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Abstract: We report five ultra-low viscosity nematic liquid crystal mixtures 
with birefringence around 0.1, dielectric anisotropy in the range of 3 to 6, 
and clearing temperature about 80°C. A big advantage of these low 
viscosity mixtures is low activation energy, which significantly suppresses 
the rising rate of viscosity at low temperatures. Using our mixture M3 as an 
example, the response time of a 3-μm cell at −20°C is only 30 ms. 
Widespread application of these materials for display devices demanding a 
fast response time, especially at low temperatures, is foreseeable. 
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1. Introduction 

Fast response time is one of the most critical requirements for most liquid crystal display 
(LCD) devices [1] because it helps reduce motion picture image blur and crosstalk, enhance 
optical efficiency, and suppress color mixing for field-sequential displays [2, 3]. Mobile 
displays, wearable displays, and car navigation systems are often used in outdoor and they 
have to endure harsh weather conditions, like low temperatures (−20°C). In such a cold 
ambient temperature, LC response time is usually as sluggish as several hundreds of 
milliseconds. As a result, the displayed image quality is severely degraded [4]. 

To shorten response time, a straightforward approach is to decrease the LC cell gap (d). 
However, for an LCD a certain dΔn value is required in order to obtain high transmittance; 
here Δn is the LC birefringence. For example, the commonly used fringe field switching 
(FFS) LCD requires dΔn≈320-340 nm in order to achieve high transmittance [5, 6]. Although 
thin cell gap helps greatly to achieve fast response time [7], this approach imposes two 
problems: it reduces manufacturing yield and it demands a higher Δn LC, which has stronger 
wavelength dispersion [8]. To obtain white color, the transmittance of red, green, and blue 
sub-pixels should be balanced. From experimental studies, the preferred Δn for FFS is around 
0.10 ± 0.01. Under such circumstance, the cell gap is about 3 μm, which is still manageable 
for high-yield manufacturing. With abovementioned constraints, the simplest way to reduce 
response time is to employ a low viscosity LC. 

In this paper, we formulated five ultra-low viscosity LC mixtures with Δn≈0.1, dielectric 
anisotropy Δε≈3 to 6, and clearing temperature about 80°C. A big advantage of these low 
viscosity LC mixtures is their small activation energy, which significantly suppresses the 
rising rate of viscosity at low temperatures. Using our mixture M3 as an example, the 
response time of a 3-μm FFS cell at −20°C is about 30ms. These materials will find 
widespread applications for display devices that demand a fast response time. 

2. Mixture formulation 

Our low viscosity LC mixtures contain three major ingredients: 1) high Δn and large Δε 
compounds, 2) ultra-low viscosity diluters, and 3) wide nematic range compounds. Table 1 
lists the chemical structures and compositions of our five mixtures. Compounds 1 and 2 have 
high Δn and large Δε (>25) [9, 10], but their viscosity is also high. To lower the viscosity, we 
added more than 40% non-polar diluters (#3) [11]. To widen nematic range and achieve high 
clearing point, we added some terphenyl compounds (#4). To obtain different Δε values, we 
formulated five LC mixtures by varying the compound concentrations as Table 1 shows. 
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Table 1. Chemical structures and compositions of LC mixtures; R and R’ represent alkyl 
chains. 

No. Compound Structure 
Mixtures (wt%) 

M1 M2 M3 M4 M5 

1 12% 11% 12% 13% 24% 

2 10% 12% 13% 18% 18% 

3 
 

56% 55% 53% 48% 40% 

4 
R R'

F

22% 22% 22% 21% 18% 

3. Material characterization 

In experiment, we measured the dielectric anisotropy, birefringence, visco-elastic constant, 
and activation energy of these five mixtures. To avoid crowdedness of data presentation, here 
we only show the measured results of M3, M4, and M5 in the following Sections. Table 2 
summarizes the key results of these five mixtures. 

3.1 Dielectric anisotropy 

Dielectric anisotropy affects the operation voltage, peak transmittance [12], and response time 
(through viscosity) of the FFS LCD. To reduce the power consumption of a mobile display, it 
is desirable to keep the on-state voltage below 5V. This requirement demands a fairly large 
Δε. On the other hand, to obtain low viscosity we should keep Δε as small as possible. Thus, 
there exist contradicting requirements for Δε between low operation voltage and fast response 
time. A compromised Δε value is in the range of 3 to 6. 

