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1. Introduction

Optical beams of finite size diverge with propagation in free 
space due to their wave nature. With diffraction of the plane 
wavefront at an aperture, the linear divergence is determined 
by the corresponding angle in the far-field zone, proportional 
to the ratio of wavelength to aperture size. As a result, the 
product of aperture size by divergence angle divided by wave-
length remains the same for a particular aperture shape, e.g. a 
cylindrical one, independent of aperture size.

Similarly one can characterize the diffraction properties of 
propagating localized aperture-free beams by the product of 
the minimal observed beam size times the divergence angle 
divided by the wavelength according to Siegman [1]. This 
dimensionless parameter should depend only on the inner 
structure of the beam amplitude profile. One such propaga-
tion-invariant parameter describing the beam divergence in 
one transverse x-direction is defined as

θ=M k x2 .x x
2 2

min
2 (1)

Here k = 2πn0/λ is the wave vector with vacuum wavelength 
λ in linear lossless medium with refractive index n0. Second-
order moments of the size and angle are calculated under the 
assumption of zero first-order moments x  and θx .

The parameter Mx
2 is widely used for beam quality char-

acterization in the laser science and industry. Its theoreti-
cal properties are discussed from different points of view in 
[2–5]. Probably the simplest way to prove the invariance of 
Mx

2 with propagation is based on explicit paraxial propaga-
tion equations for second-order moments. In this framework 
the second-order moments of beam profile complex ampli-
tude known at some propagation position can be presented 
in explicit form. Corresponding expressions are provided 
in further equations (5) and (8). With the use of these equa-
tions we were able to derive the beam quality of the self-phase 
modulated Gaussian beam analytically. The main result of this 
letter is presented in equation (15). It describes the physical 
effect of quality deterioration of the beam propagated through 
a thin layer of Kerr media with arbitrarily strong nonlinear-
ity. Problems of similar types of localized self beam distor-
tion and resulting quality deterioration occur in the analysis of 
high-power laser generation and operation [6–8].

Wavefront phase aberrations are traditionally studied in 
problems related to imaging systems and they are convention-
ally represented as polynomial expansions in terms of Zernike 
polynomials over an aperture of unit radius [9]. After intro-
duction of the beam quality parameter, Siegman analyzed the 
influence of spherical aberration on it in [10]. The effect of 
different Zernike aberrations on beam quality was studied in 
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particular in [11–14]. We discuss here the applicability limi-
tations of a polynomial aberration approach to beam quality 
characterization of self-phase modulated beams.

2. Propagation equations for second-order 
moments

The Helmholtz equation  for electric field amplitude →E r z( , ) 
in the case of a propagating coherent laser beam along the 
z-direction is reduced to the scalar paraxial wave equa-
tion  (PWE) for slow z-varying complex amplitude →U r z( , ), 
where we denoted the transverse coordinates (x, y) by →r :

 
= ⋅ ∂

∂
− ∇ =→ →

→

→
→E r z U r z

U r z

z k
U r z( , ) ( , ) e ,

( , ) i

2
( , ) 0.kz

r
i 2 (2)

If the transverse profile →U r z( , )1  is known at some prop-
agation position z = z1, then this boundary condition deter-
mines the solution of equation  (2) at any z through the 
Huygens integral in the Fresnel approximation [15]. In the 
case of a normalized Gaussian amplitude profile UG0(

→r , 0) = 
(2/π)½/w0·exp(−r2/w0

2) with size w0 at z = 0, this well-known 
propagation solution of the PWE is:
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Here zR is the so-called Rayleigh length, where the square of 
the Gaussian beam size increases by two times.

The preservation of total power P = ∫|U|2dS of an arbitrary 
localized beam with continuous profile can be easily proven 
by utilizing the PWE (2) first for ∂U*/∂z:
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2 (4)

The last identity is obtained by applying integration by parts 
for the first term with Laplacian followed by combining a 
zero-factor corresponding to the PWE (2) for U.

The propagation equations for the second-order moments 

starting from ∫= −x P x U Sd2 1 2 2  can be derived by apply-

ing the PWE and integrating by parts similarly to equation (4), 
and these equations have the following explicit form:
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In these expressions the angular variable has the operator rep-
resentation ̂θ = − ⋅ ∂ ∂k xi/ /x  in coordinate space.

