasi-

nondiffracting light beams with complex transverse shapes have been suggested

[60]. Further progress in this area may pave the way towards the generation of

other exotic space-time bullets with unique properties tailored for particular light-

matter interaction processes [61].

4.2 Problem Formulation and Analysis

In general, the primary electric field associated with a wavepacket can be expressed

through a slowly varying envelope via ~E(~r, t) = ûψ(~r, t)exp
�

i
�

k0z−ω0 t
��

where

ω0 is the carrier angular frequency, k0 =ω0n(ω0)/c, is the wavenumber evaluated

at ω0, and n(ω0) is the refractive index. The spatio-temporal evolution of the

envelope, ψ(~r, t), under the combined action of diffraction and group velocity dis-

persion is known to obey the following evolution equation:

i
∂ψ

∂ z
+

1

2k

�

∂ 2ψ

∂ x2 +
∂ 2ψ

∂ y2

�

−
k2

2

∂ 2ψ

∂ τ2 = 0 (4.1)

where in (4.1), τ = t − z/vg is a time coordinate frame moving at the wave’s

group speed, vg , and k2 = ∂ 2k/∂ω2 represents the dispersive coefficient of the

homogeneous medium again evaluated at ω0. The material is anomalously dis-

persive if k2 < 0 and is normal if k2 > 0. The transverse spatial operators in

(4.1) account for diffraction effects while the temporal operator for the action of

dispersion. Equation (4.1) can be judiciously scaled by normalizing the indepen-

dent variables involved in such a way that the diffraction length Ldi f f = 2kd2 is

equal to the corresponding dispersion length Ldisp = τ2
0/
�

�k2

�

�, i.e., Ldisp = Ldi f f .

Here, d is an arbitrary length scale and τ0 is associated with the pulsewidth of the

wavepacket. From this point on, the material dispersion is taken to be anomalous

in our analysis. Under these assumptions, Eq. (4.1) takes the form:

i
∂ψ

∂ Z
+
∂ 2ψ

∂ X 2 +
∂ 2ψ

∂ Y 2 +
∂ 2ψ

∂ T 2 = 0 (4.2)

where in (4.2) we have employed the following set of normalized coordinates and

variables X = x/d, Y = y/d, Z = z/
�

2kd2�, and T = τ/τ0.
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The aforementioned spatio-temporal wavepackets can be studied experimentally

in anomalously dispersive bulk media such as silica glass. Silica, at λ0 = 1550nm,

exhibits a dispersive coefficient of k2 = −2.8× 10−2ps2/m. For this example, such

a dispersion-diffraction equalization (Ldi f f = Ldisp = 5.7cm) is possible provided

that the wavepacket is generated from a transform limited femtosecond laser has

the following parameters: τ0 = 40 f s, d = 100µm. In what follows, we will derive

the electromagnetic equations describing the internal power flow associated with

a spatio-temporal wavepacket as a result of dispersion and diffraction. This is nec-

essary in order to comprehend the underlying dynamics in such systems. With this

in mind, we employ a perturbative approach, valid within the slowly varying enve-

lope approximation and paraxial diffraction optics. We start our analysis by writing

the electric field as a superposition of plane waves centered around a carrier fre-

quency, ω0. Without any loss of generality, the primary electric field component is

taken here to be x̂ polarized. In this case:

~E = x̂

∫∫∫

F0

�

ω−ω0; kx , ky

�

exp
�

i
�

~k ·~r −ωt
��

dωdkxdky (4.3)

This same field can also be expressed in terms of a slowly varying envelope ψ,

i.e. ~E(~r, t) = x̂ψ(~r, t)exp
�

i
�

k0z−ω0 t
��

. Given that kz ≈ k −
�

k2
x + k2

y

�

/(2k)
and that the wavenumber can be expanded in a Taylor series around ω0, k ≈
k0+ k1Ω+ k2Ω2/2 (where Ω =ω−ω0), one finds:

ψ(~r, t) =

∫∫∫

F0

�

Ω; kx , ky

�

exp
�

i
�

kx x + ky y
��

× exp
�

−
i

2k

�

k2
x + k2

y

�

z
�

exp

�

i

�

k1Ω+ k2

Ω2

2

�

z

�

× exp [−iΩτ]dΩd kx d ky (4.4)

where v−1
g = k1. The associated longitudinal component of the electric field can be

then obtained from ∇ · ~E = 0, leading to a total (corrected to first order) electric

field that is given by:
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~E =
�

x̂ψ+ ẑ
i

k0

∂ψ

∂ x

�

exp
�

i
�

k0z−ω0 t
��

(4.5)