Table 2. Measured properties of the five LC mixtures at T = 23°C, λ = 633nm, and f = 1 
kHz. 

 ε// ε⊥ Δε Δn K11 (pN) γ1 (mPas) γ1/K11 Tc (°C) E (meV) 

M1 5.66 2.61 3.05 0.098 11.8 41.3 3.50 78.8 190 

M2 5.91 2.68 3.23 0.102 12.2 42.2 3.46 79.5 195 

M3 6.26 2.76 3.50 0.100 11.7 45.1 3.85 77.9 205 

M4 7.43 2.83 4.60 0.097 12.1 50.4 4.17 80.1 228 

M5 9.51 3.33 6.18 0.099 11.4 53.3 4.68 75.5 260 

In experiment, we used the capacitance method to measure the dielectric constants (ε// and 
ε⊥) of our five LC mixtures at room temperature (23°C). Detailed procedures have been 
reported in Ref [13], and the measured results are listed in Table 2. From Table 2, the ε// and 
ε⊥ of M3 is 6.26 and 2.76, respectively, i.e., Δε = 3.50, which is much lower than that used in 
conventional p-FFS LCD (Δε = 8~10) [14]. With such a low Δε, the operation voltage, which 
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is inversely proportional to the square root of Δε, would undoubtedly increase [12]. 
Fortunately, the transmittance of p-FFS increases as Δε gradually decreases. As a result, we 
can still get high transmittance at a relatively low voltage (5V) using a low Δε LC material 
[15]. For M4 and M5, the Δε value is 4.60 and 6.18, respectively. Among these three mixtures 
studied, M3 contains the largest amount of diluters, thus its viscosity is the lowest but its 
dielectric anisotropy is also the smallest. 

3.2 Temperature dependent birefringence 

Birefringence of an LC is mainly governed by the conjugation length and order parameter 
[16]. To measure Δn, we filled the LC mixture into a homogeneous cell made of indium tin 
oxide (ITO) glass substrates. The inner surface of the ITO-glass was over-coated with a thin 
polyimide alignment layer. The pretilt angle was about 2°. The cell was sandwiched between 
two crossed linear polarizers. By measuring the voltage dependent transmittance through 
LabView system, we can obtain Δn easily. Detailed method has been described in [17]. From 
Table 2, the measured birefringence at room temperature is Δn = 0.100 for M3, 0.097 for M4, 
and 0.099 for M5. These values are very close to our ideal one, which is 0.1. 

Next, we measured the temperature dependent birefringence. We placed the LC cell on a 
Linkam heating stage controlled by the temperature program (Linkam TMS94). Results are 
shown in Fig. 1, where dots stand for measured data and solid lines for the fittings using 
Haller’s semi-empirical equation [18]: 

 0 0( ) (1 / ) ,cn T n S n T T βΔ = Δ = Δ −  (1) 

where Δn0 is the extrapolated birefringence at T = 0, S is the order parameter, T is the 
temperature, Tc is the clearing point, and β is a material parameter. Through fittings, we found 
Δn0 = 0.138 and β = 0.174 for M3, Δn0 = 0.133 and β = 0.177 for M4, and Δn0 = 0.135 and β 
= 0.165 for M5, respectively. Using these fitting parameters, we can calculate the order 
parameter (S), which will be used later. 
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Fig. 1. Temperature dependent birefringence of M3, M4, and M5 at λ = 633nm. Dots are 
experimental data and solid lines are fitting curves with Eq. (1). 

3.3 Elastic constant and viscosity 

In an LCD, the response time is proportional to the visco-elastic coefficient (γ1/Kii), where Kii 
is the corresponding elastic constant depending on the LC alignment. For examples, for 
vertical alignment, Kii = K33 is the bend elastic constant, and for in-plane switching (IPS) cell 
[19] Kii = K22 is the twist elastic constant. However for FFS, the electric field has transversal 
and longitudinal components so that both K22 and K11 are involved, although twist dominates 
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[20]. Several approaches have been proposed to measure γ1 and K11. Here, we used the time 
dependent transmittance method described in Ref [13]. 