Moments of angular variables have a clear interpretation 
after transferring to angular space θ θ θ=

→
( , )x y :

 ∫ ∫θ θ Ω θ
π

= = θ→ → − →⋅
→

P
C C z

k
U r z S

1
d , ( , )

2
( , )e d .x x

k r2 2 2 i

(6)

The same beam power can be calculated from the angular con-
tent distribution P = ∫|C|2dΩ, dΩ = dθxdθy. The mixed moment 

θx x  has a less obvious physical interpretation and is related 
to the wavefront curvature radius θ=R x x/x x

2 .

3. Explicit definition of Mx
2 and its properties

In order to compare the intrinsic diffraction features of dif-
ferent beam profiles, the second-order coordinate-angular 
moments should be calculated for each beam in corresponding 
coordinate frames where the first-order moments x  and θx  
are equal to zero. Otherwise substitutions → −x x x2 2 2,  
θ θ θ→ −x x x

2 2 2, θ θ θ→ −x x xx x x  should be  
applied.

From equation (5) it is easy to check the propagation invar-
iance of the following parameter:

 θ θ∂
∂

≡ = −
k z

M M k x x
1

4
( ) 0, 2 .x x x x2

2 2 2 2 2 2 (7)

This invariant can be calculated from the complex ampli-
tude of the propagating beam →U r z( , ) at any z according to 
explicit expressions for the second-order moments θx

2  and 
θx x  provided in equation  (5). If complex amplitude is pre-

sented through real functions of amplitude profile ρ →r( ) and 
phase Φ →r( ) then expressions (5) are equivalent to
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The propagation solution of a system of differential equa-
tion (5) for x z( )2  can be obtained in terms of the moments 
calculated at some particular z = z1. Then the position zmin of 
the beam waist along the x-axis related to the minimal value 
of x2  can be introduced correspondingly
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4 2 2 (9)

From these, one can see the equivalence of definitions of 
Mx

2 presented in equations (1) and (7). Quadratic fitting of the 
experimental dependence x z( )2  gives x2

min and θx
2 , thus 

defining Mx
2.

According to equation (9), a beam has its waist in the x-direc-
tion at such position z1 where θ =x 0x 1 . In particular this occurs 
when the amplitude profile at this position is a real function,  
Φ = 0, so that the moment is equal to zero according to equation (8).

In the case of a Gaussian beam, comparison of equa-
tions (3) and (9) gives quickly a unity value for Mx

2:

 θ= = =− −x w k w M, , 1.x xG
2

min
1

4 0
2

,G
2 2

0
2

,G
2 (10)
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If for an arbitrary beam we consider a corresponding 
‘underlying’ Gaussian beam with the same size x2

min then 
according to equations (9) and (10) we obtain another equiva-
lent definition of Mx

2 as the ratio of divergent angles in the 
x-direction of the studied beam and a Gaussian beam of equal 
waist sizes:

 θ θ=
=

M / .x x x G x x

2 2
,

2
at G

2
min

2
min

(11)

The value Mx
2 = 1 in equation (10) for a Gaussian beam 

profile is the minimum achievable. This fact follows from the 
non-negative identity for arbitrary real numbers a and b:
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Values of a and b satisfying the zero equality define the cor-
responding first-order partial differential equation for ampli-
tude U according to the first line of (12) and its solution has a 
factorized Gaussian dependence of U on x.

In [16] the authors found a propagation invariant parameter 
based on second moments of both x- and y-coordinates, which 
is also invariant under rotation of the coordinate system in 
the (x, y) plane transverse to the propagation z-direction with 
natural assumption of zero first-order moments:

 θ θ θ θ= + + −( )M M M k xy x y4D x y x y y x2
4 1

2
4 1

2
4 2 (13)

It does not change with arbitrary astigmatic quadratic aber-
ration and has a minimal unity value for astigmatic Gaussian 
beam profiles. If the amplitude profile is symmetric with 
respect to the x- or y-axes then the last term in brackets is equal 
to zero; otherwise cross-moments are calculated similarly to 
equation (5). For example θ θx y  has ∂U*/∂x·∂U/∂y under the 
integral sign. Astigmatic beams are usually characterized by 
separate values Mx

2 and My
2.