The primary magnetic field of this wavepacket can be obtained from the elec-

tric field through the material intrinsic impedance η(ω) = η0/n(ω) where η0 =
p

�

µ0/ε0

�

. Therefore:

~H = ŷ

∫∫∫

F0

�

Ω; kx , ky

�

η(ω)

× exp
�

i
�

~k ·~r −ωt
��

dωd kx d ky

= ŷ

∫∫∫

F0

�

Ω; kx , ky

�

η0

�

n0+ n1Ω
�

exp
�

i
�

kx x + ky y
��

× exp
�

−
i

2k

�

k2
x + k2

y

�

z
�

exp

�

i

�

k1Ω+ k2

Ω2

2

�

z

�

× exp [−iΩτ]dΩd kx d ky exp
�

i
�

k0z−ω0 t
��

=
1

η0
ŷ
�

n0ψ+ in1

∂ψ

∂ τ

�

exp
�

i
�

k0z−ω0 t
��

(4.6)

where in (4.13) n(ω) = n(ω0+Ω) and n1 = ∂ n/∂ω at ω0. These coefficients can

in principle be evaluated from the corresponding Sellmeier equation associated

with the dispersive medium. From∇· ~H = 0, one can determine (to first order) the

longitudinal component of the magnetic field. The total magnetic field is found to

be:

~H =
�

1

η0
ŷ
�

n0ψ+ in1

∂ψ

∂ τ

�

+ ẑi
n0

k0η0

∂ψ

∂ y

�

exp
�

i
�

k0z−ω0 t
��

(4.7)

The power flow within the spatio-temporal wavepacket can now be established

from Eqs. (4.12) and(4.14), i.e.

28



#  »
Sav = ẑ

n0

2η0

�

�ψ
�

�

2− iẑ
n1

4η0

�

ψ
∂ψ?

∂ τ
−ψ?

∂ψ

∂ τ

�

+
in0

4k0η0

�

ψ∇⊥ψ?−ψ?∇⊥ψ
�

(4.8)

where∇⊥ = (∂ 2/∂ x2) x̂+(∂ 2/∂ y2) ŷ . The last two terms in Eq. (4.15) correspond

to the relative power flow corrections. The second term along ẑ is due to tempo-

ral effects while the ∇⊥ component accounts for the energy transport because of

transverse effects. We note here that the first term in (4.15) represents the dom-

inant contribution to the power flow. Equation (4.15) can now be expressed in

normalized units as follows:

#  »
Sav =

#»
S0+

#»
Sr

#»
S0 = ẑ

n0

2η0

�

�ψ
�

�

2

#»
Sr =−iẑ

n1

4η0τ0

�

ψ
∂ψ?

∂ T
−ψ?

∂ψ

∂ T

�

+

in0

4k0η0d

�

ψ∇̃⊥ψ?−ψ?∇̃⊥ψ
�

(4.9)

where the transverse ∇̃⊥ operator involves the X and Y scaled coordinates .

4.3 Optical bullets with hydrogen-like symmetries

Propagation invariant solutions to Eq. (4.2) can be directly obtained via separation

of variables in spatio-temporal spherical coordinates R,θ ,φ where R2 = X 2+ Y 2+
T 2. To do so, we write the solution as ψ = ψ0G(R)P(θ)exp

�

imφ
�

exp
�

−iα2Z
�

.

Direct substitution of this latter form into (4.2) gives the following equations:

d

dθ

�

sinθ
dP

dθ

�

+ sinθ

�

` (`+ 1)−
m2

sin2 θ

�

P = 0 (4.10)
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R2 d2G

dR2 + 2R
dG

dR
+
�

α2R2− ` (`+ 1)
�

G = 0 (4.11)

It is interesting to note that similar differential equations are encountered in the

analysis of hydrogen quantum orbitals. The solutions to the Legendre equation

(4.10) can be obtained in terms of the associated Legendre polynomials, Pm
` (γ), of

degree ` and order m where γ = cosθ . Equation (4.11) on the other hand has

spherical Bessel function solutions j`(αR) =
p

π/(2αR)J`+1/2(αR) which can be

expressed in terms of elementary functions since ` belongs to the natural numbers.