For a homogeneous cell, the threshold voltage is related to K11 and Δε as [21]: 

 11 0/ ( ),thV Kπ ε ε= ⋅ Δ  (2) 

where K11 is the splay elastic constant and ε0 is the permittivity of vacuum. From the 
measured threshold voltage and dielectric anisotropy, we can extract K11 from Eq. (2). As 
listed in Table 2, all the five mixture we prepared have a very similar K11 value (~12pN) 
because they basically consist of same compounds except at different compositions. 

Next, we used the same setup as described in Sec. 3.2 to measure γ1/K11. Detailed method 
has been described in [13]. Since K11 has already been obtained from Eq. (2), we can extract 
γ1 from the measured γ1/K11. The measured γ1 is 45.1 mPas, 50.4 mPas, and 52.3 mPas for 
M3, M4, and M5, respectively. These γ1 values seem to correlate with Δε linearly, as will be 
examined in more detail later. 

3.4 Activation energy 

As the temperature decreases, rotational viscosity increases exponentially as [22, 23]: 

 1 ~ exp( / ),BS E k Tγ ⋅  (3) 

where E is the activation energy and kB is the Boltzmann constant. From Eq. (3), activation 
energy determines the rising rate of rotational viscosity in the low temperature region. Key 
parameters affecting E include molecular structure and conformation, and intermolecular 
interactions [13]. As Table 1 shows, the low Δε LC mixture contains more non-polar diluters. 
As a result, its activation energy is relatively small, which in turn only causes a mild increase 
as the temperature decreases. To extract E, we measured the temperature dependent visco-
elastic coefficient of these mixtures using the same method discussed above. In theory, 
temperature dependent γ1/K11 (homogenous cell) can be described as follows [22]: 

 2
11 ~ ,K S  (4) 

 1 11/ exp( / ) / .BK A E k T Sγ = ⋅  (5) 
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Fig. 2. Temperature dependent γ1/K11 of M3, M4, and M5. Dots are experimental data and solid 
lines are fittings with Eq. (5). 

Figure 2 depicts the measured data (dots) and fitted curves (solid lines). The measured 
data fit well with Eq. (5). Through fittings, we found E = 205 meV for M3, 228 meV for M4, 
and 260 meV for M5. For comparison, the reported activation energy of MLC-6686 (Δε = 10) 
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is 353.9 meV and MLC-6608 (Δε = −4.2) is 496.0 meV [15, 24]. Our low viscosity LC 
mixtures exhibit much lower activation energy. In experiment, we tested a 3.5-μm FFS cell 
with electrode width l = 3μm, electrode gap g = 4μm using M3. Peak transmittance (90.4%) 
was achieved at 7.1 Vrms under λ = 514nm. The measured response time [rise, decay] is 
[10.3ms, 10.7ms] at room temperature. As the temperature decreases to −20°C, the decay 
time increases to 42ms. If we use a thinner cell gap (e.g. d = 3μm), the expected decay time, 
which is proportional to d2, is ~30ms. This result is >10X faster than that of the MVA cell 
reported in Ref [4] at the same temperature. More details about the electro-optic properties 
using ultra-low viscosity and low dielectric anisotropy materials have been reported in Ref 
[15]. 

4. Discussion 

Table 2 summarizes the measured physical properties of the five mixtures we prepared. Their 
Δn is around 0.1 and clearing point ≈80°C, which is desirable for FFS LCD applications. As 
Δε decreases from 6.2 to 3.1, γ1 decreases from 53 mPas to 41 mPas. The correlation seems to 
be linear between these two parameters. To further investigate this empirical relation, more 
mixtures using the compounds listed in Table 1 are prepared for comparison. Figure 3 depicts 
the results, from which a linear relation between Δε and γ1 is indeed observed. The 
extrapolated γ1 is about 30 mPas for the employed non-polar diluters whose Δε≈0. For some 
LCDs, such as desktop computers and TVs, they can afford to have a higher operation 
voltage, say 7.5V. Thus, we can use a lower Δε LC mixture and achieve a faster response 
time. 
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Fig. 3. Relation between rotational viscosity and dielectric anisotropy at 23°C. 

5. Conclusion 

We have formulated five ultra-low viscosity LC mixtures with positive Δε and characterized 
their physical properties. In addition to low viscosity, their Δn is around 0.1 and Tc~80°C, 
which is ideal for FFS LCDs. Another big advantage is their small activation energy, which 
significantly suppresses the rising rate of viscosity at low temperatures. Widespread 
applications of these ultra-low viscosity LC mixtures are expected. 
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