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Abstract 
 

The aim of this proposal is to introduce my work which has generally been focused on optical 

wavefronts that have the unusual property of resisting commonplace phenomena such as 

diffraction and dispersion. Interestingly, these special beams are found both in linear and 

nonlinear situations. For example, in the linear regime, localized spatio-temporal waves which 

resemble the spherical harmonic symmetries of the hydrogen quantum orbitals can 

simultaneously negotiate both diffractive and dispersive effects. In the nonlinear regime, dressed 

optical filaments can be arranged to propagate multi-photon produced plasma channels orders of 

magnitude longer than expected.   

The first portion of this proposal will begin by surveying the history of diffraction-free beams 

and introducing some of their mathematical treatments. Interjected throughout this discussion 

will be several relevant concepts which I explored during my first years at CREOL. The 

discussion will then be steered into a detailed account of diffraction/dispersion free wavefronts 

which display hydrogen-like symmetries. The second segment of the document will cover the 

highly nonlinear process of optical filamentation. This chapter will almost entirely investigate 

the idea of the dressed filament, an entity which allows for substantial prolongation of this light 

string. I will then conclude by providing the future direction that my research seems to be 

heading into for the remainder of my stay at CREOL.  
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   1. Linear diffractionless optical beams 
 

1.1. Diffraction and the paraxial wave equation 

 

Diffraction, whose Latin roots translate as “to break into pieces”, is a characteristic of light 

resulting from its wave nature. By definition, diffraction is any deviation a light ray takes from a 

rectilinear path that cannot be explained as reflection or refraction [1].  Specifically, the 

amplitude and phase of a wavefront is altered as it propagates because of lateral confinement.  In 

this section, we begin with Maxwell’s equations, which govern the evolution of all 

electromagnetic waves, and reduce them down to the paraxial wave equation [2]. This equation, 

despite several simplifications, provides extremely good insight into the activity of laser beams 

and will pave the way into our discussion of diffractionless entities.  

Maxwell’s equations describe the evolution dynamics of electromagnetic waves in media, 

∇ ⋅ 𝜖𝐸⃗ (𝑥, 𝑦, 𝑧, 𝑡) = 𝜌                                       ∇ ⋅ 𝜇𝐻⃗⃗ (𝑥, 𝑦, 𝑧, 𝑡) = 0                                                              

∇ × 𝐸⃗ (𝑥, 𝑦, 𝑧, 𝑡) = −𝜇
𝜕𝐻⃗⃗ (𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
           ∇ × 𝐻⃗⃗ (𝑥, 𝑦, 𝑧, 𝑡) = 𝜎𝐸⃗ (𝑥, 𝑦, 𝑧, 𝑡) + 𝜖

𝜕𝐸⃗ (𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
.       

Where 𝐸⃗ (𝑥, 𝑦, 𝑧, 𝑡) and 𝐻⃗⃗ (𝑥, 𝑦, 𝑧, 𝑡) are the electric and magnetic vector fields, 𝜌 is the charge 

density, 𝜎 is the conductance, and 𝜖 and 𝜇 are respectively the permittivity and permeability of 

the medium. Let us suppose we are working in a lossless nonmagnetic (𝜇 = 𝜇0)  medium with 

no conductance, 𝜎 = 0, and no free charge density, 𝜌 = 0. Within the scope of our assumptions, 

we can simplify things further by following a scalar electric field as opposed to the full vectorial 

treatment. By using the identity, ∇ × ∇ × 𝐸 = −∇2𝐸 + ∇(∇ ⋅ 𝐸) we can easily combine these 

relationships to arrive at the wave equation, 
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 ∇2𝐸(𝑥, 𝑦, 𝑧, 𝑡) − 𝜇0𝜖
𝜕2𝐸(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡2
= 0. (0) 

 

Note that we are only following the electric field even though a similar equation can be obtained 

for the magnetic component. For the quasi-monochromatic wavefronts to be in question, the time 

dependence of 𝐸(𝑥, 𝑦, 𝑧, 𝑡) can be conveniently decomposed into a linearly independent sinusoid, 

𝐸(𝑥, 𝑦, 𝑧, 𝑡) = 𝐸(𝑥, 𝑦, 𝑧) exp(−𝑖𝜔𝑡). Inserting this into the wave equation results in the 

Helmholtz Equation, 

 

 ∇2𝐸(𝑥, 𝑦, 𝑧) + 𝑘2𝐸(𝑥, 𝑦, 𝑧) = 0 (1) 

 

Where, 𝑘 = 𝜔√𝜇0𝜖 = 𝑛𝜔√𝜇0𝜖0 = 2𝜋𝑛/𝜆0, is known as the wavenumber and has been 

expressed in terms of an index of refraction, 𝑛 = √𝜖/𝜖0, and a wavelength, 𝜆0. At this point, we 

have nearly arrived at the paraxial wave equation. We only need to assume that the waveforms of 

interest are narrowly-banded in space and propagate primarily along one direction – a very good 

approximation of laser light, 𝐸(𝑥, 𝑦, 𝑧) = 𝜓(𝑥, 𝑦, 𝑧) exp(−𝑖𝑘𝑧),  (by convention the 𝑧 direction). 

Substituting this into the Helmholtz equation produces the paraxial wave equation, 

 

   𝑖
𝜕𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑧
+

1

2𝑘
∇⊥

2𝜓(𝑥, 𝑦, 𝑧) = 0.  (2) 
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Here, ∇⊥
2= 𝜕𝑥𝑥 + 𝜕𝑦𝑦, is the transverse Laplacian operator. The second term in (2) is linear in 

nature and responsible for encoding the diffraction or spreading of light waves.  

If we briefly return to equation (1), a basic solution is a plane wave of the form, 𝜓(𝑥, 𝑦, 𝑧) =

𝜓0 exp(−𝑖[𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧]) with 𝑘2 = 𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2. Owing to superposition, the most 

general solution is expressible as a Fourier transform, 

 

 

𝐸(𝑥, 𝑦, 𝑧) = 

1

(2𝜋)2
∫ ∫ 𝐸̃(𝑘𝑥, 𝑘𝑦) exp [−𝑖 (𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑧√𝑘2 − 𝑘𝑥

2 − 𝑘𝑦
2)]

∞

−∞

∞

−∞

𝑑𝑘𝑥𝑑𝑘𝑦 

(3) 

 𝐸̃(𝑘𝑥 , 𝑘𝑦) = ∫ ∫ 𝐸(𝑥, 𝑦, 𝑧 = 0) exp[+𝑖(𝑘𝑥𝑥 + 𝑘𝑦𝑦)]
∞

−∞

∞

−∞

𝑑𝑥𝑑𝑦  

 

Where the 𝑘-spectrum,  𝐸̃(𝑘𝑥, 𝑘𝑦) can be found at the starting position𝑧 = 0. Although equation 

(3) is an exact solution to the Helmholtz equation and more general than the paraxial wave 

equation, the square root factor in the complex exponent prohibits integration in most cases. 

Fortunately, by transitioning equation (3) to the paraxial regime, we obtain a more agreeable 

integral. To do so, we only consider 𝑘⃗  vectors which propagate primarily in the 𝑧̂ direction 

resulting in 𝑘𝑥/𝑘 and 𝑘𝑦/𝑘 being small terms (Fig. 1). This allows us to Taylor expand the 

square root, √𝑘2 − 𝑘𝑥
2 − 𝑘𝑦

2 = 𝑘√1 − (𝑘𝑥
2 + 𝑘𝑦

2)/𝑘2 ≈ 𝑘 − (𝑘𝑥
2 + 𝑘𝑦

2)/2𝑘. We then obtain the 

more pliable formula: 
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𝜓(𝑥, 𝑦, 𝑧) =

1

(2𝜋)2
∫ ∫ 𝜓̃(𝑘𝑥 , 𝑘𝑦) exp [−𝑖 (𝑘𝑥𝑥 + 𝑘𝑦𝑦 −

𝑧

2𝑘
(𝑘𝑥

2 + 𝑘𝑦
2))]

∞

−∞

∞

−∞

𝑑𝑘𝑥𝑑𝑘𝑦 (4) 

𝜓̃(𝑘𝑥 , 𝑘𝑦) = ∫ ∫ 𝜓(𝑥, 𝑦, 𝑧 = 0) exp[+𝑖(𝑘𝑥𝑥 + 𝑘𝑦𝑦)]
∞

−∞

∞

−∞

𝑑𝑥𝑑𝑦 

 

Figure 1| The paraxial wave equation accounts for only 𝒌⃗⃗ -vectors which are primarily in the 𝒛̂ direction – a good 

approximation for laser light. 

 

Note in equation (4) that each plane wave has a quadratic dependence on the lateral 𝑘⃗  vectors in 

the term proportional to 𝑧. This paints an intuitive picture of plane waves which spatially “walk-

off” or “diffract” from one another in the transverse direction as they propagate. For an example, 

consider a standard Gaussian envelope given by 𝜓(𝑥, 𝑦, 𝑧 = 0) = 𝜓0 exp(−(𝑥2 + 𝑦2)/𝑤2), we 

can insert this initial condition into equation (4) and directly integrate to obtain [3, 4]: 

 

 

𝜓(𝑥, 𝑦, 𝑧)

= 𝜓0

exp[𝑖 atan(𝑧/𝑧0)]

[1 + (
𝑧
𝑧0

)
2
]

exp [−
𝑥2 + 𝑦2

𝑤2 (1 + (
𝑧
𝑧0

)
2
)
] exp [−

𝑖𝑧(𝑥2 + 𝑦2)

𝑧0𝑤
2 (1 + (

𝑧
𝑧0

)
2
)
]                

 

(5) 
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Where 𝑧0 = 𝜋𝑛𝑤2/𝜆0 is the Rayleigh range. We see that as a Gaussian beam evolves along 𝑧̂, it 

decreases in intensity and spreads out. An example of equation (5) with 𝜓0 = 1, 𝑤 = 0.5 𝑚𝑚, 

and 𝜆 = 1 𝜇𝑚 is plotted in Fig. 2 at three different propagation distances. 

 

Figure 2| The intensity of a Gaussian beam suffering diffraction as it propagates. By half a meter of propagation, the 

beam has spread out and the peak intensity has diminished to approximately half its original value. Intensity values 

(𝑰 ∝ |𝝍|𝟐) are scaled to the peak of the beam at 𝒛 = 𝟎, 𝑰𝟎 . 
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1.2. Introduction to diffraction-free beams 

 

The prospect of beams which defy the innate wavefront characteristic diffraction was first 

meme-named and investigated by Durnin and colleagues in 1987 [5, 6]. Since then, numerous 

wavefronts which seemingly resist the natural spread of light have been explored in detail [7-16]. 

The applications of these beams have appeared numerously in areas [17-19] ranging from 

micromanipulation [20-23] and data storage [24] to harmonic generation [25, 26], imaging [27, 

28], electron beam creation [29], and microlithography [30]. In these subsections, the exotic 

properties of diffractionless beams are explored in detail.  

1.2.1. The non-spreading property 

 

As stated earlier, the plane wave, 𝜓(𝑥, 𝑦, 𝑧) = 𝜓0 exp(−𝑖[𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧]), is a solution to 

the Helmholtz equation, (1). This is equivalent to stating that these eigenfunctions pass through 

“unaffected” by the terms in the partial differential equation. If we look at the intensity of this 

plane wave solution, which is proportional to the absolute value squared of the electric field 

envelope, we find that the 𝑧-dependence vanishes as it only exists as a phase factor (i.e. |𝜓|2 =

𝜓0
2). In other words, a plane wave is invariant along 𝑧̂ and is arguably the simplest example of a 

non-spreading or diffractionless wavefront. This is in stark contrast to the evolution dynamics of 

a standard Gaussian beam whose intensity profile continuously reshapes as it propagates. There 

is a caveat, however, tied to this strange property: the power contained within an ideal 

diffraction-free beam is always infinite (e.g. the plane wave: 𝑃𝑏𝑒𝑎𝑚 = ∫|𝜓0|
2𝑑𝐴 = ∞) [31]. This 

theoretical abstraction can be removed by apodizing the beam (to be discussed in a later section).   
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However, when discussing diffractionless beams, it is the Bessel beam [5, 6], not the plane wave, 

which has become the paragon. Consider the Helmholtz equation, equation (1), in a cylindrical 

coordinate system, 

 

 
∂2𝐸(𝑟, 𝜃, 𝑧)

𝜕𝑟2
+

1

𝑟

𝜕𝐸(𝑟, 𝜃, 𝑧)

𝜕𝑟
+

1

𝑟2

∂2𝐸(𝑟, 𝜃, 𝑧)

𝜕𝜃2
+

∂2𝐸(𝑟, 𝜃, 𝑧)

𝜕𝑧2
+ 𝑘2𝐸(𝑟, 𝜃, 𝑧) = 0 (6) 

 

Here, 𝑟2 = 𝑥2 + 𝑦2 is the radial component and 𝜃 = arctan(𝑦/𝑥) is the azimuthal component 

both of which are in the transverse plane. A diffractionless solution to this equation insists that 

any 𝑧-dependence appears only as a phase factor: 𝐸(𝑟, 𝜃, 𝑧) = 𝑅(𝑟) exp(𝑖𝑛𝜃) exp(𝑖𝛽𝑧). In this 

expression 𝛽 is the propagation constant of the beam and 𝑛 is an integer. Substitution of this 

ansatz into equation (6) results in Bessel’s differential equation for the radial function: 

 

 𝑟2
∂2𝑅(𝑟)

𝜕𝑟2
+ 𝑟

𝜕𝑅(𝑟)

𝜕𝑟
+ [(𝑘2 − 𝛽2)𝑟2 − 𝑛2]𝑅(𝑟) = 0 (7) 

 

Being a second order ordinary differential equation, two solutions exist: the Bessel functions of 

the first, 𝐽𝑛, and second, 𝑌𝑛, kinds. The linear combination of these two solutions, 𝑅(𝑟) =

𝐴0𝐽𝑛(𝛼𝑟) + 𝐵0𝑌𝑛(𝛼𝑟), can be reduced to include the former term only, 𝑅(𝑟) = 𝐴0𝐽𝑛(𝛼𝑟), due to 

the singularity that 𝑌𝑛 has at 𝑟 = 0 (in these expressions, 𝛼2 = 𝑘2 − 𝛽2). Thus, we have the full 

solution to the Helmholtz equation in cylindrical coordinates: 
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 𝐸(𝑟, 𝜃, 𝑧) = 𝐴0𝐽𝑛(𝛼𝑟) exp(𝑖𝑛𝜃) exp(𝑖𝛽𝑧) (8) 

 

These are the Bessel beams. Note immediately, that the intensity of this beam, 𝐼 ∝ 𝐴0
2𝐽𝑛

2(𝛼𝑟), 

remains invariant upon propagation, and because 𝐽𝑛 does not asymptotically approach zero for 

any order, 𝑛, carries infinite power. Fig. 3 displays the intensity profiles of several orders of 

Bessel beams in the transverse plane.  

 

Figure 3| Transverse intensity profiles of diffractionless Bessel beams. a) 𝒏 = 𝟎, b) 𝒏 = 𝟏, c) 𝒏 = 𝟐, d) 𝒏 = 𝟑. 

 

1.2.2. Conical superposition  

 

Up until this point, we have presented two propagation invariant entities, the plane wave and the 

Bessel beam. Both were solutions to the Helmholtz equation in a (2+1)D space meaning two 

transverse dimensions, 𝑥̂ and 𝑦̂, and one propagation direction, 𝑧̂. In this subsection, it will be 
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shown that in fact an infinite amount of diffractionless (2+1)D wavefronts are possible. To begin, 

we start with the paraxial wave equation in Cartesian coordinates with two transverse spatial 

dimensions: 

 

 𝑖
𝜕𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑧
+

1

2𝑘
[
𝜕2𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑥2
+

𝜕2𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑦2
] = 0. (9) 

 

As before, we immediately recognize the plane wave, 𝜓(𝑥, 𝑦, 𝑧) = 𝜓0 exp[−𝑖(𝑘𝑥𝑥 + 𝑘𝑦𝑦 +

𝑘𝑧𝑧)], as a solution. Differently from the Helmholtz solution, we recongize that 𝑘𝑧 =

(𝑘𝑥
2 + 𝑘𝑦

2)/2𝑘 = 𝛾2/2𝑘 which arises because of the paraxial approximation. However notice 

that these particular four plane waves are also a solution to equation (2), 

 

 𝜓(𝑥, 𝑦, 𝑧) = [

exp (𝑖
𝛾𝑥

√2
) + exp (−𝑖

𝛾𝑥

√2
)

2
+

exp (𝑖
𝛾𝑦

√2
) + exp (−𝑖

𝛾𝑦

√2
)

2
] exp (−𝑖

𝛾2

2𝑘
𝑧) . (10) 

 

Let us look at equation (10) in some detail. The key feature which enables this expression to 

satisfy equation (9) is that each of the four plane wave components shares the same 𝑧 dependent 

phase, exp[−𝑖𝛾2𝑧/2𝑘]. This is to say that in 𝑘-space, each wavefront has the same value of 𝑘𝑧. 