Therefore, invariant solutions to Eq. (4.2) are given by:

ψ=
p

2πψ0 j`(αR)Pm
` (cosθ)exp

�

imφ
�

exp
�

−iα2Z
�

(4.12)

As indicated above, the integer index ` takes values from the set ` = 0, 1,2, ...

while the integer order m is constrained in the range |m| ≤ `. We note that in

general these solutions depend on how the spherical coordinate system is oriented

with respect to the X , Y, T axes. If for example, the T coordinate coincides with

the spherical polar axis then θ = arctan (
p

X 2+ Y 2/T ) and φ = arctan (Y /X ). In

principle, however, the spherical polar axis can be oriented in any direction (for

example along X or Y ). This choice has an important effect on the associated

relative internal power flows
#»
Sr . In this case, the vorticity arising from the term

exp
�

imφ
�

takes on a whole new physical meaning in space-time.

(a) (b)

Figure 4.1: (a) Intensity iso-surface plots of an ` = m = 0 optical bullet. (b)
Intensity cross section reveals the j0(R)∝ sin R/R profile of this ‘s’ state.

The simplest possible member in this family of solutions given by Eq. (4.12) is

obtained when ` = m = 0. This lowest state optical bullet has no internal spin
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and because it is like hydrogen’s ‘s’ orbital we call it an ‘s’ bullet. An iso-intensity

contour plot of this wavepacket is depicted in Fig. 4.1a. This wave is evidently

spherical and its field follows a j0(R) ∝ sin R/R radial distribution. As a result, its

intensity structure involves concentric spherical shells as shown in Fig 4.1b which

represents a cross-section of this bullet in the Y − T plane. We note that this

specific ‘s’ member is identical to the so-called “o-wave" previously obtained in

other studies [51, 55]. Figure 4.2a, on the other hand, shows an iso-intensity plot

of a space-time optical bullet when ` = 1, m = 0, in which case it corresponds to a

pT -like orbital. The structure of this solution is no longer spherical and lacks spin

since m = 0. Note that this same state can be arbitrarily oriented in the X , Y, T

system. A cross-section of this solution at X = 0 (Fig. 4.2b) reveals the finer

structure in its field distribution.

(a) (b)

Figure 4.2: (a) Intensity iso-surface plots of an ` = 1, m = 0 optical bullet. (b)
Intensity cross section of ‘p’ shell for X=0.

As in the case of ‘s’-bullets these solutions exhibit infinitely many rings in sharp

contrast to the quantum orbitals of hydrogen. This is because in our case the

Coulombic potential is not involved. Similarly, px and py bullets can be generated

from the same “quantum" numbers ` = 1, m = 0. By further increasing the `

number, optical bullets of higher symmetries can be generated similar to the ones

depicted in Fig 3. In particular, when `= 2 and m= 0 (Fig. 4.3a) the propagation

invariant wavepacket corresponds to the dT T group (d-orbitals). Similarly, an f-

symmetric light bullet with `= 3, m= 0 is shown in Fig. 4.3b.
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(a) (b)

(c) (d)

Figure 4.3: Intensity iso-surfaces corresponding to higher order optical bullets hav-
ing m= 0 when: (a) `= 2, (b) `= 3, (c) `= 4, (d) `= 7

If we assume a state with finite spin (m 6= 0), an internal power flow will be present

in the wavepacket arising from its exp
�

imφ
�

dependence. Figure 4.4a depicts the

iso-intensity plot of an ` = m = +2 bullet while Fig. 4.4b shows its corresponding

internal power circulation,
#»
Sr , which happens in this case to be clockwise. As

would be anticipated, for m = −2 we obtain the same iso-intensity plot while the

power circulation is counter-clockwise (Fig. 4.4c).
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(a)

(b) (c)

Figure 4.4: (a) Intensity iso-surfaces of an ` = 2; m = ±2 optical bullet. (b) Top
view of power circulation when m = +2 . (c) Power circulation in this same state
when m=−2.

This leads to the possibility of realizing superpositions (e.g. exp
�

+imφ
�

]+exp
�

−imφ
�

)

of spatio-temporal bullets that share the same ` number and opposite “spin" num-

bers, m. If for example ` = 2 and m = ±1, the wavepacket will have a four-fold

symmetry (Fig. 4.5a) and it will be dY T symmetric. On the other hand, a dX Y sym-

metric wavefunction will be similar to the one shown Fig. 4.5b for characteristic

indices `= 2 and m=±2.

