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ABSTRACT  

Low noise mode-locked lasers and stabilized optical frequency combs are receiving considerable attention due to their 
broad spectrum of applications which ranges from signal processing to communications to metrology.  Progress has been 
made in the realization of ultralow noise pulse trains by using ultralow expansion (ULE) quartz etalons for filtering the 
axial mode groups.  An important step towards miniaturization of these systems is the integration of a high finesse on-
chip optical filter that would serve to replace the ULE etalon. In this paper, we report our experimental results towards 
the realization of such a high finesse cavity based on a silicon microring resonator. 
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1. INTRODUCTION  
Low noise mode-locked lasers and stabilized optical frequency combs are receiving considerable attention owing to their 
broad spectrum of applications which ranges from metrology to signal processing to communications.  Progress has been 
made towards the realization of ultralow noise pulse trains from electrically efficient compact semiconductor gain media 
that are used as sampling pulses for analog to digital converters. However, these realizations require ultralow expansion 
(ULE) quartz etalons as an optical element in an extended fiber cavity, making miniaturization difficult.  Further 
advances are needed to reduce the size of these sources so that a chip-scale footprint can be achieved to enable new 
applications.  One key step towards miniaturization is the integration of an optical filter that would serve to replace the 
ULE etalon in the aforementioned extended mode-locked fiber cavity [1].  In this paper, we fabricate a high finesse ring 
resonator that acts as an optical filter to select a single mode-locked axial group for the generation of low noise optical 
pulse trains. 

 
Figure 1(a) shows the schematic of a frequency stabilized harmonically mode locked laser in which an ULE etalon 
provides the optical filtering to select a single axial mode-locked group of optical frequencies.   Figure 1(b) provides a 
schematic of the proposed miniaturized mode-locked semiconductor laser. The system consists of two coupled ring 
resonators where the semiconductor amplifier is placed in the longer cavity and provides 35 dB of gain. Meanwhile, the 
smaller cavity dictates the repetition rate of the mode locked laser system.  In this configuration, the smaller ring 
resonator serves as the replacement of the ULE etalon.  A necessary requirement of the ring resonators is that the large 
ring should be n times longer than the short ring, where n is an integer.  In this arrangement, an intensity modulator 
incorporated in the larger ring that is modulated at the free spectral range of the shorter ring will produce a stabilized 
mode-locked optical frequency comb. 
As a first step towards the miniaturization of such semiconductor-based mode locked lasers the etalon is replaced with a 
chip-scale micro-resonator. We here choose a Silicon on insulator (SOI) platform because it offers unique capabilities in 
building versatile photonic components, including filters, splitters, modulators, and photodetectors. We have developed a 
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