Furthermore, each individual wavefront has the same total 𝑘 vector magnitude, |𝑘|. 

Qualitatively, note that in the first two terms, the transverse 𝑘⃗  vector component is only 

travelling in the positive or negative 𝑥̂ direction respectively, and in the last two terms, only the 
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positive or negative 𝑦̂ direction respectively. By plotting these 𝑘⃗ -vectors we see that the four 

plane waves trace out a square in 𝑘⃗ -space (Fig. 4a), and the resulting real-space transverse 

intensity profile, |𝜓|2, is a grid-like pattern that is indeed propagation invariant (Fig. 4b).  

 

 

Figure 4| The solution given by equation (10) has four plane waves with equal values of 𝒌𝒛and |𝒌|. (a) This traces 

out a square in 𝒌-space. (b) The resulting transverse intensity pattern is diffractionless. 

 

Interestingly, if the stipulations on 𝑘𝑧 and |𝑘| are adhered to, one can generalize the plane wave 

solution so that any wavefront emanating in an arbitrary azimuthal direction, 𝜃, will also satisfy 

equation (9): 

 𝜓(𝑥, 𝑦, 𝑧) = exp[𝑖𝛾(𝑥 cos 𝜃 + 𝑦 sin𝜃)] exp(−𝑖
𝛾2

2𝑘
𝑧). (11) 
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Because each and every choice of 𝜃 on [0, 2𝜋] gives rise to a valid solution, we can conclude 

that the most general diffraction-free solution comprised of angled plane waves in 𝑘⃗ -space is 

given by: 

 𝜓(𝑥, 𝑦, 𝑧) =    ∫ G(𝜃)exp[𝑖𝛾′(𝑥 cos𝜃 + 𝑦 sin𝜃)] exp(−𝑖
𝛾2

2𝑘
𝑧)𝑑𝜃

2𝜋

0

. (12) 

 

Where 𝐺(𝜃) is a “spectrum” function specifying which plane waves will compose the 

diffractionless solution and 𝛾′ is an normalized coefficient that adjusts according to the amount 

of plane waves superimposed (for a single plane wave, 𝛾′ = 𝛾). Analogous to the 𝑘-space square 

that was traced out by the four plane waves in Fig. 4a, the general solution presented in equation 

(12) accounts for all the plane waves emitted from a common point at different angles, 𝜃, which 

forms a cone in 𝑘-space (Fig. 5). This is origin of the term “conical superposition of plane 

waves”.  

 

Figure 5| Propagation invariant plan wave solutions of the form seen in equation (12) emanate from a common 

point and form a cone in 𝒌⃗⃗ -space 
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Excitingly, for every unique 𝐺(𝜃), a new diffractionless beam emerges; thus, conical 

superposition generates a seemingly infinite amount of diffractionless beams. Notice in the 

special case of 𝐺(𝜃) = 1/2∑ 𝛿(𝜃 − 𝑖𝜋/2)3
𝑖=0  and 𝛾′ = 𝛾/√2 we recover the solution given by 

equation (10).  

One immediate and interesting prospect is to find out what happens when we approach 𝐺(𝜃) =

1; that is, when we superimpose every possible conical plane wave together. A clever and 

surprisingly aesthetic way to investigate this is to pick plane waves in such a way that regular 

polygons are traced out on the base of the 𝑘-space cone. Then, by increasing the order of the 

regular polygon, the full conical superposition is eventually delineated. Fig. 6 conically 

superimposes several regular polygons having 𝑁 = 3, 5, 8, 12, and 100 sides and displays each 

resulting transverse intensity profile. In the 𝑁 = 3 case, a crystal-like optical pattern akin to a 

Bravais lattice forms (Fig. 6a). A pentagon of plane waves, 𝑁 = 5, results in a transverse pattern 

akin to a quasi-crystal Penrose lattice (Fig. 6b). More complicated patterns emerge as the number 

of sides increases (Fig. 6c and Fig. 6d). Remarkably, however, we find that as the amount of 

sides approaches infinity, that is, a spectrum of 𝐺(𝜃) = 1, the zero order Bessel beam emerges 

(Fig. 6e). A rigorous treatment would indeed show that the Bessel beam is representable by the 

full superposition of all conical plane waves. 
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Figure 6| Inscribing regular polygons via conical superposition. For each polygon, the resulting propagation 

invariant transverse intensity profile is plotted with the maximum of the pattern scaled to unity. a) An inscribed 

triangle produces a crystal pattern; b) An inscribed pentagon forms a quasi-crystal arrangement; c) An inscribed 

octagon crystal pattern; d) An inscribed dodecagon quasi-crystal showing complex patterns; e) An inscribed 100 

sided regular polygon approximates the 𝑮(𝜽) = 𝟏 case and approaches a zero order Bessel beam. 
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1.2.3. Self-healing property  

 

Shockingly, propagation invariant beams tend to reconfigure themselves back into their ideal 

electric field arrangements even after appreciable adulterations. This property of self-healing 

[32] is a direct result of Babinet’s principle of diffraction [33]. The rule states that any object’s 

far-field diffraction pattern can be decomposed as a sum of parts. To clarify this, consider the 

two examples given in Fig. 7. If we wanted to compute what the electric field distribution would 

look like in the far-field for coherent light passing through the house-shaped aperture seen in Fig. 

7a, we could so by calculating the propagation of light for the rectangular base and the triangular 

top independently and then sum the two results together. The power of the method becomes 

clearer in configurations like that of Fig. 7b where complicated apertures suddenly become 

simple to evaluate.  

 

 

Figure 7| Babinet’s principle states that the far-field electric field distribution can be decomposed into parts. (a) A 

house-shaped aperture can be split into two additive components. (b) A square window with a circular opaque object 

can be computed via subtraction. 
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Consider now an initial Bessel beam, 𝜓𝐵𝑒𝑠𝑠(𝑥, 𝑦, 𝑧 = 0), which collides with some obstructing 

object before it propagates. If the object has an initial “negative” distribution, 𝜓𝑜𝑏𝑗(𝑥, 𝑦, 𝑧 = 0), 

then the far-field diffraction pattern of the obstructed Bessel beam, 𝜓𝑇𝑜𝑡𝑎𝑙(𝑥, 𝑦, 𝑧), can be found 

using Babinet’s principle; that is, 𝜓𝑇𝑜𝑡𝑎𝑙(𝑥, 𝑦, 𝑧) = 𝜓𝐵𝑒𝑠𝑠(𝑥, 𝑦, 𝑧) − 𝜓𝑜𝑏𝑗(𝑥, 𝑦, 𝑧). Temporarily 

dropping the notation where the independent variables are written, the resulting intensity of this 

wavefront would be given by: |𝜓𝑇𝑜𝑡𝑎𝑙|
2 = |𝜓𝐵𝑒𝑠𝑠|

2 + |𝜓𝑜𝑏𝑗|
2
− 𝜓𝐵𝑒𝑠𝑠𝜓𝑜𝑏𝑗

∗ − 𝜓𝐵𝑒𝑠𝑠
∗ 𝜓𝑜𝑏𝑗.  Any 

linear far-field electric field pattern can be computed via the Fresnel diffraction integral [1]: 

 

 

𝜓(𝑥, 𝑦, 𝑧) =  

 
exp(𝑖𝑘𝑧)

𝑖𝜆𝑧
∫ ∫ 𝜓𝐵𝑒𝑠𝑠(𝑥, 𝑦, 𝑧 = 0) exp [

𝑖𝑘

2𝑧
((𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2)] 𝑑𝑥′𝑑𝑦′.

∞

∞

∞

−∞

 

(13) 

 

As we know, 𝜓𝐵𝑒𝑠𝑠 is a propagation invariant so  𝜓𝐵𝑒𝑠𝑠(𝑥, 𝑦, 𝑧 = 0) = 𝜓𝐵𝑒𝑠𝑠(𝑥, 𝑦, 𝑧) for all 𝑧, 

and therefore one knows the far-field pattern. The opaque object on the other hand, 𝜓𝑜𝑏𝑗(𝑥, 𝑦, 𝑧) 

will have a pattern which evolves according to equation (13). Looking closely at this expression, 

we see that the electric field envelope, 𝜓𝑜𝑏𝑗(𝑥, 𝑦, 𝑧), will decrease in proportion to 𝑧−1 

throughout its propagation. This means that as 𝑧 → ∞, only the complex envelope of the Bessel 

beam will remain intact; In other words, 𝜓𝑜𝑏𝑗(𝑥, 𝑦, 𝑧) approaches zero everywhere. Hence, we 

find the total intensity at large propagation distances to be |𝜓𝑇𝑜𝑡𝑎𝑙|
2 = |𝜓𝐵𝑒𝑠𝑠|

2. The effects of 

the obstruction have vanished, and the diffractionless beam has “healed itself”.  

This property is illustrated in Fig. 8 where both a whole and partially blocked Bessel beam 

(𝜆0 = 532 𝑛𝑚) are simulated each using a main lobe size of 𝑥0 = 200 𝜇𝑚. In both cases, the 
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beam is finite so some diffraction results. Fig. 8a and 8b shows an initial cross section of an 

unobstructed Bessel beam and the propagation that results (Fig. 8b). In this case, we see the 

expected invariant propagation along the 𝑧 direction. Yet, as we have shown, even if such a 

beam is obfuscated initially (Fig. 8c), it eventually reforms into its diffractionless shape (Fig. 

8d).  

 

Figure 8| The self-healing property is illustrated with a finite Bessel beam. An unobstructed Bessel beam, (a), 

propagates in a quasi-diffractionless manner, (b). If a section of the wavefront is removed, (c), the obstructed Bessel 

beam heals itself after several diffraction lengths, (d).  
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1.2.4. Apodization  

 

In practice, all beam profiles must be finite is both energy and extent. Because of this, the ideal 

wavefronts discussed in the previous sections must be truncated so that they contain a finite 

amount of power – this is known as apodization. As a result, these beam profiles begin to 

compromise their diffractionless and self-healing property. It is important to note, however, that 

the quasi-diffractionless beams which result still out perform their standard counterpart when it 

comes the discussed qualities [34].  

Consider a standard example, apodizing a zero order Bessel beam with a Gaussian enclosure, 

𝐸(𝑟, 𝜃) = 𝐴0𝐽𝑛(𝛼𝑟) exp(−𝑟2/𝑤2). We showed earlier that the unapodized version carries 

infinite power and is an eigenfucntion solution to the Helmholtz equation under radially 

symmetric conditions. In this new case, however, the beam if finite in power and evolves in the 𝑧 

direction [35].  

 

 𝜓(𝑥, 𝑦, 𝑧) = −
𝑖𝑘𝐴0

2𝑧𝑄
exp [𝑖𝑘 (𝑧 +

𝑟2

2𝑧
)] 𝐽0 (

𝑖𝛼𝑘𝑟

2𝑧𝑄
) exp [−

1

4𝑄
(𝛼2 +

𝑘2𝑟2

𝑧2 )]. (14) 

 

Where 𝑄 = 𝑤−2 − 𝑖𝑘/2𝑧. Note that the pre-factor is proportional to 𝑧−1 indicating that the beam 

spreads. More interestingly, similar to the fact that a Bessel beam is comprised of a delta-ring of 

𝑘⃗ -vectors (as uncovered in section 1.2.2), a Gaussian apodized Bessel beam is a thick ring in 𝑘⃗ -

space with a Gaussian profile in the 𝑘⃗ -radial direction (Fig. 9). 
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Figure 9| (a) An unapodized Bessel beam is formed from a delta-ring of 𝒌⃗⃗ -vectors. (b) Apodizing this beam with a 

Gaussian profile thickens the ring so that it includes 𝒌⃗⃗  vectors in a range of values, 𝚫𝒌𝒓. 
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1.3. Airy Beams  

 

The idea that light travels in straight lines has been deeply ingrained in human consciousness 

since antiquity. This concept was first postulated by Euclid in his Optica and was one of the 

pillars of Newton’s corpuscular hypothesis. Even with the advent of wave theories and 

Maxwell’s electrodynamics, this very basic premise persisted as a direct outcome of 

electromagnetic momentum conservation. Because of this, one always is keen to expect that the 

intensity centroid of an optical beam should always follow a straight line; however, this law does 

not in any way restrict how the intensity features of an optical wavefront should behave during 

propagation. This latent aspect opens up an intriguing question: is it feasible to produce an 

optical beam whose intensity peaks move along curved trajectories?  

In 2007, Siviloglou and Christodoulides introduced and subsequently observed the Airy beam, an 

optical wavefront whose intensity features follow a curved trajectory [11, 36, 37]. The simplest 

Airy beam can be obtained from a normalized (1+1)D paraxial wave equation:  

 

   𝑖
𝜕𝜓(𝑥, 𝑧)

𝜕𝑧
+

1

2𝑘

𝜕2𝜓(𝑥, 𝑧)

𝜕𝑥
= 0.  (15) 

   

Where, as before, the normalized coordinates are given by 𝑥 = 𝑥̃/𝑥0 and 𝑧 = 𝑧̃/𝑧0 = 𝑧̃/2𝑘𝑥0
2. 

The initial condition, 𝜓(𝑥, 𝑧 = 0) = 𝐴𝑖(𝑥) exp(𝑎𝑥) results in the following solution, 

 

 𝜓(𝑥, 𝑧) = 𝐴𝑖 (𝑥 −
𝑧2

4
+ 𝑖𝑎𝑧) exp [𝑎𝑥 −

𝑎𝑧2

2
− 𝑖 (

𝑧3

12
−

𝑎2𝑧2

2
−

𝑥𝑧

2
)] . (16) 
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This solution not only carries the same intriguing properties akin to the other diffractionless 

members [11, 38], but brings along some new features.  For example, one can show that this is 

the only one dimensional diffraction free solution and that the main intensity peak follows a 

parabolic trajectory [38, 39]. This ballistic nature occurs even in the absence of external forces as 

it is an intrinsic characteristic of the wavefront [40]. Fig. 10 illustrates the propagation dynamics 

of this unique wavefront for 𝜆 = 500 𝑛𝑚, 𝑥0 = 100 𝜇𝑚, 𝑧0 = 12 𝑐𝑚, and several different 

attenuation coefficients, 𝑎 = {. 01, .05, .10}. For these parameters, the FWHM of the main airy 

lobe is about 171 𝜇𝑚 and remains quasi-diffractionless for approximately 10, 8, and 6 

diffraction lengths respectively.  



30 

 

 

Figure 10|  Propagation of a finite Airy beam with various attenuation coefficients. (a) a = .01, (b) a = .05, and (c) a 

= .10. The main airy lobe remains approximately diffractionless for 6, 8, and 10 diffraction lengths respectively.  

 

Because the paraxial wave equation can be sequestered via the method of separation of variables, 

and the Airy beam is a (1+1)D solution, higher dimension Airy waves are possible [36, 41]. 

Consider the (2+1)D paraxial wave equation. Airy beam solutions can be constructed as the 

product of two orthogonal (1+1)D versions: 

 𝜓(𝑥, 𝑦, 𝑧) = ∏ 𝐴𝑖 (𝑝 −
𝑧2

4
+ 𝑖𝑎𝑝𝑧) exp [𝑎𝑝𝑝 −

𝑎𝑝𝑧
2

2
− 𝑖 (

𝑧3

12
−

𝑎𝑝
2𝑧2

2
−

𝑝𝑧

2
)] .