(a) (b)

Figure 4.5: Superimposing optical bullets with ` = 2; m = ±m0. (a) Intensity
iso-surfaces with m0 = 1 (b) Isosurfaces with m0 = 2.
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In principle, a superposition of two such spatio-temporal hydrogen-like optical bul-

lets that have identical “quantum numbers", ` and m, but with slightly different

propagation constants (α1 ≈ α2) can lead to a “breathing” wavepacket. If, on the

other hand, these two bullets exhibit opposite spins, ±m, then the resulting inten-

sity pattern rotates during propagation with period of Z0 = 2π/
�

�α2
2−α

2
1

�

� . This

behavior is illustrated in Fig. 4.6 where a spinning optical bullet was generated

with two almost degenerate states having `= 2, m=±2 and α1 ≈ α2.

Figure 4.6: A rotating optical light bullet.

4.4 Propagation dynamics of energy apodized light

bullets

It is straightforward to show that the optical bullets presented in this paper carry in-

finite energy. In other words, these spatio-temporal waves happen to be dispersion-

diffraction free because they are associated with an infinite norm (very much like

plane waves). In practice, any optical bullet can only involve finite energy. As a re-

sult, it is important to study the dynamics of this family of optical waves when they

are appropriately apodized since it is necessary for their generation. In this case, a

truncated bullet is expected to eventually expand in space and time depending on

the degree of the apodization itself. Nevertheless, the bigger the space-time aper-

ture is, the longer these bullets will maintain their features and the slower they will

deteriorate or expand. In this section, we assume that the apodization is carried

out in a Gaussian fashion [24, 62]. To analyze these dynamics we recall that in all

cases the electric field envelope obeys equation (4.2). We also note that in 3D a

Gaussian wavepacket of the form G(X , Y, T ; Z = 0) = exp
�

−R2/w2� satisfies Eq.

(4.2) and evolves according to the analytical solution:
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G(X , Y, T ; Z) =
1

µ3/2(Z)
exp
�

−
X 2+ Y 2+ T 2

w2µ(Z)

�

, (4.13)

where µ(Z) = 1+4iZ/w2 . Let us now assume that a certain envelope, ψ̃(X , Y, T ; Z),
satisfies Eq. (4.2). In that case, it is straightforward to show that its Gaussian

apodized counterpart also satisfies Eq.(4.2), that is:

ψ(X , Y, T ; Z) =
1

µ3/2(Z)
exp

�

−R2

w2µ(Z)

�

ψ̃(X̃ , Ỹ , T̃ ; Z̃) (4.14)

where the new coordinates appearing in Eq. (4.14) have been renormalized with

respect to µ(Z), i.e., (X̃ , Ỹ , T̃ , Z̃) = (X , Y, T, Z)/µ(Z). Equation (4.14) is general

and holds in all cases. In the specific case of the apodized hydrogen-like optical

bullets discussed here, (4.14) leads to:

ψ̃=
1

µ3/2(Z)
exp

�

−R2

w2µ(Z)

�

·ψ0

p
2π j`(αR̃)Pm

` (cos θ̃)

× exp
�

imφ̃
�

exp
�

−iα2 Z̃
�

(4.15)

Where the spherical coordinates, (R̃, θ̃ , φ̃) are associated with the coordinates

(X̃ , Ỹ , T̃ ; Z̃) and are given by the relations R̃ = R/µ(Z), θ̃ = θ , φ̃ = φ. Figure

4.7 displays a Y = 0 intensity cross section at different diffraction lengths for equa-

tion (4.15) with `= 2, m= 0, α= 1, ψ0 = 1, w = 2.

(a) (b) (c)

Figure 4.7: Propagation dynamics of an apodized hydrogen-like bullet with ` =
2; m= 0 after a normalized distance of (a) Z = 0, (b) Z = 2.66 , (c) Z = 4. Values
are normalized to the maximum value of the bullet which occurs at Z = 0
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As Fig. 4.7 clearly indicates, the apodized optical bullet eventually expands dur-

ing propagation. This expansion can of course be slowed down by increasing the

Gaussian apodization width, w.