To date, we presented how the beam propagation invariant 
Mx

2 can be defined and explicitly calculated from an arbitrary 
transverse amplitude profile →U r z( , )1 . Some facts about Mx

2 
presented above were discussed previously in other terms by 
other people. Below we use the introduced theoretical results 
in our notations for further original analysis of beam quality 
of self-phase modulated Gaussian beams.

4. Mx
2 of a self-phase modulated Gaussian beam

Now let us discuss the deterioration of Mx
2 of a Gaussian 

beam after phase aberrations. One of those is the self-phase 
modulation occurring upon propagation in a medium with an 
intensity-dependent refractive index n = n0 + n2I. If the prop-
agation length ∆z inside such a medium placed at Gaussian 
beam waist position z = 0 is much smaller than the Rayleigh 
length from equation  (3) then, after propagation, the initial 
real Gaussian profile ρ(r) gains the phase distortion Φ(r) pro-
portional to the intensity profile I(r) = ρ2(r)
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Here Φ0 is the maximum value of the phase at the center of 
the beam; this is the single parameter describing the problem.

Due to axial symmetry, each moment in equation  (8) 
equals half of the corresponding one calculated for variable r. 
This is similar to the classical mechanics calculation of inertia 
moment Ix of a thin rotating body along the x-axis perpendicu-

lar to the z-axis of rotation ∫π μ= =
∞

I I r r r r( ) dx z
1

2 0

2 , where 

µ(r) is the areal mass density. In this way, integrations in equa-
tion (8) for the distorted radial Gaussian profile UGd(r) from 
equation (14) give analytical expressions
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(15)

As we should expect the obtained result does not depend on 
the dimensional beam size w0.

The analytical expression for Mx
2 in equation (15) of a self-

phase-modulated Gaussian beam profile from equation (14) is 
the main result of this paper. The same result occurs for a diver-
gent Gaussian beam propagating a small distance ∆z  <<  zR  
in a nonlinear medium at an arbitrary position z ≠ 0 from its 
waist, see equation (3), because initial incident profile UG(r,z) 
has a certain Gouy phase and quadratic divergence phase, 
which do not affect the final Mx

2. Thus it depends on the cen-
tral phase value Φr = 0(z) proportional to the Kerr nonlinearity 
coefficient n2 and the central intensity I(r = 0,z) = 2P/(πw2(z)) 
at z-position in the same manner of equation (15). For exam-
ple, if the thin Kerr element is placed in the Gaussian laser 
beam at position z = zR then Φ0(zR) is twice smaller than Φ0 
at the beam waist position because w2(zR) = 2w0

2 according to 
equation (3).

The obtained result could be applied for determination of 
n2 in some materials. The Mx

2 can be measured with the use 
of well-established experimental techniques, and the central 
phase Φ0 of self-phase modulation due to the optical non-
linearity will be expressed from equation  (15). After that, 
knowing the intensity at the center of the beam I(0), the cor-
responding n2 can be found according to equation (14). The 
basic technique for determining n2, the so-called ‘Z-scan’ 
[17], is also based on measurements of the changed propa-
gation properties of a Gaussian beam passed through the 
nonlinear material. We propose here though to analyze these 
changes in terms of Mx

2.
The beam quality parameter is often discussed with long 

distance optical power delivery. With a fixed size output aper-
ture it is important that the outgoing beam has a reasonably 
small angular divergence with Mx

2 not strongly exceeding 
one. Many approaches for increasing the output laser power 
have been studied including increasing the power of single 
laser sources followed by incoherent combining of separate 
laser beams in the same angular direction through a common 
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aperture [18, 19]. At the last combining stage the common 
aperture elements operate at high total combined laser power 
and due to unavoidable material absorption thermal aberra-
tions may play a significant role in degradation of the com-
bined performance. These thermal aberrations are similar to 
self-phase modulation processes in nonlinear optics described 
by equation (14) and lead to beam quality deterioration simi-
lar to the one in equation (15).

Usually, due to transverse heat dissipation, in a particu-
lar optical element and/or its varying thickness, the local-
ized aberration profile Φ(r) is different from the intensity 
profile for self-phase modulation in equation (14). In order 
to still get an analytical expression for Mx

2, the arbitrary 
localized profile Φ(r) can be decomposed into higher-order 
modes related to the intensity Gaussian profile I(r). Using 
the three lowest orthogonal radial Laguerre–Gaussian 
modes pn(r) we get from the integrals in equation (15) the 
following:
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where Φn are phase values of each radial mode contributing 
to the total phase Φ(0) at the center of the beam as pn(0) = 1.