𝑝=𝑥,𝑦

 (17) 
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Utilizing the same parameters as in Fig. 10 and having the attenuation coefficients be the same in 

both directions 𝑎𝑥 = 𝑎𝑦 = .05, Fig. 11 illustrates the propagation dynamics of the (2+1)D Airy 

beam at three different propagation distances.   

 

 

Figure 11| Propagation of a two dimensional finite Airy beam at various propagation distances. (a) z = 0 cm, (b) z = 

55 cm, and (c) z = 75 cm.  

 

1.3.1. Autofocusing beams 

 

One of the most important characteristics of optical beams is their focusing dynamics in free 

space; that is, how they collapse under linear conditions. A wavefront will either focus or 

defocus depending on its initial phase and amplitude distribution. For example, a standard 
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Gaussian wavefront has a complex electric field envelope given by equation (5).  The peak 

intensity of such a beam follows a Lorentzian distribution – a gently rising and falling function.  

In applications such as corneal refractive surgery [42] or optical filamentation [43], a beam 

which instead suddenly spikes in intensity and then subsides can be more desirable.  A radially 

symmetric arrangement of  Airy beams in free space is a good candidate to meet these criteria 

[44].  

 

 𝜓(𝑟, 𝑧) = 𝜓(𝑟, 𝑧) = 𝜓𝐴𝑖(𝑟0 − 𝑟) exp[𝑎(𝑟0 − 𝑟)] (18) 

 

Here, 𝑟2 = 𝑥2 + 𝑦2 and 𝑟0 is the initial radial displacement of the main ring. Note that for 

|𝑟| < 𝑟0 equation (18) decays quickly and for |𝑟| > 𝑟0 the slowly decaying Airy oscillations 

occur. To give an example, consider a case where 𝜆 = 1 𝜇𝑚 𝑟0 = 1 𝑚𝑚 and 𝑎 = .05 𝑚𝑚−1 

(Fig. 12). 

 

Figure 12| Initial intensity distribution of equation (18) along Y=0 for 𝒓𝟎 = 𝟏 𝒄𝒎 and 𝒂 =. 𝟎𝟓 𝒎𝒎−𝟏. Values are 

scaled to an initial peak value of unity.  
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The complex electric field shown in Fig. 12 will evolve according to the same Fresnel diffraction 

integral that was introduced earlier, equation (3); however, this integral can be simplified 

because of equation (18)’s azimuthal symmetry. The simplified integral given in cylindrical 

coordinates is: 

 

 𝜓(𝑟, 𝑧) =
1

2𝜋
∫ 𝜓̃(𝑘𝑟, 𝑧 = 0)𝑘𝑟𝐽0(𝑘𝑟𝑟) exp [−

𝑖𝑘2𝑧

2
] 𝑑𝑘𝑟

∞

0

   (19) 

 

Where 𝜓̃(𝑘𝑟 , 𝑧 = 0) is the Hankel transform of equation (19) at 𝑧 = 0.  

 

 𝜓̃(𝑘𝑟, 𝑧 = 0) = 2𝜋 ∫ 𝜓(𝑟, 𝑧 = 0)𝐽0(𝑘𝑟𝑟)𝑟𝑑𝑟 
∞

0

   (20) 

 

A numerical computation of  𝜓(𝑟, 𝑧) is found using a beam propagation method and a cross 

section of the results is displayed in Fig. 13.  The following properties are apparent:  The on-axis 

intensity of the wavefront abruptly reaches a value that is 120 times the initial peak intensity.  

Two, after coming to this sudden focus, the peak intensity drops off rapidly.  Three, in  the far 

field, the diffraction pattern approximately forms a finite first order Bessel beam [22].   

The autofocusing Airy profile can be generalized to include an entire family of abruptly 

autofocusing waves. These beams can be understood via the concept of caustics and careful 

manipulation of their sub linear chirps allows for one to pre-engineer a wavefront resulting in 

customizable autofocusing characteristics [45]. 
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Figure 13| (a) Cross section along Y = 0 showing the propagation dynamics of the radial Airy distribution where 

𝝀 = 𝟏 𝝁𝒎, 𝒓𝟎 = 𝟏 𝒎𝒎 and 𝒂 = . 𝟎𝟓 𝒎𝒎−𝟏.  (b) On-axis intensity, 𝑹 = 𝟎, showing the abruptly focusing 

characteristic of this wavefront. 
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1.3.2. Non-paraxial accelerating beams  

 

Although the Airy beam is indeed the only (1+1)D non-diffracting solution to the paraxial wave 

equation, there exist multiple solutions in the non-paraxial domain [14, 46-51]. This arises from 

the fact that the Helmholtz equation, which describes these wavefronts, has no preferred 

coordinate system [37]. The method to finding any new family of propagation invariant 

accelerating wavefronts is practically algorithmic. The first step is to convert the Helmholtz 

equation into a chosen coordinate system. Then, solutions whose intensity profiles are 

independent of 𝑧 are saught; such solutions will consist of both forward and backward 

propagating waves. The final step is discarding the backwards propagating waves.  

Consider our previous example when the Helmholtz equation is solved in cylindrical 

coordinates. The solutions are the Bessel beams, 𝜓(𝑟, 𝑧) = 𝐽𝑛(𝛼𝑟) exp(𝑖𝑛𝜃) exp(𝑖𝛽𝑧), which are 

indeed 𝑧 independent. If we choose a high order of 𝑛, we would expect a ring pattern where the 

first main lobe occurs at the first maximum of 𝐽𝑛(𝛼𝑟).  If we then cleave the backward 

propropagating wave, we obtain the non-paraxial half-Bessel beam (Fig. 14a). Several other 

examples can be seen in Fig. 14b-d.  
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Figure 14| (a) Cross section along Y = 0 showing the propagation dynamics of the radial Airy distribution where 

𝝀 = 𝟏 𝝁𝒎, 𝒓𝟎 = 𝟏 𝒎𝒎 and 𝒂 = . 𝟎𝟓 𝒎𝒎−𝟏.  (b) On-axis intensity, 𝑹 = 𝟎, showing the abruptly focusing 

characteristic of this wavefront. 
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1.4. Localized waves with hydrogen-like symmetries 

 

In the spatiotemporal domain, the prospect for localized waves that can simultaneously negotiate 

both dispersion and diffraction effects in the bulk has been actively pursued by several research 

groups in both the linear and nonlinear regimes [52-54].  In general, an optical wave packet 

propagating in a homogeneous dielectric medium will expand because of diffraction effects 

while at the same time its temporal profile will broaden because of dispersion. In the linear 

domain, specific wave solutions are known to exist under normally and anomalously dispersive 

conditions. For normal dispersion, these solutions exhibit an X-wave structure [55, 56] — a 

direct outcome of the bi-dispersive nature of the underlying wave equation [8]. In the anomalous 

domain, spherical O-waves [13, 54] are allowed and Bessel-X pulses are possible under specific 

conditions [57]; however, this constraint on the sign of dispersion can be relaxed either under 

non-paraxial conditions or when the velocity of the localized wave is largely different from the 

medium’s linear group velocity. In fact, not only has it been shown that a crossover from X- to 

O-waves can occur in a dispersive medium, but localized waves that fit neither category are also 

possible [58, 59]. Recently, three-dimensional (3D) Airy-Bessel bullets that are impervious to 

both dispersion and diffraction have been suggested [11] and successfully demonstrated in 

dispersive media [15]. This versatile class of optical wave packets was made possible by 

exploiting the fact that non-spreading Airy waves can exist even in one dimension (1D). This 

class of Airy-Bessel bullets is possible irrespective of the dispersion properties of the material 

itself. The quest for such spatio-temporal entities is clearly intertwined with experimental 

capabilities of simultaneously shaping their 𝑘⃗ -𝜔 spectra. Over the years, various techniques have 

been developed to address these needs in both the spatial and temporal domain [55-57, 60, 61]. 

Lately, methods which allow for the generation of quasi-nondiffracting light beams with 
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complex transverse shapes have been demonstrated [61, 62]. Further progress in this area may 

pave the way towards the generation of other exotic space-time bullets with unique properties 

tailored for particular light-matter interaction processes [63]. 

In this section, we present a novel class of linear optical bullets that is possible under 

anomalously dispersive conditions. Depending on their angular momentum numbers, these 

wavepackets exhibit angular symmetries akin to those encountered in the quantum mechanical 

wavefunctions of a hydrogen atom. The dynamics of such states when they are apodized is 

analytically studied along with their associated energy flows. Other types of linear optical bullets 

generated through a spherical superposition from Archimedean and Platonic solids in 𝑘⃗ − 𝜔 

space are also investigated in this work. The possibility of spinning bullets is considered and the 

prospect for their realization is discussed.  
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1.4.1. Problem formulation and analysis 

In general, the primary electric field associated with a wavepacket can be expressed through a 

slowly varying envelope via 𝐸⃗ (𝑟 , 𝑡) = 𝑢⃗ 𝜓(𝑟 , 𝑡) exp[𝑖(𝑘0𝑧 − 𝜔0𝑡)], where 𝜔0 is the carrier 

angular frequency, 𝑘0 = 𝜔0𝑛(𝜔0)/𝑐, is the wavenumber evaluated at 𝜔0, and 𝑛(𝜔0) is the 

refractive index. The spatio-temporal evolution of the envelope, 𝜓(𝑟 , 𝑡), under the combined 

action of diffraction and group velocity dispersion is known to obey the following evolution 

equation: 

 

 𝑖
𝜕𝜓

𝜕𝑧
+

1

2𝑘
(
𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2) −
𝑘2

2

𝜕2𝜓

𝜕𝜏2
= 0, (21) 

 

where in equation (21), 𝜏 = 𝑡 − 𝑧/𝑣𝑔 is a time coordinate frame moving at the wave's group 

speed, 𝑣𝑔, and 𝑘2 = 𝜕2𝑘/𝜕𝜔2  represents the dispersive coefficient of the homogeneous medium 

again evaluated at 𝜔0. The material is anomalously dispersive if 𝑘2 < 0 and is normally if 

𝑘2 > 0. The transverse spatial operators in equation (21) account for diffraction effects while the 

temporal operator for the action of dispersion. Equation (21) can be judiciously scaled by 

normalizing the independent variables involved in such a way that the diffraction length 𝐿𝑑𝑖𝑓𝑓 =

2𝑘𝑑2 is equal to the corresponding dispersion length 𝐿𝑑𝑖𝑠𝑝 = 𝜏0
2/|𝑘2|, i.e.,  𝐿𝑑𝑖𝑓𝑓 = 𝐿𝑑𝑖𝑠𝑝. Here, 

𝑑 is an arbitrary length scale and 𝜏0 is associated with the pulsewidth of the wavepacket. From 

this point on, the material dispersion is taken to be anomalous in our analysis. Under these 

transformations and assumptions, equation (21) takes the form:  
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 𝑖
𝜕𝜓

𝜕𝑍
+

𝜕2𝜓

𝜕𝑋2
+

𝜕2𝜓

𝜕𝑌2
+

𝜕2𝜓

𝜕𝑇2
= 0. (22) 

 

Here in equation (22) we have employed the following set of normalized coordinates and 

variables 𝑋 = 𝑥/𝑑, 𝑌 = 𝑦/𝑑, 𝑍 = 𝑧/(2𝑘𝑑2), and 𝑇 = 𝜏/𝜏0. The aforementioned spatio-

temporal wavepackets can be studied experimentally in anomalously dispersive bulk media such 

as silica glass. Silica, at 𝜆0 = 1550 𝑛𝑚, exhibits a dispersive coefficient of 𝑘2 = −2.8 ×

10−2 𝑝𝑠2/𝑚. For this example, a dispersion-diffraction equalization (𝐿𝑑𝑖𝑓𝑓 = 𝐿𝑑𝑖𝑠𝑝 = 5.7 𝑐𝑚) is 

possible provided that the wavepacket generated from a transform-limited femtosecond laser has 

the following parameters: 𝜏0 = 40 𝑓𝑠 and 𝑑 = 100 𝜇𝑚. 

 

In what follows, we will derive the electromagnetic equations describing the internal power flow 

associated with a spatio-temporal wavepacket as a result of dispersion and diffraction. This is 

necessary in order to comprehend the underlying dynamics in such systems. With this in mind, 

we employ a perturbative approach, valid within the slowly varying envelope approximation and 

paraxial diffraction optics. We start our analysis by writing the electric field as a superposition of 

plane waves centered around a carrier frequency,
 
𝜔0. Without any loss of generality, the primary 

electric field component is taken here to be 𝑥̂ polarized. In this case: 

 

 𝐸⃗ = 𝑥∭ 𝐹0(𝜔 − 𝜔0; 𝑘𝑥 , 𝑘𝑦) × exp[𝑖(𝑘⃗ ⋅ 𝑟 − 𝜔𝑡)] 𝑑𝜔𝑑𝑘𝑥𝑑𝑘𝑦 (23) 

   

This same field can also be expressed in terms of a slowly varying envelope 𝜓, i.e 𝐸⃗ (𝑟 , 𝑡) =

𝑥̂𝜓(𝑟 , 𝑡) exp(𝑖(𝑘0𝑧 − 𝜔0𝑡)). Given that 𝑘𝑧 ≈ 𝑘 − (𝑘𝑥
2 + 𝑘𝑦

2)/(2𝑘) and that the wavenumber 
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can be expanded in a Taylor series around 𝜔0, 𝑘 ≈ 𝑘0 + 𝑘1Ω + 𝑘2Ω
2/2  (where Ω = 𝜔 − 𝜔0), 

one finds:  

 𝜓⃗ (𝑟 , 𝑡) = ∭ 𝐹0(Ω; 𝑘𝑥, 𝑘𝑦) exp[𝑖(𝑘𝑥𝑥 + 𝑘𝑦𝑦)] exp [−
𝑖

2𝑘
(𝑘𝑥

2 + 𝑘𝑦
2) 𝑧] (24) 

                                                                 × exp [𝑖(𝑘1Ω + 𝑘2

𝛺2

2
)𝑧] exp[−𝑖𝛺𝜏] 𝑑Ω𝑑𝑘𝑥𝑑𝑘𝑦                                

 

where 𝑣𝑔
−1 = 𝑘1. The associated longitudinal component of the electric field can be then 

obtained from ∇ ⋅ E⃗⃗ = 0, leading to a total (corrected to first order) electric field that is given by: 

 

 𝐸⃗ = (𝑥𝜓 + 𝑧̂
𝑖

𝑘0

𝜕𝜓

𝜕𝑥
) exp[𝑖(𝑘0𝑧 − 𝜔0𝑡)] (25) 

   

The primary magnetic field of this wavepacket can be obtained from the electric field through 

the material intrinsic impedance 𝜂(𝜔) = 𝜂0/𝑛(𝜔) where 𝜂0 = (𝜇0/𝜖0)
1/2. Therefore: 

 

𝐻⃗⃗ = 𝑦̂∭
𝐹0(Ω; 𝑘𝑥 , 𝑘𝑦)

𝜂(𝜔)
  exp[𝑖(𝑘⃗ ⋅ 𝑟 − 𝜔𝑡)]𝑑𝜔𝑑𝑘𝑥𝑑𝑘𝑦 

= 𝑦̂∭
𝐹0(Ω; 𝑘𝑥 , 𝑘𝑦)

𝜂0

(𝑛0 + 𝑛1Ω)exp[𝑖(𝑘𝑥𝑥 + 𝑘𝑦𝑦)] exp [−
𝑖

2𝑘
(𝑘𝑥

2 + 𝑘𝑦
2)𝑧]   

                                      × exp [𝑖(𝑘1Ω + 𝑘2

𝛺2

2
)𝑧] exp[−𝑖𝛺𝜏] 𝑑Ω𝑑𝑘𝑥𝑑𝑘𝑦                                       

 = (
1

𝜂0
𝑦̂ [𝑛0𝜓 + 𝑖𝑛1

𝜕𝜓

𝜕𝜏
]) exp[𝑖(𝑘0𝑧 − 𝜔0𝑡)] (26) 

   

where in equation (26) 𝑛(𝜔) = 𝑛(𝜔0 + Ω) and 𝑛1 = 𝜕𝑛/𝜕𝜔 at 𝜔0. These coefficients can, in 

principle, be evaluated from the corresponding Sellmeier equation associated with the dispersive 
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medium. From ∇ ⋅ H⃗⃗ = 0, one can determine, to first order, the longitudinal component of the 

magnetic field. The total magnetic field is found to be:  

 

 𝐻⃗⃗ = (𝑦̂
1

𝜂0
[𝑛0𝜓 + 𝑖𝑛1

𝜕𝜓

𝜕𝜏
] + 𝑧̂𝑖

𝑛0

𝑘0𝜂0

𝜕𝜓

𝜕𝑦
) exp[𝑖(𝑘0𝑧 − 𝜔0𝑡)] (27) 

 

The power flow within the spatiotemporal wavepacket can now be established from equations 

(25) and  (27), i.e. 