4.5 Optical bullets resulting from a spherical super-

position on Archimedean and Platonic solids

In general, any non-spreading spatio-temporal wavepacket can be synthesized through

a suitable superposition of “plane wave solutions" in the normalized KX , KY , Ω̄ space

as long as these points lie on a sphere (where in this last expression Ω̄ = Ωτ0).

This can be understood from Eq. (4.2), by adopting invariant solutions of the form

ψ = exp
�

−iα2Z
�

exp
�

i
�

KX X + KY Y − Ω̄T
��

. For this case K2
X + K2

Y + Ω̄
2 = α2,

i.e. the KX , KY , Ω̄ points should indeed lie on a sphere of radius α. Therefore, any

superposition of such “plane wave solutions" will also remain also invariant as long

as they share the same sphere of radius α in reciprocal space. Following this ap-

proach, infinitely many realizations of such invariant optical bullets are attainable.

One such possibility is to consider polyhedra that happen to be inscribable on a

sphere such as the Platonic or Archimedean solids. In this case, the field envelope

of the bullet resulting from this superposition can be obtained by:

ψ= exp
�

−iα2Z
�
∑

j

exp
�

i~Q j · ~R
�

(4.16)

where ~Q j represents the reciprocal vertices ~Q =
�

KX , KY ,−Ω̄
�

on this sphere. Fig-

ure 4.8a displays the vertices of a Platonic regular hexahedron on a reciprocal space

unit sphere occupying the sites (±1/
p

3,±1/
p

3,±1/
p

3). Similarly, the vertices

corresponding to an octahedron and dodecahedron are depicted in Figs. 4.8b and

4.8c. The respective iso-intensity plots of the spatio-temporal optical bullets that

are generated from these three polyhedra are shown in Figs. 4.8d-4.8f.
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(a) (d)

(b) (e)

(c) (f)

Figure 4.8: The vertices of a (a) regular hexahedron (b) octahedron (c) and do-
decahedron inscribed in a Q-sphere. (d-f) The corresponding iso-intensity patterns
generated from these arrangements.

4.6 Fourier spectra of apodized spatio-temporal bul-

lets

Fourier spectra provide valuable physical insight not only about the structure of

diffraction/dispersion-free bullets, but also dictate the requirements concerning

their realization in laboratory experiments. In this section, we provide a gen-

eral analytical expression for the Fourier spectrum of a Gaussian apodized spatio-

temporal bullet that obeys (4.2). More specifically we obtain the spectrum at

the origin Z = 0, in which case the initial field envelope of such a bullet is

given by ψ(X , Y, T, Z = 0) = ψB(X , Y, T, Z = 0)exp
�

−R2/w2�. In general, a non-

spreading spatio-temporal wavepacket can be described as a Fourier superposition

of plane waves in spherical coordinates. Note that in a spherical reciprocal space,

KX = KR sinθ cosφ, KY = KR sinθ sinφ, Ω̄ = −KR cosθ . In addition, in this same
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domain, the spatio-temporal frequencies of a non-spreading wavepacket satisfying

(4.2) lie on the surface of a sphere, K2
X + K2

Y + Ω̄
2 = α2, hence its spectrum can be

described through the general function δ(KR−α)ζ(φ,θ). In this case,

ψB(X , Y, T ; Z = 0) =
1

(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0

dKRdφdθ
�

K2
R sinθδ(KR−α)ζ(φ,θ)

�

× exp (iKR[X cosφ sinθ + Y sinφ sinθ + T cosθ])

(4.17)

Thus,

ψB(X , Y, T ; Z = 0) =
1

(2π)3

∫ 2π

0

dφ

∫ π

0

dθ
�

ζ(φ,θ)α2 sinθ
�

×exp (iα[X cosφ sinθ + Y sinφ sinθ + T cosθ])

(4.18)

Given that this light bullet of (4.18) is apodized in a Gaussian fashion with width,

w, its Fourier transform can be obtained from

Ψ(KX , KY , Ω̄) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dXdY dT exp

�

−
X 2+ Y 2+ T 2

w2

�

×ψB(X , Y, T ; Z = 0)exp
�

−i
�

KX X + KY Y − Ω̄T
��

(4.19)