 

 𝑆𝑎𝑣
⃗⃗ ⃗⃗ ⃗⃗ = 𝑧̂

𝑛0

2𝜂0

|𝜓|2 − 𝑖𝑧̂
𝑛1

4𝜂0
[𝜓

𝜕𝜓∗

𝜕𝜏
− 𝜓∗

𝜕𝜓

𝜕𝜏
] + 

𝑖𝑛0

4𝑘0𝜂0

[𝜓∇⊥𝜓∗ − 𝜓∗∇⊥𝜓] (15) 

   

where ∇⊥= (𝜕/𝜕𝑥)𝑥̂ + (𝜕/𝜕𝑦)𝑦̂. The last two terms in equation (28) correspond to relative 

power flow corrections. The second term along 𝑧̂ is due to temporal effects while the ∇⊥ 

component accounts for energy transport because of transverse effects. We note here that the 

first term in equation (28) represents the dominant contribution to the power flow.  Equation (28) 

can now be expressed in normalized units as follows: 

 

                     𝑆𝑎𝑣
⃗⃗ ⃗⃗ ⃗⃗ = 𝑆0

⃗⃗  ⃗ + 𝑆𝑟
⃗⃗  ⃗                         

                     𝑆0
⃗⃗  ⃗ = 𝑧̂

𝑛0

2𝜂0

|𝜓0|
2                            

 𝑆𝑟
⃗⃗  ⃗ = −𝑖𝑧̂

𝑛1

4𝜂0𝜏0
[𝜓

𝜕𝜓∗

𝜕𝑇
− 𝜓∗

𝜕𝜓

𝜕𝑇
] + 

𝑖𝑛0

4𝑘0𝜂0𝑑
[𝜓∇̃⊥𝜓∗ − 𝜓∗∇̃⊥𝜓] (16) 

 

where the transverse ∇̃⊥operator involves the 𝑋 and 𝑌 scaled coordinates . 
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1.4.2. Localized waves with hydrogen-like symmetries  

 

Propagation invariant solutions to equation (22) can be directly obtained via separation of 

variables in spatio-temporal spherical coordinates 𝑅, 𝜃, 𝜙 where 𝑅2 = 𝑋2 + 𝑌2 + 𝑇2. To do so, 

we write the solution as 𝜓 = 𝜓0𝐺(𝑅)𝑃(𝜃) exp(𝑖𝑚𝜙) exp(−𝑖𝛼2𝑍). Direct substitution of this 

latter form into equation (22) gives the following:  

 

 
𝑑

𝑑𝜃
[sin 𝜃

𝑑𝑃

𝑑𝜃
] + sin 𝜃 [ℓ(ℓ + 1) −

𝑚2

sin2 𝜃
]𝑃 = 0 (30) 

 𝑅2  
𝑑2𝐺

𝑑𝑅2
+ 2𝑅

𝑑𝐺

𝑑𝑅
+ (𝛼2𝑅2 − ℓ(ℓ + 1))𝐺 = 0 (31) 

 

It is interesting to note that a similar polar-azimuthal differential equation is encountered in the 

analysis of hydrogen quantum orbitals. The solutions to the Legendre equation (30) can be 

obtained in terms of the associated Legendre polynomials, 𝑃ℓ
𝑚(𝛾), of degree ℓ and order 𝑚 

where 𝛾 = cos(𝜃).  Equation (31), on the other hand, has spherical Bessel function solutions 

𝑗ℓ(𝛼𝑅) = √𝜋/2𝛼𝑅 ⋅ 𝐽ℓ+1/2(𝛼𝑅)  which can be expressed in terms of elementary functions since 

ℓ belongs to the natural numbers. Therefore, invariant solutions to equation (22) are given by: 

 

 𝜓𝐵 = 𝜓0√2𝜋𝑗ℓ(𝛼𝑅)𝑃ℓ
𝑚(cos(𝜃)) exp[𝑖𝑚𝜙] exp[−𝑖𝛼2𝑍] (32) 

where 𝜓0 is a constant amplitude. Akin to the two angular momentum quantum numbers in the 

hydrogen atom, the integer index ℓ takes values from the set ℓ = 0, 1, 2, … while the integer 

order 𝑚 is constrained in the range |𝑚| ≤ ℓ. We note that in general these solutions depend on 

how the spherical coordinate system is oriented with respect to the 𝑋, 𝑌, 𝑇 axes. If, for example, 
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the 𝑇 coordinate coincides with the spherical polar axis then 𝜃 = tan−1(√𝑋2 + 𝑌2/𝑇) and 

𝜙 = tan−1(𝑌/𝑋). In principle, however, the spherical polar axis can be oriented in any direction 

(for example along 𝑋 or 𝑌). This choice has an important effect on the associated relative 

internal power flows  𝑆𝑟
⃗⃗  ⃗.  In this case, the vorticity arising from the term exp[𝑖𝑚𝜙] takes on a 

whole new physical meaning in space-time.  

The simplest possible member in this family of solutions given by equation (32) is obtained 

when ℓ = 𝑚 = 0. This lowest state optical bullet has no internal spin, and because it resembles 

the ‘s’ orbital in a hydrogen atom, we call it an ‘s’ bullet. An iso-intensity contour plot of this 

wavepacket is depicted in Fig. 15(a). This wave is evidently spherical and its field follows a 

𝑗0(𝑥) ∝ sin (𝑅)/𝑅 radial distribution. As a result, its intensity structure involves concentric 

spherical shells as shown in Fig 15(b), which represents a cross-section of this bullet in the 

                          (a)                 (b)       

Figure 15| (a) Intensity iso-surface plots of an 𝓵 = 𝒎 = 𝟎 optical bullet. (b) Intensity cross section reveals the 

𝒋𝓵 ∝ 𝒔𝒊𝒏𝑹/𝑹  profile of this ‘s’ state. 

𝑌 − 𝑇  plane. We note that this specific ‘s’ member is identical to the so-called “o-wave” 

previously obtained in other studies  [13, 54]. Figure 16(a), on the other hand, shows an iso-

intensity plot of a space-time optical bullet when ℓ = 1,𝑚 = 0, in which case it corresponds to a 

𝑝𝑇–like orbital. The structure of this solution is no longer spherical and lacks spin since 𝑚 = 0. 

It must be reiterated that this same state can be arbitrarily oriented in the 𝑋, 𝑌, 𝑇 system. A cross-
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section of this solution along 𝑋 = 0 (Fig. 16(b)) reveals the finer structure in its field 

distribution.  

                     (a)                                  (b)        

Figure 16| (a) Intensity iso-surface plots of an  𝓵 = 𝟏;  𝒎 = 𝟎 optical bullet. (b) Intensity cross section of ‘p’ shell 

for  𝑿 = 𝟎. 

As in the case of ‘s’ waves, these solutions exhibit infinitely many rings in sharp contrast to the 

quantum orbitals of hydrogen. This is because in our case the Coulombic potential is not 

involved. Similarly, 𝑝𝑥 and 𝑝𝑦 bullets can be generated from the same “quantum” numbers 

 ℓ = 1, 𝑚 = 0. By further increasing the ℓ number, optical bullets of higher symmetries can be 

generated similar to the ones depicted in Fig. 17. In particular, when ℓ = 2 and 𝑚 = 0 (Fig. 

17(a)) the propagation invariant wavepacket corresponds to the 𝑑𝑇𝑇 group (d-orbitals).  An f-

symmetric light bullet with ℓ = 3 and 𝑚 = 0 is shown in Fig. 17(b). 

     (a)  (b)     (c)   (d)   

Figure 17| Intensity iso-surfaces corresponding to higher order optical bullets having  𝒎 = 𝟎 when: (a)  𝓵 = 𝟐,  

(b) 𝓵 = 𝟑,   (c) 𝓵 = 𝟒,   (d) 𝓵 = 𝟕 . 
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If we assume a state with finite spin (𝑚 ≠ 0), an internal power flow will be present in the 

wavepacket arising from its exp[𝑖𝑚𝜙] dependence. Figure 18(a) depicts the iso-intensity plot of 

an ℓ = 𝑚 = +2 bullet while Fig. 18(b) shows its corresponding internal power circulation 𝑆𝑟
⃗⃗  ⃗ 

which happens in this case to be clockwise. As would be anticipated, for 𝑚 = −2, we obtain the 

same iso-intensity plot while the power circulation is counter-clockwise (Fig. 18(c)).  

 

(a)  (b)            (c)    

Figure 18| (a) Intensity iso-surfaces of an 𝓵 = 𝟐;  𝒎 = ±𝟐 optical bullet. (b) Top view of power circulation when 

= +𝟐 . (c) Power circulation in this same state when = −𝟐 . 

 

This leads to the possibility of realizing superpositions (e.g. exp[+𝑖𝑚𝜙] + exp[−𝑖𝑚𝜙]) of 

spatio-temporal bullets that share the same ℓ number and opposite “spin” numbers, 𝑚. If for 

example ℓ = 2 and 𝑚 = ±1, the wavepacket will have a four-fold symmetry (Fig. 19(a)) and it 

will be 𝑑𝑌𝑇 symmetric. On the other hand, a 𝑑𝑋𝑌 
symmetric wavefunction will be similar to the 

one shown Fig. 19(b) for characteristic indices ℓ = 2 and 𝑚 = ±2. 
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                  (a)                              (b)      

Figure 19| Superimposing optical bullets with 𝓵 = 𝟐;  𝒎 = ±𝒎𝟎. (a) Intensity iso-surfaces with 𝒎𝟎 = 𝟏 (b) Iso-

surfaces with 𝒎𝟎 = 𝟐.   

 

In principle, a superposition of two such spatio-temporal hydrogen-like optical bullets that have 

identical “quantum numbers”, ℓ and 𝑚, but with slightly different propagation constants 

(𝛼1 ≈ 𝛼2) can lead to a “breathing” wavepacket. If these two bullets exhibit opposite spins, ±𝑚, 

then the resulting intensity pattern rotates during propagation with period of 𝑍0 = 2𝜋/|𝛼2
2 − 𝛼1

2|.  

This behavior is suggested in Fig. (20) where a spinning optical bullet was generated with two 

almost degenerate states having ℓ = 2,  and 𝛼1 ≈ 𝛼2.  

 

 

Figure 20| A rotating optical light bullet resulting from two slightly offset propagation constants. 

= 2m 
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1.4.3. Propagation dynamics of energy apodized light bullets  

  

It is straightforward to show that the optical bullets presented in this paper carry infinite energy. 

In other words, these spatio-temporal waves happen to be dispersion-diffraction free because 

they are associated with an infinite norm – very much like the plane waves discussed earlier. In 

practice, any optical bullet can only involve finite energy. As a result, it is important to study the 

dynamics of this family of optical waves when they are appropriately apodized since it is 

necessary for their generation. In this case, a truncated bullet is expected to eventually expand in 

space and time depending on the degree of the apodization itself. Nevertheless, the bigger the 

space-time aperture is, the longer these bullets will maintain their features and the slower they 

will deteriorate or expand. In this section, we assume that the apodization is carried out in a 

Gaussian fashion  [10, 35]. To analyze these dynamics, we recall that in all cases the electric 

field envelope obeys equation (22). We also note that in 3D a Gaussian wavepacket of the form 

𝐺(𝑋, 𝑌, 𝑇; 𝑍 = 0) = exp (−𝑅2/𝑤2) satisfies Eq. (22) and according to the analytical solution: 

 

 𝐺(𝑋, 𝑌, 𝑇; 𝑍) =
1

𝜇3/2(𝑍)
exp(−

𝑋2 + 𝑌2 + 𝑇2

𝑤2𝜇(𝑍)
) , (33) 

 

where 𝜇(𝑍) = 1 + 4𝑖𝑍/𝑤2. Let us now assume that a certain envelope, 𝜓̃(𝑋, 𝑌, 𝑇; 𝑍), satisfies 

equation (22) as well. In that case, it is straightforward to show that its Gaussian apodized 

counterpart also satisfies equation (22), that is:  

 𝜓(𝑋, 𝑌, 𝑇; 𝑍) =
1

𝜇3/2(𝑍)
exp(−

𝑅2

𝑤2𝜇(𝑍)
)  𝜓̃(𝑋̃, 𝑌̃, 𝑇̃; 𝑍̃), (34) 
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where the new coordinates appearing in equation (34) have been renormalized with respect to  

𝜇(𝑍), i.e.,  (𝑋̃, 𝑌̃, 𝑇̃, 𝑍̃) = 𝜇−1(𝑍)(𝑋, 𝑌, 𝑇, 𝑍). Equation (34) is general and holds in all cases. In 

the specific case of the apodized hydrogen-like optical bullets discussed here, an application of 

equation (34) leads to:  

 

 𝜓̃ =
1

𝜇3/2(𝑍)
exp(−

𝑅2

𝑤2𝜇(𝑍)
) ⋅𝜓0√2𝜋𝑗ℓ(𝛼𝑅̃)𝑃ℓ

𝑚(cos(𝜃̃)) exp[𝑖𝑚𝜙̃] exp[−𝑖𝛼2𝑍̃], (35) 

 

Where the spherical coordinates, (𝑅̃, 𝜃̃, 𝜙̃) are associated with the coordinates (𝑋̃, 𝑌̃, 𝑇̃; 𝑍̃) and 

are given by the relations 𝑅̃ = 𝑅/𝜇(𝑍), 𝜃̃ = 𝜃, 𝜙̃ = 𝜙.  Fig. 21 displays a  𝑌 = 0 intensity cross 

section at different diffraction lengths for equation (35) with ℓ = 2,𝑚 = 0, 𝛼 = 1, 𝜓0 = 1,𝑤 =

2.  

     

Figure 21| Propagation dynamics of an apodized hydrogen-like bullet with  ℓ = 2;  𝑚 = 0 after a normalized 

distance of  (a)  𝑍 = 0, (b)  𝑍 = 2.66 , (c) 𝑍 = 4. Values are scaled to the maximum value of the bullet occurring at 

= 0 .   

 

 

 

As Fig. 21 clearly indicates, the apodized optical bullet eventually expands during propagation. 

This expansion can of course be slowed down by increasing the Gaussian apodization width, .  

  

w
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1.4.4. Localized waves resulting from a spherical superposition on Archimedean and 

Platonic solids 

 

In general, any non-spreading spatio-temporal wavepacket can be synthesized through a suitable 

superposition of “plane wave solutions” in the normalized 𝐾𝑋 , 𝐾𝑌, Ω̅ space as long as these points 

lie on a sphere (where in this last expressionΩ̅ = Ω𝜏0). This can be understood from equation 

(22) by adopting invariant solutions of the form 𝜓 = exp(−𝑖𝛼2𝑍) exp(𝑖[𝐾𝑋𝑋 + 𝐾𝑌𝑌 − Ω𝑇̅̅ ̅̅ ]). 