Upon substituting (4.18) into (4.19) for ψB(X , Y, T ; Z = 0), all terms which do not

depend on X , Y , or T may be carried out of the Fourier integral. Hence,

Ψ(KX , KY , Ω̄) =
1

(2π)3

∫ 2π

0

dφ

∫ π

0

dθ
�

ζ(φ,θ)α2 sinθ
�

×
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
exp

�

−
X 2+ Y 2+ T 2

w2

�

× exp (iα[X cosφ sinθ + Y sinφ sinθ + T cosθ])

× exp
�

−i
�

KX X + KY Y − Ω̄T
��

dXdY dT

(4.20)

where now in (4.20), KX , KY , and Ω̄ range from (−∞,∞). By introducing the

auxiliary reciprocal variables, ΞX = KX −α sinθ cosφ, ΞY = KY −α sinθ sinφ, and
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ΞT =−Ω̄−α cosθ equation (4.20) becomes:

Ψ(KX , KY , Ω̄) =
1

(2π)3

∫ 2π

0

dφ

∫ π

0

dθ
�

ζ(φ,θ)α2 sinθ
�

×
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
exp

�

−
X 2+ Y 2+ T 2

w2

�

× exp
�

−i
�

ΞX X +ΞY Y +ΞT T
��

dXdY dT

(4.21)

The Fourier integrations in (4.21) can now be performed and lead to:

Ψ(KX , KY , Ω̄) =
1

(2π)3

∫ 2π

0

dφ

∫ π

0

dθ
�

ζ(φ,θ)α2 sinθ
�

×w3π3/2 exp

�

−
w2

4

�

Ξ2
X +Ξ

2
Y +Ξ

2
T

�

� (4.22)

Substituting the original expressions for the auxiliary parameters, ΞX , ΞY , and ΞT ,

equation (4.22) can be rewritten as follows:

Ψ(KX , KY , Ω̄) =
w3π3/2e−(w

2/4)(α2+K2
X+K2

Y+Ω̄
2)

(2π)3

×
∫ 2π

0

dφ

∫ π

0

dθ
�

ζ(φ,θ)α2 sinθ
�

× exp

�

iα

�

w2

2i

�

�

KX cosφ sinθ + KY sinφ sinθ − Ω̄ cosθ
�

�

(4.23)

From (4.23) and (4.18), one finally obtains the Fourier spectrum of these apodized

bullets which is simply given in terms of their original envelope,ψB, where [X , Y, T]→
�

w2

2i

�

�

KX , KY ,−Ω̄
�

. Therefore, the end result is:

Ψ(KX , KY , Ω̄) =
�

πw2
�3/2

e−(w
2/4)(α2+K2

X+K2
Y+Ω̄

2)

×ψB

�

w2

2i
KX ,

w2

2i
KY ,−

w2

2i
Ω̄

�

(4.24)

Equation (4.24) states that if an invariant solution to (4.2) is known, then the
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Fourier transform of its Gaussian apodized version is immediately known. We

now see that the Fourier transforms of all the hydrogen-like bullets introduced

earlier can be readily obtained by combining equations (4.12) and (4.24). As

an example, consider the simplest hydrogen-like bullet, for which ` = m = 0,

and whose field profile is given by ψ0

p
2π j0(αR) = ψ0

p
2π sin (αR)/αR. Using

(4.24) we can immediately obtain the corresponding Gaussian apodized Fourier

spectrum:

Ψ(KX , KY , Ω̄)∝ we−(w
2/4)(α2+K2

R)

×
sinh

�

w2αKR/2
�

αKR

(4.25)

where K2
R = K2

X+K2
Y+Ω̄

2. Three reciprocal space isosurfaces for both the `= m= 0

and ` = 1, m = 0 cases are plotted for different degrees of Gaussian apodization

(Fig. 4.9 and Fig. 4.10). As can be seen in Fig. 4.9, in the limit w → ∞, the

thickness of the surfaces become infinitesimally small, thus approaching a radius

of α. As expected, in this limit the light bullet in Fig. 4.9 converges to the spectrum

of the O-wave displayed in Fig. 4.1. This behavior can be readily understood from

Eq. (4.25). Meanwhile the spectrum of a pT -like orbital that involves two lobes is

displayed in Fig. 4.10.