For this case, 𝐾𝑋
2 + 𝐾𝑌

2 + Ω̅2 = 𝛼2, i.e. the 𝐾𝑋 , 𝐾𝑌, Ω̅ the points should indeed lie on a sphere of 

radius 𝛼. Therefore, any superposition of such “plane wave solutions” will also remain also 

invariant as long as they share the same sphere of radius 𝛼 in reciprocal space. Following this 

approach, infinitely many realizations of such invariant localized waves are attainable. One such 

possibility is to consider polyhedral that happen to be inscribable on a sphere such as the Platonic 

or Archimedean solids. In this case, the field envelope of the localized wave resulting from this 

superposition can be obtained by:  

 

 𝜓𝐵 = exp(−𝑖𝛼2𝑍)∑exp(𝑖𝑄⃗ 𝑗 ⋅ 𝑅⃗ )

𝑗

 (36) 

 

Where 𝑄⃗ 𝑗 represents the reciprocal vertices 𝑄⃗ 𝑗 = (𝐾𝑋 , 𝐾𝑌, −Ω̅) on this sphere. Figure 22a 

displays the vertices of a Platonic regular hexahedron on a reciprocal space unit sphere 

occupying the sites (±1/√3,±1/√3 , ±1/√3). Similarly, the vertices corresponding to an 

octahedron and dodecahedron are depicted  in Figs. 8b and 8c. The respective iso-intensity plots 
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of the spatio-temporal wavepackets that are generated from these three polyhedral are shown in 

Figs. 8d-8f.  

 

Figure 22| The vertices of a (a) regular hexahedron (b) octahedron (c) and dodecahedron inscribed in a Q-sphere. 

(d-f) The corresponding iso-intensity patterns generated from these arrangements.  
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1.4.5. Fourier spectra of apodized spatio-temporal bullets 

 

Fourier spectra provide valuable physical insight not only about the structure of 

diffraction/dispersion-free waves, but also dictate the requirements concerning their realization 

in laboratory experiments. In this section, we provide a general analytical expression for the 

Fourier spectrum of a Gaussian apodized spatio-temporal wavepacket which obeys equation 

(22). More specifically, we obtain the spectrum at the origin 𝑍 = 0, in which case the initial field 

envelope is given by 𝜓𝐵(𝑋, 𝑌, 𝑇, 𝑍 = 0) exp(−𝑅2/𝑤2). In general, a non-spreading spatio-

temporal wavepacket can be described as a Fourier superposition of plane waves in spherical 

coordinates. Note that in a spherical reciprocal space, 𝐾𝑋 = 𝐾𝑅 sin(𝜃) cos(𝜙), 𝐾𝑌 =

𝐾𝑅 sin(𝜃) sin(𝜙), Ω̅ = −𝐾𝑅 cos(𝜃). Additionally, in this same domain, the spatio-temporal 

frequencies of a non-spreading wavepacket satisfying (22) lie on the surface of a sphere, 

𝐾𝑋
2 + 𝐾𝑌

2 + Ω̅2 = 𝛼2, hence its spectrum can be described through the general function 𝛿(𝐾𝑅 −

𝛼)𝜁(𝜙, 𝜃). In this case, 

 

𝜓𝐵(𝑋, 𝑌, 𝑇; 𝑍 = 0)

=
1

(2𝜋)3
∫ ∫ ∫ 𝑑𝐾𝑅𝑑𝜙𝑑𝜃[𝐾𝑅

2 sin(𝜃)𝛿(𝐾𝑅 − 𝛼)𝜁(𝜙, 𝜃)]
2𝜋

0

𝜋

0

∞

0

× exp(𝑖𝛼[𝑋 cos(𝜙) sin(𝜃) + 𝑌 sin(𝜙) sin(𝜃) + 𝑇 cos(𝜃)]) 

(37) 

Thus 

 

𝜓𝐵(𝑋, 𝑌, 𝑇; 𝑍 = 0)

=
1

(2𝜋)3
∫ 𝑑𝜙

2𝜋

0

∫ 𝑑𝜃[𝜁(𝜙, 𝜃)𝛼2 sin(𝜃)]
𝜋

0

× exp(𝑖𝛼[𝑋 cos(𝜙) sin(𝜃) + 𝑌 sin(𝜙) sin(𝜃) + 𝑇 cos(𝜃)]) 

(38) 
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Given that this localized wave of equation (38) is apodized in a Gaussian fashion with width, 𝑤, 

its Fourier transform can be obtained from 

 

 

Ψ(𝐾𝑋, 𝐾𝑌, Ω̅) = ∫ ∫ ∫ 𝑑𝑋𝑑𝑌𝑑𝑇 exp (−
𝑋2 + 𝑌2 + 𝑇2

𝑤2 )
∞

−∞

∞

−∞

∞

−∞

× 𝜓𝐵(𝑋, 𝑌, 𝑇; 𝑍 = 0) exp[−𝑖(𝐾𝑋𝑋 + 𝐾𝑌𝑌 − Ω̅𝑇)] 

(39) 

 

Upon substituting equation (38) into (39) for 𝜓𝐵(𝑋, 𝑌, 𝑇; 𝑍 = 0), all terms which do not depend 

on 𝑋, 𝑌, or 𝑇 may be carried out of the Fourier integral. Hence, 

  

 

Ψ(𝐾𝑋, 𝐾𝑌, Ω̅) =
1

(2𝜋)3
∫ 𝑑𝜙 ∫ 𝑑𝜃[𝜁(𝜙, 𝜃)𝛼2 sin(𝜃)]

𝜋

0

2𝜋

0

×∫ ∫ ∫ 𝑑𝑋𝑑𝑌𝑑𝑇 exp(−
𝑋2 + 𝑌2 + 𝑇2

𝑤2 )
∞

−∞

∞

−∞

∞

−∞

× exp(𝑖𝛼[𝑋 cos(𝜙) sin(𝜃) + 𝑌 sin(𝜙) sin(𝜃) + 𝑇 cos(𝜃)])

× exp[−𝑖(𝐾𝑋𝑋 + 𝐾𝑌𝑌 − Ω̅𝑇)] 

(40) 

 

Where now in equation (40), 𝐾𝑋, 𝐾𝑌, and Ω̅ range from (−∞,∞). By introducing the auxiliary 

reciprocal variables, Ξ𝑋 = 𝐾𝑋 − 𝛼 sin(𝜃) cos(𝜙),  Ξ𝑌 = 𝐾𝑌 − 𝛼 sin(𝜃) sin(𝜙), and Ξ𝑇 = −Ω̅ −

𝛼 cos(𝜃), equation (40) becomes: 



54 

 

 

Ψ(𝐾𝑋, 𝐾𝑌, Ω̅) =
1

(2𝜋)3
∫ 𝑑𝜙 ∫ 𝑑𝜃[𝜁(𝜙, 𝜃)𝛼2 sin(𝜃)]

𝜋

0

2𝜋

0

×∫ ∫ ∫ 𝑑𝑋𝑑𝑌𝑑𝑇 exp(−
𝑋2 + 𝑌2 + 𝑇2

𝑤2 )
∞

−∞

∞

−∞

∞

−∞

× exp(𝑖𝛼[Ξ𝑋𝑋 + Ξ𝑌𝑌 + Ξ𝑇𝑇]) 

(41) 

 

The Fourier integrations in (41) can now be performed and lead to: 

 

Ψ(𝐾𝑋, 𝐾𝑌, Ω̅) =
1

(2𝜋)3
∫ 𝑑𝜙 ∫ 𝑑𝜃[𝜁(𝜙, 𝜃)𝛼2 sin(𝜃)]

𝜋

0

2𝜋

0

×𝑤3𝜋3/2 exp [−
𝑤2

4
(Ξ𝑋

2 + Ξ𝑌
2 + Ξ𝑇

2)] 

(42) 

 

Substituting the original expressions for the auxiliary parameters, Ξ𝑋, Ξ𝑌, Ξ𝑇, equation (41) can 

be rewritten as follows: 

 

Ψ(𝐾𝑋, 𝐾𝑌, Ω̅) =
𝑤3𝜋3/2𝑒−(𝛼2+𝐾𝑋

2+𝐾𝑌
2+Ω̅2)

(2𝜋)3
× ∫ 𝑑𝜙 ∫ 𝑑𝜃

𝜋

0

2𝜋

0

[𝜁(𝜙, 𝜃)𝛼2 sin(𝜃)]

× exp [𝑖𝛼 (
𝑤2

2𝑖
) (𝐾𝑋 cos(𝜙) sin(𝜃) + 𝐾𝑌 sin(𝜙) sin(𝜃) − Ω̅ cos(𝜃))] 

(43) 

 

From equation (43) and equation (38), one finally obtains the Fourier spectrum of these apodized 

waves which is simply given in terms of their original envelope, 𝜓𝐵, where [𝑋, 𝑌, 𝑇] →

(𝑤2/ 2𝑖)[𝐾𝑋 , 𝐾𝑌, −Ω̅]. Therefore, the end result is: 

 Ψ(𝐾𝑋, 𝐾𝑌, Ω̅) = (𝜋𝑤2)3/2𝑒
−(

𝑤2

4
)(𝛼2+𝐾𝑋

2+𝐾𝑌
2+Ω̅2) 

× 𝜓𝐵 (
𝑤2

2𝑖
𝐾𝑋 ,

𝑤2

2𝑖
𝐾𝑌, −

𝑤2

2𝑖
Ω̅) (44) 
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Equation (44) states that if an invariant solution to equation (22) is known, then the Fourier 

transform of its Gaussian apodized version is immediately known. We now see that the Fourier 

transforms of all the spherical harmonic localized waves can be readily obtained by combining 

equations (44) and (35). As an example, consider the simplest of these, for which ℓ = 𝑚 = 0, 

and whose field profile is given by 𝜓0√2𝜋𝑗0(𝛼𝑅) = 𝜓0√2𝜋 sin(𝛼𝑅)/𝛼𝑅. Using equation (44) 

we can immediately obtain the corresponding Gaussian apodized Fourier spectrum: 

 

 
Ψ(𝐾𝑋, 𝐾𝑌, Ω̅) ∝ 𝑤𝑒

−(
𝑤2

4
)(𝛼2+𝐾𝑅

2)
×

sinh (
𝑤2𝛼𝐾𝑅

2 )

𝛼𝐾𝑅
 

(45) 

 

Where 𝐾𝑅
2 = 𝐾𝑋

2 + 𝐾𝑌
2 + Ω̅2. Three reciprocal space iso-surfaces for both the ℓ = 𝑚 = 0 and 

ℓ = 1,𝑚 = 0 cases are plotted for different degrees of Gaussian apodization (Fig. 23 and Fig. 

24). As can be seen in Fig. 23, in the limit 𝑤 → ∞, the thickness of the surfaces become 

infinitesimally small, thus approaching a radius of 𝛼. As expected, in this limit the spectrum in 

Fig. 23 converges to the spectrum of the O-wave displayed in Fig. 15. This behavior can be 

readily understood from equation (45). Meanwhile the spectrum of a 𝑝𝑇– like orbital involving 

two lobes in displayed in Fig. 24.  
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Figure 23| Isosurface spectrum plots of the ℓ = 𝑚 = 0 localized wave with various degrees of Gaussian 

apodization. The spherical spectrum has been sectioned in half so that the shell thickness can be viewed a) w = 5. b) 

w = 10. c) w = 20. In the limit that 𝑤 → ∞ the shell thickness becomes infinitesimally small representing the 

spectrum of the O-wave.   

 

Figure 24| Isosurface spectrum plots of the ℓ = 1, 𝑚 = 0 localized wave with various degreees of Gaussian 

apodization. The spherical spectrum has been sectioned in half so that the shell thickness can be viewed a) w = 5. b) 

w = 10. c) w = 20.   
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2. Dressed optical filaments  
 

Since the first experimental observation by Braun  et al. [64], optical filamentation in transparent 

media has been the focus of considerable attention. In general, an optical filament establishes 

itself through a dynamic balance of Kerr self-focusing effects and defocusing processes caused 

by multiphoton produced plasma [65]. To maintain this balance the filament must expend its 

own energy, and as expected once its power dips below a certain threshold, it eventually 

vanishes. Clearly, it will be important to devise schemes capable of extending the longevity of a 

filament. To this end, several methods have already been investigated [66-75]. For example, by 

introducing a negative temporal chirp, one can shift the position where a filament forms and 

possibly double its corresponding propagation length [66-71]. This same principle when applied 

to Bessel-Gauss beams has been shown to extend a filament as much as two and a half times its 

normal distance [74, 75]. Yet, if one is to adopt such methods, then the success of filament 

prolongation is ultimately limited by the amount of power contained in the initial self-focusing 

wavefront. One avenue to overcome this limitation would be to somehow replenish the energy of 

the filament during propagation.  

Here, we explore a new approach by which the lifecycle of an optical filament in a transparent 

medium can be extended by almost an order of magnitude. Because a filament’s propagation 

distance crucially depends on its surrounding energy [76-78], we propose to “dress” a filament 

with an encompassing low intensity auxiliary beam that will act as a secondary energy reservoir. 

This “dressing beam” is judiciously tailored so that it continuously resupplies power to the 

filament in a way that extends its longevity. Even more importantly, the dressing beam is 

prudently designed to maintain a low intensity profile throughout most its propagation; this 
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prevents the dress from inducing nonlinear effects by itself. The role of the dress reservoir is 

solely to support the filament during propagation. 

2.1 Theoretical treatment of dressed filaments 

 

To describe the evolution dynamics of a dressed filament we use the Unidirectional Pulse 

Propagation Equation (UPPE) solver [79]. The electric field is represented in terms of its 

temporal and spatial spectral amplitude, 𝐸⃗ (𝑘⊥, 𝜔, 𝑧), which satisfies the equation, 

 

 ∂z𝐸⃗ (𝑘⊥, 𝜔, 𝑧) = +𝑖𝑘𝑧𝐸⃗ (𝑘⊥, 𝜔, 𝑧) +
𝑖𝜔2

2𝜖0𝑐
2𝑘𝑧

𝑃⃗ (𝑘⊥, 𝜔, 𝑧) −
𝜔

2𝜖0𝑐
2𝑘𝑧

𝐽 (𝑘⊥, 𝜔, 𝑧) (46) 

 

Where 𝑘𝑧(𝑘⊥, 𝜔) ≡ √𝜔2𝜖(𝜔)/𝑐2 − 𝑘⊥
2  with 𝜖(𝜔) standing for frequency dependent permittivity 

of air. The nonlinear light-medium interactions are included within the polarization and current 

terms and account for the standard components of femtosecond filaments [65]. We use 𝑛2 ≈ 1 ×

10−23 𝑚2/𝑊 for the electronic Kerr effect [80] and neglect the delayed Raman responses 

because of our short pulse durations. The strong-field ionization is parameterized as in [81] with 

effective power-law rates 𝜕𝑡𝜌 = (𝜌𝑎𝑡 − 𝜌)𝜎|𝐸(𝑡)|2𝐾 with 𝐾𝑁2
= 7.5, 𝐾𝑂2

= 6.5, 𝜌𝑎𝑡,𝑁2
= 2 ×

1025𝑚−3, 𝜌𝑎𝑡,𝑂2
= 5 × 1024𝑚−3, 𝜎𝑁2

= 7.9 × 10−124𝑠−1𝑚15/𝑊7.5, 𝜎𝑂2
= 8.85 ×

10−105𝑠−1𝑚13/𝑊6.5. We also include effective current and avalanche terms to model energy 

loss due to ionization; the defocusing effect of freed electrons is accounted for by a Drude model 

(𝜏𝑐 = 350 𝑓𝑠) with the current density driven by the electric field and the total freed electron 

density (see [82] for implementation). 
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For comparative purposes, we first examine the evolution dynamics of an undressed optical pulse 

with 𝜆0 = 800 𝑛𝑚 and a Gaussian envelope 𝜓𝐹(𝑟, 𝑡, 𝑧 = 0) = √2𝜂0𝐼0 exp[−𝑟2/𝑤𝐹
2] exp[−𝑡2/

𝜏𝐹
2], where 𝜂0 = 377Ω. For this filamenting field, we choose a beam width of 𝑤𝐹 = 2 𝑚𝑚, a 

pulse duration of 𝜏𝐹 = 30 𝑓𝑠, and a peak intensity of 𝐼0 = 5 × 1015 𝑊/𝑚2. This corresponds to 

a power of about 3.27𝑃𝑐𝑟𝑖𝑡. Two cross-sections, 𝐼𝐹(𝑥, 𝑦 = 0, 𝑡 = 0, 𝑧) and 𝐼𝐹(𝑥 = 0, 𝑦 = 0, 𝑡 =

0, 𝑧), resulting from UPPE simulations are displayed in Fig. 25.  

 

 

Figure 25| (a) Cross-section, 𝐼𝐹(𝑥, 𝑦 = 0, 𝑡 = 0, 𝑧), shows the formation of a filament which propagates for a 

distance, 𝐿1 ≈ 2𝑚 and (b) inspection along the propagation axis, 𝐼𝐹(𝑥 = 0, 𝑦 = 0, 𝑡 = 0, 𝑧), reveals a self-focusing 

collapse around 7 meters followed by one intensity clamped refocusing cycle. Intensity values are scaled to 𝐼0 and 

the intensity limit in (a) is set to 40𝐼0.   
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As indicated in Figs 25, a filament forms around 6 or 7 meters [83] and propagates for 

approximately 𝐿1 = 2𝑚 with a clamped intensity of a few 1017 𝑊/𝑚2 [84]. As seen, this 

particular filament only experiences one refocusing cycle. Next, we introduce an annular 

Gaussian dressing beam with a negative phase tilt of the form, 

𝜓𝐷(𝑟, 𝑡, 𝑧 = 0) = √2𝜂0𝐼𝐷 exp[−(𝑟 − 𝑟0)
2/𝑤𝐷

2] exp[−𝑖𝛿𝑟] exp[−𝑡2/𝜏𝐷
2 ]. Note that unlike 

vortex beams this wavefront involves no phase singularity. The parameters for this optical dress 

are judiciously chosen to be 𝐼𝐷 = 1.5 × 1014 𝑊/𝑚2, 𝑤𝐷 = 1.0 𝑐𝑚, 𝑟0 = 1.8 𝑐𝑚, 𝛿 = 85 𝑐𝑚−1, 

and 𝜏𝐷 = 30 𝑓𝑠. This corresponds to a low intensity wavefront with a large power reservoir 

containing 22𝑃𝑐𝑟𝑖𝑡. The term exp[−𝑖𝛿𝑟] causes the energy within this dressing beam to gently 

flow toward the propagation axis, and the parameter 𝛿 is tailored so that the dressing beam 

replenishes the filament (Fig. 26). 
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Figure 26| (a) Cross-section, 𝐼𝐷(𝑥, 𝑦 = 0, 𝑡 = 0, 𝑧), shows the evolution dynamics of the dress beam; note that the 

maximum intensity of the initial wavefront is only 3% that of the filament and (b) profile 𝐼𝐷(𝑥 = 0, 𝑦 = 0, 𝑡 = 0, 𝑧) 

indicates that this particular Gaussian dress will supply additional power to the filament when it is necessary.    

Figure 26 indicates that the initial maximum dressing beam intensity is quite low (3%𝐼0) and 

retains a low intensity profile throughout most of its propagation. An area of concern, however, 

is along the propagation axis where the intensity can reach higher values. Nevertheless, while the 

term exp[−𝑖𝛿𝑟] is responsible for channeling the energy toward the center, it also results in rapid 

defocusing. Consequently, the dress beam itself does not induce lasting nonlinear effects and 

therefore does not develop a filament during propagation. This becomes evident by monitoring 

certain features. To begin with, the dress never undergoes self-focusing collapse; additionally, 

specific to these parameters, the maximum electron plasma densities generated by the dress beam 
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are orders of magnitude less than those anticipated in a filament; lastly, a linear simulation with 

identical beam parameters produces virtually identical results. 

                                   

            

Figure 27| (a) Cross-section of the initial dressed filament, 𝐼𝐷𝐹(𝑥, 𝑦 = 0, 𝑡 = 0, 𝑧 = 0); note that the initial 

maximum intensity of the dress is only 3% that of the filament beam and (b) because of the negative phase tilt, the 

dress energy flows inward. 

We then synthesize the dressed filament by combining the phase tilted Gaussian dress and the 

filamenting beam, 𝜓𝐷𝐹(𝑟, 𝑡, 𝑧 = 0) = 𝜓𝐹 + 𝜓𝐷 (initial intensity profiles are shown in Fig. 27). 

The evolution dynamics resulting from this initial condition are displayed in Fig 28. Note that in 

Fig. 28a the dress beam is hardly noticeable since its peak intensity always remains low 

throughout propagation and is only manifested when it joins the filament beam. We wish to 

stress that this feature is paramount to the dress beam’s efficacy, but also prohibits it from 

forming its own filament. Nevertheless, the results in Fig. 28b show a drastic extension  of the 

filamentation process, which is further confirmed by the presence of plasma and a high intensity 
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core with an average diameter of ≈ 100 𝜇𝑚. Thus, we are lead to conclude that both the filament 

and the dress are intimately intertwined during this effect. By comparing Figs. 25 and 28, we 

clearly see that the auxiliary dress beam replenishes the filament’s power and results in many 

additional refocusing cycles. In this particular example, the filament’s length is extended from 

about 2 meters to 18 meters, a nine fold improvement over the unaided case.  

 

 

Figure 28| (a) Cross-section, 𝐼𝐷𝐹(𝑥, 𝑦 = 0, 𝑡 = 0, 𝑧), shows the formation of a dressed filament which propagates 

for a distance, 𝐿2 ≈ 18 𝑚 after the initial focus and (b) inspection along the propagation axis,  𝐼𝐷𝐹(𝑥 = 0, 𝑦 = 0, 𝑡 =
0, 𝑧), reveals a self-focusing collapse around 7 meters followed by multiple refocusing cycles. The intensity limit in 

(a) is set to 40I0.  
 

  



64 

 

2.2. Experimental observation of dressed filaments 

Here, an order of magnitude extension of an optical filament in air is reported experimentally. 

This is accomplished by appropriately employing a surrounding auxiliary dress beam which 

continuously supplies energy to the filament in a way that considerably protracts its longevity. 

Our experiments demonstrate that this low intensity dress acts like an artificial photon bath 

whose sole purpose is to continuously refuel the light string “in flight”. As opposed to 

concentrating all the available laser energy into a single beam which can cause either a 

premature burn out because of ionization losses or chaotic multi-filamentation, our scheme 

provides a versatile route in appropriately economizing this power consumption for attaining 

maximum propagation distance.  This mode of operation closely resembles that encountered in 

other dissipative systems associated with a finite amount of combustible material; maximum 

performance can be achieved by expending this energy at an optimal, gradual rate instead of 

igniting it all at once. As indicated in our study, such dressed beam configurations are in 

principle scalable and can thus be used in establishing long range filaments.  

The basic idea behind the method is again illustrated in Fig. 29. Figure 29(a) depicts the 

dynamics of an unaided Gaussian pulsed filament in air. As clearly shown, this filament can only 

propagate for a while until dissipation effects deplete its energy after a characteristic length, 𝐿1. 

Beyond this point, the beam irreversibly diffracts.  On the other hand, as shown in Fig.29(b), this 

dynamic balance can be considerably extended up to a distance of 𝐿2 when this same filament 

beam is initially surrounded by a low intensity annular dress. What makes this possible is the fact 

that the dress wave is radially distributed over a much broader region, so as to prevent it from 
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triggering any nonlinear effects. In this scenario, both beams are coherent with respect to each 

other with the spatially-chirped dress constantly supplying energy to the high-intensity core.  

 

Figure 29|A dressed filament considerably protracts the longevity of an optical filament (a) A pulsed Gaussian 

beam (shown in the top inset) with sufficient energy will undergo self-focusing collapse and form a filament that 

propagates a distance 𝑳𝟏. (b) If, however, this same beam is appropriately dressed with a convergent annular beam 

(bottom inset), the filament range can be extended by an additional distance 𝑳𝟐. The yellow arrows in the inset 

represent the transverse Poynting vector for the energy influx into the filament core. 

To demonstrate the aforementioned approach in a laboratory setting, a scaled-down arrangement 

is used, as schematically shown in Fig. 30(a). Both the primary Gaussian filament beam and the 
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accompanying dress are derived from a single Ti: Sapphire femtosecond laser system that 

produces 40 fs pulses at 800 nm.  The pulse repetition frequency is 10 Hz and the maximum 

energy per pulse can reach up to 25 mJ. The output beam from the laser is unevenly split into 

two, one of which is weakly focused by a lens with a focal length of 2 m and becomes the 

primary Gaussian filament. Prior to focusing, this beam is truncated to a diameter of 4 mm. 

Meanwhile, the second wavefront has a much larger diameter (12 mm) and is focused by a 

conical axicon with an apex angle of 179.8 and undertakes the role of the low intensity dress 

beam. By using this approach, the resulting annular wave acquires a linear spatial chirp in the 

transverse plane, ∝ exp(−𝑖𝛿𝑟) , where 𝛿 is a constant defined by the geometry of the axicon and 

r is the transverse radial coordinate. The radial chirp causes a gradual transport of energy from 

the periphery to the central core of the beam upon propagation, as shown by the transverse 

Poynting vector arrows, 𝑆𝑡
⃗⃗  ⃗, in Fig. 29(b). In this configuration, the two wavefronts share the 

same polarization and wavelength and are designed to interact for about 2m over which refueling 

is expected to take place. The two beams are temporally synchronized using a motorized delay 

stage and are spatially recombined (Fig. 30(a)). After accounting for the losses resulting from 

optical elements in our setup, the maximum pulse energies delivered in the interaction zone are 

0.87 mJ and 3.5 mJ for the filament and the dress beam, respectively. The peak power of the 

main beam is about twice the threshold power for self-focusing in air. The intensity profile of 

this filament-dress arrangement just before the Rayleigh zone is shown in Fig.30(b). It should 

also be noted that relative optical phase fluctuations between the Gaussian and dress beam 

resulted in time-averaged intensity patterns. 

Our experimental results are summarized in Figure 30(c). With the primary Gaussian beam 

acting alone, the length of the generated plasma channel is about 20 cm.  The dress beam on the 
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other hand, by itself, does not produce any measurable plasma and thus does not form a filament. 

This is anticipated since the dress energy reservoir is meant to behave linearly so as to 

discourage the onset of its own filamentation. On the other hand, when the two beams are 

launched together (with 𝛿 ≈21 mm−1), the length of the generated plasma channel reaches up to 

220 cm, indicating an eleven-fold improvement over the former result. As previously indicated, 

what contributes to this prolongation is the constant refueling offered by the dress energy tank. In 

our experiments, we found that this interaction is robust and is relatively insensitive to existing 

imperfections in either beam.  We emphasize again that this interaction involves only one light 

string and is by no means a multifilamentary process. 
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Figure 30| Experimental investigation of dressed optical filaments. (a) Experimental setup. The input beam is 

unevenly divided into two parts. The lower-energy portion is focused by a convergent lens with a focal length of 2𝑚 

and produces a short plasma filament in air; the higher-energy beam is passed through a shallow axicon lens and 

assumes the role of the dressing beam. Plasma generation in air is quantified using a capacitive plasma probe. (b) 

The intensity profile of the primary and dress beams together, as observed right before the interaction zone. (c) 

Experimental demonstration of an extended filament when the primary beam carries an energy of 0.87 𝑚𝐽 and the 

accompanying dress beam, 3.50 𝑚𝐽. In this arrangement, the light string propagates for 220 𝑐𝑚 which corresponds 

to an eleven-fold improvement over the unaided filament. (d) Plasma density as obtained from numerical 
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simulations for the three cases shown in (c). This also corroborates an eleven-fold extension of the filamentation 

process with the aid of a dress beam.  

 

We have also conducted similar experiments using different focusing parameters for both the 

Gaussian and dress beam.  In all cases, the results were found to be qualitatively the same: The 

dressed filament always outperforms its unaided counterpart. Note that this significant filament 

elongation is possible in spite of the fact that its range is ultimately limited within the Rayleigh 

zone of the lens.  This improvement can become even more impressive once quasi-collimated 

dressed filaments are used in long-range arrangements. Results from numerical computations 

corresponding to our experiments are shown in Fig. 30(d). Our simulations utilize a femtosecond 

pulse propagator based on the Unidirectional Pulse Propagation Equation (UPPE) [79]. In all 

cases our numerical findings are in good agreement with experiment. The minor differences 

observed are because of statistical fluctuations in initial conditions. To demonstrate that the 

observed plasma elongation is specifically due to the constant refueling process and is not the 

outcome of simply increasing the total energy in a pulse, experiments were conducted where 

energy levels comparable to those used in our previous filament-dress configurations (4.4 mJ) 

were packed in the same primary filament beam. In every case, the beam collapsed much faster 

and its energy was inefficiently consumed. In addition, the plasma density generated by the 

auxiliary beam alone remained several orders of magnitude below the values necessary for the 

filamentation process. The dependence of the filament’s elongation on the dress energy was also 

investigated in detail. 

To better understand how the throughput of a dissipative phenomenon like a light string can be 

externally enhanced, one can offer the following argument: The peak on-axis intensity in a 

femtosecond laser filament is clamped to a value, 𝐼𝑐𝑙𝑎𝑚𝑝, determined by the onset of plasma 
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generation which is by nature a threshold-like process. If we only consider losses from ionization 

(i.e. by ignoring diffraction/defocusing losses), then in this quasi-steady state regime, the 

filament diameter remains almost invariant and as a result the rate of the eight-photon oxygen 

ionization loss, 𝑛𝑜2
(8ℏ𝜔)(𝜎𝐼𝑐𝑙𝑎𝑚𝑝

8 )𝑆𝑓𝜏,  is approximately constant. Here, 𝑛𝑜2
is volumetric 

molecular density of oxygen in air, 8ℏ𝜔 is the energy associated with eight-photon absorption, 

 𝜎 is an eight-photon absorption coefficient, 𝑆𝑓 represents the filament cross-sectional area, and 𝜏 

the pulse duration. Interestingly, the performance of any dissipative configuration can always be 

optimized with respect to the rate at which energy is replenished. For example, this becomes 

evident even in relatively simple first-order systems where variational principles through 

Lagrange multipliers can be directly employed. Under such conditions, one can show that the 

longevity of such an energy consuming process can be maximized as long as the resupply rate is 

constant and related to the initial conditions and constraints. In other words, the most efficient 

rate of energy inflow would be that which just compensates for losses. Supplying any more 

additional energy would result in wasteful ionization loss, while an insufficient energy in-flow 

would cause the filament to cease. In regular filaments, the energy flow from the photon bath 

towards the beam axis is driven by beam self-focusing – an intrinsically unstable nonlinear 

process that inevitably causes unnecessary local intensity overshooting. On the other hand, in the 

dressed filament case, energy from the auxiliary beam flows into the filament core in a 

controllable manner, which ensures a steady energy resupply rate and results in optimized energy 

expenditure.   

As an alternative to dressed-filaments, one could have also employed diffraction-free 

wavefronts, like self-healing Bessel beams—similar to those previously used in other settings 

[74, 75]. Experimental data obtained from intense Bessel beams are depicted in Fig. 31. Clearly, 
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when compared to Fig. 30(c), this arrangement still underperforms even though it contains twice 

the energy level (8.4 mJ). This is because the transverse energy influx within a Bessel beam is 

not ideally suited in the prolongation of a filament.  