(a) (b) (c)

Figure 4.9: Isosurface spectrum plots of the `= m= 0 hydrogen bullet with various
degrees of Gaussian apodization. The spherical spectrum has been sectioned in half
so that the shell thickness can be viewed a) w = 5. b) w = 10. c) w = 20. In the
limit that w → ∞ the shell thickness becomes infinitesimally small representing
the spectrum of the O-wave.
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(a) (b) (c)

Figure 4.10: Isosurface spectrum plots of the ` = 1, m = 0 hydrogen bullet with
various degrees of Gaussian apodization. The spherical spectrum has been sec-
tioned in half so that the shell thickness can be viewed a) w = 5. b) w = 10. c)
w = 20.
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[28] A. J. Cox and D. C. Dibble, “Nondiffracting beam from a spatially filtered

fabry-perot resonator,” J. Opt. Soc. Am. A, vol. 9, pp. 282–286, Feb 1992. 15

[29] J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of

diffraction-free beams,” Appl. Opt., vol. 27, pp. 3959–3962, Oct 1988. 15

[30] M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” American Journal

of Physics, vol. 47, no. 3, pp. 264–267, 1979. 16, 17

[31] J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing

properties of optical airy beams,” Opt. Express, vol. 16, pp. 12880–12891,

Aug 2008. 17

[32] G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic

dynamics of airy beams,” Opt. Lett., vol. 33, pp. 207–209, Feb 2008. 17, 20,

21

44



REFERENCES

[33] I. M. Besieris, A. M. Shaarawi, and R. W. Ziolkowski, “Nondispersive acceler-

ating wave packets,” American Journal of Physics, vol. 62, no. 6, pp. 519–521,

1994. 17

[34] G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observa-

tion of accelerating airy beams,” Phys. Rev. Lett., vol. 99, p. 213901, Nov

2007. 20

[35] D. M. Greenberger, “Comment on ”nonspreading wave packets”,” American

Journal of Physics, vol. 48, no. 3, pp. 256–256, 1980. 20

[36] D. M. Greenberger and A. W. Overhauser, “Coherence effects in neutron

diffraction and gravity experiments,” Rev. Mod. Phys., vol. 51, pp. 43–78,

Jan 1979. 20

[37] L. I. Schiff, Quantum mechanics / Leonard I. Schiff. McGraw-Hill, New York :,

3rd ed. ed., 1968. 20

[38] P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N.

Christodoulides, “Curved plasma channel generation using ultraintense airy

beams,” Science, vol. 324, no. 5924, pp. 229–232, 2009. 21

[39] Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. ThÃl’berge, M. Sharifi, and S. Chin,

“Remote sensing of pollutants using femtosecond laser pulse fluorescence

spectroscopy,” Applied Physics B: Lasers and Optics, vol. 82, pp. 105–109,

2006. 10.1007/s00340-005-2008-x. 21

[40] H. Xu, J. Daigle, Q. Luo, and S. Chin, “Femtosecond laser-induced nonlinear

spectroscopy for remote sensing of methane,” Applied Physics B: Lasers and

Optics, vol. 82, pp. 655–658, 2006. 10.1007/s00340-005-2123-8. 21

[41] C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon,

and V. T. Tikhonchuk, “Conical forward thz emission from femtosecond-laser-

beam filamentation in air,” Phys. Rev. Lett., vol. 98, p. 235002, Jun 2007.

21

45



REFERENCES

[42] C. Hauri, W. Kornelis, F. Helbing, A. Heinrich, A. Couairon, A. Mysyrow-

icz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-

locked few-cycle laser pulses through filamentation,” Applied Physics B: Lasers

and Optics, vol. 79, pp. 673–677, 2004. 10.1007/s00340-004-1650-z. 21

[43] T. Juhasz, F. Loesel, R. Kurtz, C. Horvath, J. Bille, and G. Mourou, “Corneal

refractive surgery with femtosecond lasers,” Selected Topics in Quantum Elec-

tronics, IEEE Journal of, vol. 5, pp. 902 –910, jul/aug 1999. 21

[44] M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment

of femtosecond pulses propagating in air,” Opt. Lett., vol. 23, pp. 382–384,

Mar 1998. 21

[45] N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,”

Opt. Lett., vol. 35, pp. 4045–4047, Dec 2010. 21

[46] K. Makris, “Beam propagation methods.” Ph.D notes, 2006. 23

[47] P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N.

Christodoulides, and Z. Chen, “Trapping and guiding microparticles with

morphing autofocusing airy beams,” Opt. Lett., vol. 36, pp. 2883–2885, Aug

2011. 23

[48] I. Chremmos, N. K. Efremidis, and D. N. Christodoulides, “Pre-engineered

abruptly autofocusing beams,” Opt. Lett., vol. 36, pp. 1890–1892, May 2011.