 

Figure 31| Experimental investigation of dressed optical filaments. (a) Experimental setup. The input beam is 

unevenly divided into two parts. The lower-energy portion is focused by a convergent lens with a focal length of 𝟐𝒎 

and produces a short plasma filament in air; the higher-energy beam is passed through a shallow axicon lens and 

assumes the role of the dressing beam. Plasma generation in air is quantified using a capacitive plasma probe. (b) 

The intensity profile of the primary and dress 

 

As previously mentioned, the advantage offered by our scheme becomes even more evident in 

long-range settings (Fig. 32). In this case, both the filament and the dress are almost collimated 

thus allowing for extended interaction regions. To demonstrate this possibility, pertinent 

simulations were carried out using the UPPE method (axicon apex angle of ≈ 179.9∘, and clear 

aperture radius of ≈ 1𝑐𝑚). Filament extensions up to 45 meters are possible in air using dressed 

beams containing a total energy of 28 mJ as opposed to a filament alone (carrying 2 mJ) that 
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lasts up to 3 meters. This is possible in spite of the fact that the filament beam is initially 

launched with a moderate ~ 2 mm intensity FWHM. Instead, if this same energy of 28 mJ is 

concentrated in the primary filament, it only propagates 13 meters after the onset of self-

focusing. In this latter setting, the energy in-flow from the photon bath into the filament core is 

driven by nonlinear self-focusing, resulting in inefficient energy consumption. We would like to 

note that in general, the dynamic balance between the different focusing and de-focusing effects 

is more complex given that it results from a temporal and spectral re-shaping of the pulse 

waveform during propagation.  
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Figure 32| Dressed optical filaments in long-ranged settings. (a) Numerical simulation of the peak on-axis intensity 

for a collimated Gaussian beam starting with a 2 mm FWHM and 2 mJ of energy. The string decays after about 3 

meters. (b) Maximum on-axis intensity when a dress beam with 26 mJ of energy propagates alone. Even with this 

large amount of energy, a filament never forms because the dress maintains a low intensity throughout propagation 

and only refuels the pre-existing filament. (c) On-axis intensity when the central beam in (a) is aided by the same co-

propagating dress wave in (b). Here, the dressed filament propagates over 45 meters, a fifteen-fold improvement 

over the previous result. (d) Propagation dynamics when all 28 mJ of the energy are packed in a Gaussian beam that 

propagates alone. High on-axis intensity is maintained for only 13 meters. (e-h), Intensity cross sections as a 

function of the propagation distance corresponding to (a-d) respectively; in each case, the propagation varying 

FWHM of the central beam is indicated by a pair of yellow lines. (f) The intensity of the dress beam propagating 

alone is considerably lower during propagation. In (g) the filament maintains an intensity FWHM of ~100 microns 

over a distance of 45 meters. 
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2.3. Supplementary details of dressed optical filaments 

 

In the following sections, various supporting details concerning the experimental observation of 

dressed filaments are explored. 

2.3.1. Filament elongation by increasing the dress energy 

 

The effectiveness of a dress beam depends intricately on several factors such as its shape, spatial 

chirp, pulse width and power. In this section, we show that by keeping all other dress parameters 

constant, one can monotonically increase the length of a dressed filament by simply increasing 

the dress’s peak power.  

 

Figure 33| Dressed filament extension as a result of dress energy. (a) The on-axis plasma probe signal as a function 

of propagation distance using the same experimental setup presented in Fig. 30 but with several different dress 

energies. (b) The filament length is found to monotonically increase with increasing dress energy.   

  

Figure 33 depicts experimental results illustrating this aspect. These results correspond to the 

dressed filament experiment that was presented in Fig. 30 but with different dress energies. Fig. 

33a overlays the observed plasma probe signal for both the Gaussian beam alone (𝐸𝑖𝑛 = .87 𝑚𝐽) 

and multiple dressed filament arrangements with various energies 
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(𝐸𝐷𝐹 = 𝐸𝑖𝑛 + {1.5, 2.14, 2.24, 3.0, 3.5, 3.6} 𝑚𝐽). It is clear that as the energy within the dress 

beam increases, the propagation length of the dressed filament also increases. Fig. 33b 

summarizes these results by displaying the filament length as a function of the input dress 

energy; the elongation is found to increase with larger dress energies.  

2.3.2. Variational Analysis of dissipative systems 

 

In order to gain insight as to how in general a dissipative process can be optimized when a finite 

amount of energy is provided, one can resort to variational principles. This becomes more 

evident by assuming a constant energy consumption rate. In this regime, this complex refueling 

process can be effectively described via the following “phenomenological” equation:    

 

 
𝑑

𝑑𝑧
〈𝑈〉 + 𝛾̅〈𝑈〉 = 𝑓(𝑧) (47) 

 

where 〈𝑈〉 is the time averaged energy stored in the optical filament: 〈𝑈〉 = 〈∬ 𝑑𝑥𝑑𝑦|𝜓|2
+∞

−∞
〉. 

Here the function 𝑓(𝑧) represents the rate of energy supplied by the dress beam and 𝛾̅  is an 

effective decay rate because of multi-photon absorption.  

Of interest is to find an optimum function 𝑓(𝑧) which maximizes the filamentation distance or 

the functional 𝐽 = ∫ 〈𝑈〉𝑑𝑧
𝐿

0
 subject to the constraint 𝐾 = ∫ 𝑓(𝑧)〈𝑈〉𝑑𝑧

𝐿

0
 where 𝐾 is a constant. 

This can be achieved under the condition that any variation in the function 𝑓, extremizes the 

functional 𝐽 − 𝜆𝐾, i.e.: 

 𝛿[𝐽 − 𝜆𝐾] = 0 (48) 
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where 𝜆 is a Lagrange multiplier to be determined. This latter relation can be written in its 

integral form: 

 𝛿 ∫ [〈𝑈〉 − 𝜆𝑓(𝑧)〈𝑈〉]𝑑𝑧
𝐿

0

= 0 (49) 

 

This can be written in the form of 𝛿 ∫ ℒ𝑑𝑧
𝐿

0
= 0 where ℒ = (1 − 𝜆𝑓)〈𝑈〉 is an effective 

lagrangian for this problem. In order to solve this variational equation, first of all it should be 

noted that the phenomenological equation admits the following general solution:   

 

 〈𝑈〉 = 𝑒−𝛾̅𝑧 [〈𝑈〉0 + ∫ 𝑒𝛾̅𝑧′
𝑓(𝑧′)𝑑𝑧′

𝑧

0

] (50) 

 

where 〈𝑈〉0 represents 〈𝑈〉 at 𝑧 = 0. Therefore we have: 

 

 ℒ = (1 − 𝜆𝑓(𝑧))𝑒−𝛾̅𝑧 [〈𝑈〉0 + ∫ 𝑒𝛾̅𝑧′
𝑓(𝑧′)𝑑𝑧′

𝑧

0

] (51) 

 

Now, by defining the following variable: 

 

 𝑞 = ∫ 𝑒𝛾̅𝑧′
𝑓(𝑧′)𝑑𝑧′

𝑧

0

 (52) 
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one can easily show that: 

 

 ℒ(𝑞, 𝑞𝑧, 𝑧) = (1 − 𝜆𝑒−𝛾̅𝑧𝑞𝑧)𝑒
−𝛾̅𝑧[〈𝑈〉0 + 𝑞] (53) 

 

where 𝑞𝑧 =
𝑑

𝑑𝑧
𝑞. By using the Euler-Lagrange equations: 

 

 
𝜕

𝜕𝑧
(

𝜕ℒ

𝜕𝑞𝑧 
) =

𝜕ℒ

𝜕𝑞
 (54) 

 

One can then obtain the optimum resupply rate 𝑓(𝑧): 

 

 𝑓(𝑧) =
1

2𝜆
 (55) 

 

which happens to be a constant function. The constraint 𝐾 = ∫ 𝑓(𝑧)〈𝑈〉𝑑𝑧
𝐿

0
 can be used again to 

determine the constant 𝜆.  
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2.3.3. Temporal dynamics of dressed filaments 

 

In general, the refueling dynamics of a dressed filament is a complex spatio-temporal process. To 

account for the time evolution of this particular beam configuration, we provide temporal data 

suggesting that refocusing cycles occur provided that the power levels exceed the critical 

threshold for each cross section in time.  

As an example, we here study the temporal profiles of a dressed filament with parameters 

identical to those used in Fig. 32 (Fig. 34).  

 

Figure 34| Temporal pulse profiles along 𝑟 = 0 for three different propagation distances (2, 10, and 30 meters). The 

parameters in the simulations are identical to those in Fig. 32 (a-c) Pulse shapes for the Gaussian filament alone, (d-

f) the annular dress alone, and the (g-i) dressed filament.  
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Fig. 34 displays cross sections of the pulse shapes (along 𝑟 = 0) at three different propagation 

distances for the central Gaussian filament, the dress beam, and the dressed filament. Figs. 34(a-

c), associated with the Gaussian filament alone, indicate that the pulse is initially normally 

distributed in time, (a); however, after the self-focusing collapse, the pulse splits (because of 

normal dispersion) as illustrated at 10 m of propagation, (b). This split pulse is then below the 

critical power for any further self-focusing and thus begins to broaden, (c). Figs. 34(d-f) show 

the pulse evolution of the dress beam by itself. Because this wavefront remains quasi-linear 

throughout most of its propagation, it mostly retains its original Gaussian shape. Furthermore, 

the intensity of the cross sections begin to rise as the dress beam approaches the axis. Finally, 

Figs. 34(g-f) display the pulse shapes of the combined dressed filament. Although the pulse 

begins with approximately the same intensity and shape as in the unaided case, (g), the extra 

energy provided by the dress beam causes the filament to undergo multiple refocusing cycles. 

This in turn splits the pulse multiple times as is apparent after 10 meters of propagation, (h). By 

30 meters of propagation, the nonlinear dressed filament is still undergoing refocusing cycles and 

the pulse shape becomes more involved (i). 
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2.3.4. Power flow of refueled optical filaments 

 

During propagation, the transfer of power between a filament and an optical dress beam can 

reveal some of the interaction dynamics between the two entities. This information can be 

extracted once the axially symmetric electric field envelope, 𝜓, is known at a specific position 

along the propagation direction, 𝑧0. After integrating over the temporal coordinate, the time-

averaged power flow in the transverse radial direction, 𝑆𝑟, is then proportional to, 𝑆𝑟(𝑟, 𝑧 =

𝑧0) ∝ 𝑖 (𝜓
𝜕𝜓∗

𝜕𝑟
− 𝜓∗ 𝜕𝜓

𝜕𝑟
). 

To illustrate this process, let us consider the arrangement in Fig. 32. We are interested in how 𝑆𝑟 

behaves for three of the cases presented, i.e. a central Gaussian beam alone, a dress beam alone, 

and a dressed filament arrangement. For each of these three scenarios, Fig. 35 displays 𝑆𝑟 as a 

function of radius at two locations along the propagation axis. 

Figs. 35(a,b) provide the radial Poynting vector before and after the collapse point for the central 

beam alone. In this case, we find that power flows inward before the collapse (as evident by the 

negative values) and then outward afterwards (positive values).  Figs. 35(c,d), on the other hand, 

show that the power from the dress beam first gradually approaches the central axis and then 

monotonically emanates away from it. Most interestingly, however, is the dressed filament case 

seen in Figs. 35(e,f). Apart from some oscillatory-like behavior, power flows primarily from the 

surrounding photon bath into the filament core during portions of the refocusing cycles which are 

dominated by self-focusing collapse. However, when plasma has caused the filament to defocus, 

power moves from the center of the beam toward the energy reservoir.  
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Figure 35| Numerically computed transverse time-averaged radial Poynting vectors at different propagation lengths 

corresponding to Fig. 32. In each plot, the vertical red line represents the extent of the ≈ 𝟏𝟎𝟎 𝝁𝒎 filament. Power 

flow of the central beam by itself (a) before and (b) after collapse.  Note that during self-focusing, power flows 

toward the center of the beam (negative values) while the opposite occurs after the collapse point (positive values). 

Computation of the power flow for the dress beam (c) before and (d) after the extended focus reveals that the dress 

beam’s power monotonically flows inward and then monotonically outward respectively. (e,f) The power flow 

dynamics of the dressed filament are now more complex. Power primarily flows from the surrounding bath to the 

filament core during portions of the refocusing cycles dominated by self-focusing collapse, (e). On the other hand, 

when plasma defocusing is significant, power moves from the filament core to the surrounding energy reservoir, (f).  
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2.3.5. Experimental methods 

 

The Gaussian and dress beam in the experimental setup were not phase-stabilized. The relative 

phase between the two beams fluctuated from one laser shot to another, due to air turbulence and 

other environmental factors in the laboratory. At each longitudinal location along the 

propagation path, the measurement of the plasma density was averaged over 100 laser shots, 

which effectively averaged out the fluctuations of the generated plasma due to the randomly 

varying phase between the two beams. By producing single- and multiple-shot burns at different 

points along the propagation path, we found that the resulting plasma generation was either 

enhanced or inhibited depending on whether the Gaussian filament and the dominant intensity 

peak of the dress wave were either in or out of phase. Furthermore, for each specific laser shot, 

the relative phase between the two beams undulated along the propagation direction, due to the 

difference in their phase velocities. The spatial period of this undulation is approximately given 

by Λ ≈ 8𝜋2/𝜆0𝛿
2. In Fig. 36, we show examples of multi-shot burn patterns produced by the 

dressed laser beam when the Gaussian and dress pulses were out of temporal synchronization 

(left) and when the pulses were synchronized (right). When the two beams were not 

synchronized, they acted independently and produced two distinct partially overlapping burn 

spots. The displacement between the two spots is due to the less than ideal alignment between 

the beams. On the other hand, when the two beams were synchronized and locally interfered, the 

contribution of the laser shots with the two beams being locally in-phase produced an enhanced 

burn spot which appeared at the location of the main intensity peak of the dress beam. The shots 

with the two beams being out of phase produced a faint halo pattern that was scattered around 

the central dominant burn feature. 
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Figure 36| Multi-shot burn patterns produced by the Gaussian and dress beam on aluminum foil, when the two 

beams were out of temporal synchronization and acted independently (left) and when they were synchronized 

(right). 
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2.3.6 Plasma density distribution associated with a long-ranged dressed optical filament 

 

In this section, we present additional data concerning Fig. 32. Fig. 37 displays the maximum 

plasma density vs. propagation distance for the four cases mentioned in that figure. 

 

Figure 37| Maximum plasma density vs. propagation distance for the four cases presented in Fig. 32. (a) The central 

collimated beam containing 2 mJ. (b) The auxiliary dress beam containing 26 mJ of energy; note that in this case, 

the plasma density peaks ≈ 𝟑 × 𝟏𝟎𝟏𝟔 𝒎−𝟑 – this implies that no filament is formed. (c) The plasma density 

corresponding to a long-lived dressed filament. (d) The resulting maximum plasma density if all 28 mJ of available 

energy are packed into the primary Gaussian beam. 

Figure 37(a) shows the main filament beam alone produces a single plasma density spike 

(≈ 1022𝑚−3) at 2𝑚. On the other hand, Supplementary Fig. 37(b) shows a longer plasma 

channel resulting from the 26 𝑚𝐽 dress beam which is orders of magnitude below that typically 

seen during a filamentation process. In this case, plasma values peak around 3 × 1016 𝑚−3 

which conveys that the dress beam does not itself form a filament. In a similar manner, Fig. 37(c) 

displays the plasma signature of a 45 meter long dressed filament. If instead, all the available 
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energy in this example is packed into a central Gaussian filament beam, the resulting plasma 

density channel is much shorter (Fig. 37(d)). 
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2.4. Different dress arrangements 

 

In this section, we theoretically expand on this idea of dressed filaments in air. Along these lines, 

we simulate several types of auxiliary beams in order to identify regimes where the filament 

extension can be maximized for a given amount of available energy. These effects are examined 

by varying a number of pertinent parameters including the dress shape, width, and its inward 

radial chirp. 

2.4.1 Overview of quasi-linear dress dynamics 

 

A dress beam is specifically engineered so that during propagation, it gradually approaches the  

𝑧̂-axis while concurrently maintaining a relatively low intensity profile; as so, the wavefront 

replenishes the optical filament as needed and at the same time evolves in a quasi-linear fashion. 

For simplicity, if we assume continuous wave conditions, the slowly varying envelope of the 

associated dress-field component, 𝜓𝐷, satisfies the paraxial wave equation: 

 

 𝑖2𝑘0𝜕𝑧𝜓𝐷 + ∇⊥
2𝜓𝐷 = 0. (56) 

 

Where here 𝑘0 = 2𝜋𝜆0
−1. The envelope of this auxiliary beam can be described in terms of its 

initial profile at any arbitrary propagation distance through a Fresnel diffraction integral:  

 

 

𝜓𝐷(𝑥, 𝑦, 𝑧) =    
1

𝑖𝜆0𝑧
∬ 𝜓𝐷(𝑥′, 𝑦′, 𝑧 = 0)

+∞

−∞

 

×  exp (
𝑖𝑘0

2𝑧
[(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2])𝑑𝑥′𝑑𝑦′. 

(57) 
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By narrowing our attention to wavefronts only exhibiting azimuthal symmetry, this expression 

can now be written in cylindrical coordinates as follows: 

 

 𝜓𝐷(𝑟, 𝑧) =  
2𝜋

𝑖𝜆0𝑧
exp (

𝑖𝑘0

2𝑧
𝑟2)∫ 𝜓𝐷(𝑟′, 𝑧 = 0) 𝐽0 (

𝑘0𝑟

𝑧
𝑟′) exp (

𝑖𝑘0

2𝑧
𝑟′2) 𝑟′𝑑𝑟′.

∞

0

 (58) 

 

To illustrate this effect, we choose a dress wave that has the form of a radially chirped Gaussian 

ring (Fig 38a): 

 

 𝜓𝐷(𝑟′, 𝑧 = 0) =  √2𝜂0𝐼0 exp (−
(𝑟′ − 𝑟0)

2

𝑤𝐷
2 )exp(−𝑖𝛿𝑟′)     (59) 

   

Here, √2𝜂0𝐼0 is the peak electric field strength, 𝛿 represents the inward linear spatial chirp, 𝑟0 is 

the ring radius of this beam, 𝑤𝐷 is the field’s half-width, and 𝜂0 ≈ 120𝜋 Ω. The negative spatial 

chirp term, 𝛿, is essential in refuelling the optical filament since it dictates the rate at which the 

auxiliary beam gently approaches the propagation axis. As an example, consider a Gaussian ring-

dress with 𝑟0 = 6 𝑚𝑚,  𝑤𝐷 = 1 𝑚𝑚, and 𝛿 = 21 𝑚𝑚−1. For these parameters, the dress feeds 

the on-axis filament from approximately 𝑧 = 1.2 𝑚 to 𝑧 = 2.5 𝑚 (Fig. 38b). Upon inspection, 

the full width at half maximum of this high intensity region is about 2 𝑚𝑚 (Fig. 38c) which is 

approximately 20 times larger than the diameter of a filament in air at 𝜆0 = 800 𝑛𝑚. Therefore, 

the dressed filament configuration is able to tolerate appreciable displacements of the original 

filament from the center of the annular dress.  
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Figure 38| (a) A cross section along 𝒀 = 𝟎 of a radially symmetric optical dress, 𝝍𝑫(𝒓, 𝒕 = 𝟎, 𝒛 = 𝟎), with 

𝒓𝟎 = 𝟔 𝒎𝒎,  𝒘𝑫 = 𝟏 𝒎𝒎, and 𝜹 = 𝟐𝟏 𝒎𝒎−𝟏. (b) The negative spatial chirp causes the on-axis intensity to ramp 

up at a specific distance along the propagation axis; the value of 𝜹 must be chosen such that it prudently refuels its 

co-propagating beam (central beam not displayed here). (c) Propagation dynamics of the dress beam reveals an 

interaction region which is much larger than the ~𝟏𝟎𝟎 𝝁𝒎 filament. This property makes the dress beam robust to 

off-axis displacements. All values are scaled with respect to the maximum intensity of the initial dress beam, I0. 
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2.4.2. Filaments surrounded by Gaussian rings 

 

As a first case, we examine the filamentation dynamics resulting from a filament when 

surrounded with an auxiliary Gaussian spatially chirped ring. In this arrangement, the total 

electric field envelope can be written as follows: 

 

  𝜓𝐷𝐹 = √2𝜂0𝐼𝐹 exp (−
𝑟2

𝑤𝐹
2 −

𝑡2

𝜏𝐹
2) + √2𝜂0𝐼𝐷𝑓(𝑟) exp (−

𝑡2

𝜏𝐷
2 − 𝑖𝛿𝑟) (60) 

 

 

   

Here, 𝐼, 𝑤 and 𝜏 represent the peak intensity, beam waist, and pulse duration of the filament and 

dress beams respectively. The latter of these two wavefronts is set to have a radially symmetric 

Gaussian shape,  𝑓(𝑟) = exp[−(𝑟 − 𝑟0)
2/𝑤𝐷

2]. Consider, for now, two unaided filament beams 

having different peak intensities but identical parameters otherwise: 𝐼𝐹1 = 1 × 1016 𝑊/𝑚2 , 

𝐼𝐹2 = 4 × 1016 𝑊/𝑚2, 𝑤𝐹 = 1 𝑚𝑚, and 𝜏𝐹 = 50 𝑓𝑠. These wavefronts contain 𝐸𝐹 = 1 𝑚𝐽 and 

𝐸𝐹 = 4 𝑚𝐽 of energy respectively and produce a 𝑧𝑓1 = 1 𝑚 and 𝑧𝑓2 = 2.5 𝑚 long filament after 

its initial collapse (Fig. 39 a,b). Note that the 4 mJ unaided filament in (b) prematurely collapses 

within the first meter and squanders its available energy.  If, however, the 1 mJ beam is wrapped 

with a 𝐸𝐷 = 3 𝑚𝐽 Gaussian dress given by 𝑓(𝑟) = exp[−(𝑟 − 𝑟0)
2/𝑤𝐷

2] with 𝐼𝐷 = 2.5%𝐼𝐹 

𝑤𝐷 = 3 𝑚𝑚, 𝜏𝐷 = 50 𝑓𝑠, 𝑟0 = 8 𝑚𝑚, and 𝛿 = 10 𝑚𝑚−1, a 5m filament occurs (Fig. 39c). For 

these parameters, the peak/critical power ratios contained in the two terms of Eq. (60) are 

𝑃𝐹/𝑃𝑐𝑟𝑖𝑡 = 6.5 and 𝑃𝐷/𝑃𝑐𝑟𝑖𝑡 = 20. 



90 

 

 

Figure 39| An accompanying optical dress significantly protracts longevity of a filament. (a,b) Two Gaussian beams 

(see insets) with 𝑬𝑭𝟏 = 𝟏 𝒎𝑱, 𝑬𝑭𝟐 = 𝟒 𝒎𝑱  𝒘𝑭 = 𝟏 𝒎𝒎, 𝝉𝑭 = 𝟓𝟎 𝒇𝒔,  𝑰𝑭𝟏 = 𝟏 × 𝟏𝟎𝟏𝟔𝑾/𝒎𝟐,  𝑰𝑭𝟐 = 𝟒 ×
𝟏𝟎𝟏𝟔𝑾/𝒎𝟐 form a 𝟏 𝒎 and 2.5m long filament respectively. (c) If the beam in (a) is wrapped with a Gaussian 

shaped optical dress (see inset) with 𝑬𝑫 = 𝟑 𝒎𝑱, 𝑰𝑫 = 𝟐. 𝟓% ⋅ 𝑰𝑭 = 𝟐. 𝟓𝟑 × 𝟏𝟎𝟏𝟒 𝑾/𝒎𝟐, 𝒓𝑫 = 𝟖 𝒎𝒎, 𝒘𝑫 =
𝟑 𝒎𝒎, 𝜹 = 𝟏𝟎 𝒎𝒎−𝟏, the filament extends to 5m. 

 

As illustrated in Fig. 39, it is apparent that an accompanying dress beam increases the longevity 

of an optical filament [85]; however, it is natural to ask: does it do so in the most efficient way? 

In other words, are there comparable dress configurations which perform better given the same 
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amount of input power? There are several parameters that can be varied in this respect. Here, we 

will explore the impact of dress width, inward radial chirp, and dress shape.  

2.4.3. Different spatial dress shapes 

 

In this section, we simulate two different dress shapes, 𝑓(𝑟), while keeping all other parameters 

identical to those used in the previous Gaussian dressed filament (Fig. 39). The extensions are 

then juxtaposed next to the Gaussian dressed filament (Fig. 40a). As an alternative dress, we use 

a step-like ring beam (Fig. 40b), which is described by a revolved rectangular function, 𝑓(𝑟) =

𝑟𝑒𝑐𝑡([𝑟 − 𝑟0]/𝑤𝐷). In addition, we also investigate the same dynamics when this same auxiliary 

beam drops as 𝑟−1/2; i.e. 𝑓(𝑟) = √𝑟0/𝑟 ⋅ 𝑟𝑒𝑐𝑡([𝑟 − 𝑟0]/𝑤𝐷) (Fig. 40c).   

One would be inclined to think that the step dress arrangement would behave poorly because as 

the energy flows inward toward the axis, the steep edges suddenly combine causing a sharp 

increase in intensity. This could lead to wasted energy and inefficient coupling between the two 

wavefronts. However, as seen in Fig. 40b, this is no so the case. Even in this situation, we 

observe considerable protraction of the filament that seems to be impervious to the radial shape 

of the secondary beam. To some extent, these results indicate that the refueling process happens 

to be robust and is relatively insensitive to the way power is distributed around the filament 

itself.   

Similar results are also obtained for a wavefront whose intensity falls as 𝑟−1 (𝐼𝐷𝐹 ∝ |𝜓𝐷𝐹|
2) as 

depicted in Fig. 40c. In this scenario, the power flow towards the axis of the filament happens to 

be more uniform during propagation since the amount of power contained in any radially 

symmetric auxiliary wavefront is always proportional to the radius. Yet, as the three cases in Fig. 

40 display, the shape of the dress only affects the intensity variations that occur during the 
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refocusing cycles. In fact, when all other parameters are kept the same, the specific spatial shape 

of the dress does not significantly affect filament extension.  

 

Figure 40| Dressed filaments containing the same energy, 𝑬𝑫𝑭 = 𝟒 𝒎𝑱, dress width, 𝒘𝑫 = 𝟑 𝒎𝒎, dress radius, 

𝒓𝟎 = 𝟖 𝒎𝒎, and inward radial phase, 𝜹 = 𝟏𝟎 𝒎𝒎−𝟏, but with different dress shapes, 𝒇(𝒓). Although the different 

initial arrangements (see insets) affect the occurrence of the intensity spikes, no significant filament prolongation is 

observed. (a) A Gaussian dress; (b) A step dress; (c) A step dress with an 𝒓−𝟏/𝟐  dependence.  
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2.4.4. Different widths and radial chirps 

 

The focusing term, exp[−𝑖𝛿𝑟], which appears in equation (60), describes the spatial chirp needed 

to refuel the filament. It has to be judiciously chosen in such a way so that the auxiliary beam 

accompanies the filament in both space and time within a certain propagation range. The 

required angular tilt can be easily estimated using a ray approach (see Fig. 41).  

 

 

 

Figure 41| Ray diagram of collimated light entering an axicon 

 

As seen in Fig. 41, after passing through an axicon, the depth of focus is given by 𝑧 = 𝑅/𝛽 

where 𝑅 is the radius of the axicon and 𝛽 ≈ 𝛿/𝑘0 represents the focusing angle which is related 

to the shallow angle of the axicon, 𝛼, via 𝛽 = 𝛼(𝑛 − 1). Our simulations assume auxiliary 

beams with a large diameter, 𝑟0 = 8 𝑚𝑚 and 𝑤𝐷 = 3 𝑚𝑚, which needs to approach the axis 

after roughly 𝑧 = 3 𝑚 of propagation. This requires an inward radial chirp of 𝛿 ≈ 10 𝑚𝑚−1. 

The geometry of this arrangement also leads to a temporal walk-off between the two wavefronts, 

Δ𝑡 ≈ 𝛼𝛽/2𝑐. Assuming a very shallow glass (𝑛 = 1.45) axicon bending angle, 𝛽 ≈. 153∘, a 

small walk-off of Δ𝑡 ≈ 26 𝑓𝑠 is expected. Note that the efficacy of the resulting filament further 
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improves in long-ranged scenarios. In principle, these beams can propagate over one hundred 

meters when appropriate collimating optical systems are used. 

By assuming an inward chirp of 𝛿 = 10 𝑚𝑚−1, we now investigate how the width of the 

secondary beam could affect filament prolongation (Fig. 42a). Note that in order to compare 

equal-energy dress beams, an increase/decrease in dress width will always be accompanied by a 

necessary decrease/increase in the peak intensity. Additionally, for each case we explore in this 

section, we use the Gaussian-ring spatial profile, and we assume 𝜏𝐷 = 50 𝑓𝑠, 𝑟0 = 8 𝑚𝑚, and 

𝑤𝐷 = 3 𝑚𝑚. 

Fig. 42a displays the on-axis intensity of three dressed filaments differing only in width. 

Although the total filament length increases by about a meter as the size of the dress is enlarged 

from 𝑤𝐷 = 3 𝑚 to 𝑤𝐷 = 5 𝑚𝑚, the amount of extension is not that noticable. Fig. 42b illustrates 

a similar finding. However, when both values are appropriately adjusted together, significant 

extension occurs (Fig. 42c and 42d). Fig. 42c illustrates that a broader dress will perform better if 

the inward chirp is shallow enough to allow for extended on-axis interaction but at the same time 

sharp enough to focus the dress on-axis when needed. Fig. 42d, on the other hand, shows that a 

broader dress accompanied by an ever decreasing radial chirp will also continue to extend the 

filamentation length as long as the overlap between the two wavefronts is maintained. With 

𝑟0 = 8 𝑚𝑚, a dressed filament with 𝐸𝐷 = 3 𝑚𝐽 of energy results in a fifteen-fold extension; this 

greatly exceeds the five-fold prolongation achieved with the standard case.   
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Figure 42| Several dressed filaments realizations in which the dress width, 𝒘𝑫, and inward radial chirp, 𝜹, are 

varied. For each case, the energy (𝑬𝑫𝑭  =  𝟒 𝒎𝑱), dress radius (𝒓𝟎 = 𝟖 𝒎𝒎), and dress shape (Gaussian-ring) are 

held constant.  (a). Comparison of three different dress widths each chirped with 𝜹 = 𝟏𝟎 𝒎𝒎−𝟏. (b) Similar 

comparison but with varied inward radial chirps; each dress has 𝒘𝑫 = 𝟑 𝒎𝒎. (c) Increasing dress widths in 

conjunction with higher spatial chirp results in considerable filament extension. (d). Increasing dress width while 

decreasing inward focusing results in the longest possible filaments. In all cases, the filament and the auxiliary beam 

contain 𝑬𝑭 = 𝟏 𝒎𝑱 and 𝑬𝑫 = 𝟑 𝒎𝑱 of energy respectively. Quantities measured in 𝒎𝒎 represent dress widths 

while those in 𝒎𝒎−𝟏 spatial chirps. 
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2.4.5. Different dress conclusions 

 

While the quasi-linear propagation dynamics of the auxiliary dress can be readily predicted 

through a Fresnel diffraction integral, this is not the case when it refuels a filament.  

In our example, a 1 𝑚 long unaided filament was able to propagate 5 𝑚 when a suitable yet un-

optimized Gaussian-ring beam was appended. Even in the case when all 4 𝑚𝐽 of energy was 

packed into the main beam, the wavefront prematurely collapsed and only propagated for 2.5 𝑚.  

In general, we found that changing the spatial distribution of the auxiliary beam had little effect 

on the filament elongation. A possible explanation for this is as follows: the filamentation 

process is known to continue as long as the power contained within the primary beam is above 

the critical power required for self-focusing to dominate. Ideally, the spatial dress shape should 

be moulded in such a way that the power flow toward the axis is constant throughout propagation 

– keeping the system above the critical threshold. As such the process is becomes relatively 

insensitive to the shape itself and as a result no significant improvement is observed. On the 

other hand, significant improvement can be observed whenever the dress width is prudently 

adjusted with the spatial chirp as clearly shown in Figs. 5c and 5d.  

In summary, we found that both the beam width and inward radial chirp, when judiciously 

adjusted in unison, play a crucial role in maximizing the range of a dressed filament. On the 

other hand, the spatial shape of the dress beam only affects the characteristic intensity 

fluctuations seen during refocusing cycles. Our results indicate that this process is robust to the 

distribution of power within the dress beam. 
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3. Conclusions 
 

Optical wavefronts that have the unusual property of resisting diffraction and dispersion have 

and most likely will remain a topic of interest in the optics field. Special wavefronts like the ones 

discussed in this manuscript can be found both in linear and nonlinear situations of which I 

detailed two examples relevant to my research at CREOL: the localized spatio-temporal waves 

which resemble spherical harmonic symmetries and dressed optical filaments which can be 

arranged to propagate plasma channels orders of magnitude longer than expected.   

During the span of time between my proposal and my defense, this document will expand into 

my dissertation. There are several subjects which I have looked at in detail which were not 

presented here; for instance, my work on the Hirota soliton, rogue waves, soliton formation in 

suspended colloids, complex plane waves, and the propagation dynamics involved in large 

nonlinear multimode fibers. It will be my goal to include these subjects over the next year.  
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