23

[49] B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical

solitons,” Journal of Optics B: Quantum and Semiclassical Optics, vol. 7, no. 5,

p. R53, 2005. 25

[50] Y. Silberberg, “Collapse of optical pulses,” Opt. Lett., vol. 15, pp. 1282–1284,

Nov 1990. 25

[51] S. Longhi, “Localized subluminal envelope pulses in dispersive media,” Opt.

Lett., vol. 29, pp. 147–149, Jan 2004. 25, 31

46



REFERENCES

[52] J.-Y. Lu and J. F. Greenleaf, “Nondiffracting x-waves: exact solutions to free-

space scalar wave equation and their finite aperture realizations,” IEEE Trans.

Ultrason. Ferroelectr. Freq. Control, vol. 39, pp. 19–31, 1992. 25

[53] P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and

S. Trillo, “Spontaneously generated x-shaped light bullets,” Phys. Rev. Lett.,

vol. 91, p. 093904, Aug 2003. 25

[54] D. N. Christodoulides, N. K. Efremidis, P. D. Trapani, and B. A. Malomed,

“Bessel x waves in two- and three-dimensional bidispersive optical systems,”

Opt. Lett., vol. 29, pp. 1446–1448, Jul 2004. 25

[55] M. A. Porras and P. Di Trapani, “Localized and stationary light wave modes in

dispersive media,” Phys. Rev. E, vol. 69, p. 066606, Jun 2004. 25, 31

[56] M. R. H. Sonajalg and P. Saari, “Demonstration of the bessel-x pulse propagat-

ing with strong lateral and longitudinal localization in a dispersive medium,”

Opt. Lett., vol. 22, pp. 310–312, Mar 1997. 25

[57] D. N. C. A. Chong, W. H. Renninger and F. W. Wise, “Airy-bessel wave packets

as versatile linear light bullets,” Nature Photonics, vol. 4, p. 103, 2010. 25

[58] X. Liu, L. J. Qian, and F. W. Wise, “Generation of optical spatiotemporal soli-

tons,” Phys. Rev. Lett., vol. 82, pp. 4631–4634, Jun 1999. 26

[59] M. Dallaire, N. McCarthy, and M. Piché, “Spatiotemporal bessel beams:theory

and experiments,” Opt. Express, vol. 17, pp. 18148–18164, Sep 2009. 26

[60] S. López-Aguayo, Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Method

to generate complex quasinondiffracting optical lattices,” Phys. Rev. Lett.,

vol. 105, p. 013902, Jun 2010. 26

[61] O. V. Borovkova, Y. V. Kartashov, V. E. Lobanov, V. A. Vysloukh, and L. Torner,

“General quasi-nonspreading linear three-dimensional wave packets,” Opt.

Lett., vol. 36, pp. 2176–2178, Jun 2011. 26

47



REFERENCES

[62] M. D. I.-C. J. C. Gutirrez-Vega and S. Chavez-Cerda, “Alternative formulation

for invariant optical fields: Mathieu beams,” Opt. Lett., vol. 25, pp. 1493–

1495, Oct 2000. 34

48


	Contents
	List of Figures
	1 Introduction
	1.1 Foreword
	1.2 Derivation of the Helmholtz equation
	1.3 The scalar paraxial wave equation
	1.4 Gaussian beam diffraction

	2 The Bessel beam
	2.1 Inception of the Bessel beam
	2.2 The diffractionless property of the Bessel beam 
	2.3 Conical superposition
	2.4 Self-healing property of Bessel beams
	2.5 Finite power Bessel beams
	2.6 Efficient production of Bessel beams
	bookmark text is here


	3 The Airy Beam
	3.1 The inception of the (1+1)D and (2+1)D Airy beam
	3.2 The freely accelerating property of the Airy beam 
	3.3 Autofocusing beams

	4 Hydrogen-like symmetry bullets
	4.1 Brief overview of spatio-temporal beams
	4.2 Problem Formulation and Analysis
	4.3 Optical bullets with hydrogen-like symmetries
	4.4 Propagation dynamics of energy apodized light bullets
	4.5 Optical bullets resulting from a spherical superposition on Archimedean and Platonic solids
	4.6 Fourier spectra of apodized spatio-temporal bullets

	References