Generalization of analytical formulae (15), (16) in cases 
of arbitrary self-phase modulated profiles will lead to cum-
bersome expressions. In the general case of arbitrary com-
plex amplitude of beam profile →U r( ), the beam quality Mx

2 
can be calculated by numerical integrations in equation (5) or 
the equivalent equation (8) for factorized real amplitude and 
phase. For profiles with azimuthal symmetry we presented 
equation (15) with 1D radial integration, which could be per-
formed analytically or numerically. If the radial mode content 
of the profile with azimuthal symmetry U(r) is known then 
Mx

2 is determined algebraically by expansion coefficients of 
radial Laguerre–Gaussian modes [20]

 ∫
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Here modes ρn(r) are presented in real form at waist position  
z = 0 in equation (3) for illustration purposes but actually coef-
ficients αn can be used for a set of modes at any z-position.

Similar expressions for Mx
2 of arbitrary profile →U r( ) with-

out azimuthal symmetry can be utilized in particular through 
known expansion coefficients of orthonormal Hermite–
Gaussian basis
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where the total beam power is P = ∑nqnn. One can derive the 
result (18) for the beam quality straightforward from equa-
tion (5) with the use of recurrent relations for xψn and dψn/dx. 
Set of involved reference modes again can be used at any z not 
just z = 0 as ψn in equation (18).

5. Polynomial aberration analysis of self-phase 
modulation

We would like to demonstrate that polynomial aberration 
approaches cannot be efficient for problems with localized 
aberrations caused by the propagating beam itself. First, the 
self-phase modulation Φ(r) = exp(–2r2/w0

2) in equation (14) 
can be considered as a limit of corresponding Taylor series 
ΦN(r) = Φ0∑m = 0..N(–2r2/w0

2)m/m! at N going to infinity. One 
can check that for profiles ρ(r)exp(iΦN(r)) similar to equa-
tion  (14) the sequence of analytical values of Mx

2 calcu-
lated similar to equation (15) is eventually divergent with an 
increase of N. Thus straightforward polynomial expansion of 
self-phase modulation is not applicable for analytic analysis 
of beam quality deterioration.

Now let us take into consideration an aperture of unit 
radius for referring the Gaussian beam profile to it. Suppose 
the Gaussian beam going through this aperture has relative 
dimensionless beam size w0 = 0.4 in order to avoid significant 
power loss by aperturing. We are considering dimensionless 
spacial values as the dependence of Mx

2 only on the ampli-
tude profile shape but not the actual size as was mentioned 
before. Let us take into account the particular value Φ0 = 1 
rad of self-phase modulation which degrades the beam qual-
ity to Mx

2 = 1.093 according to equation  (15). The corre-
sponding aberration profile Φ(r) from equation  (14) can be 
fitted by radial polynomials ΨN(r) of increasing even power 
N, which is equivalent to using Zernike radial aberrations of 
up to Nth order. Figure 1(a) demonstrates Φ(r) with some of 
these minimal-square error fits ΨN(r). Figure 1(b) shows how 
the Mx

2 calculated for the incident beam profile from equa-
tion  (14) with improving phase fits ΨN(r) converges to the 
proper value with increasing N. The corresponding integrals 
in equation (15) are calculated within the aperture range r ≤ 1 
where the phase polynomials ΨN(r) have been used to fit Φ(r).

We see that for the relatively large w0 chosen, one needs a 
fitting radial polynomial of power N equal to at least N = 16 
in order to get an accurate result for Mx

2, which otherwise can 
be exactly calculated by our simple analytical formula (15). In 
cases of smaller w0, the required N for sufficient fitting of Φ(r) 
over a unit radius aperture will be even larger. Thus, we come 
to the conclusion that analytical study of self-induced beam 
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aberrations should be performed in terms of localized mode 
profiles, see equation (16), without taking into consideration 
the size of the reference aperture usually used to study poly-
nomial aberrations in imaging systems.

6. A self-phase modulated super-Gaussian beam

Now let us study the question of whether a Gaussian beam 
is the most suitable for free space optical power delivery in 
terms of the sensitivity of Mx

2 to self-phase modulation dis-
tortion occurring at the output of its generating laser system. 
Consider now the normalized so-called super-Gaussian pro-
file UsG(r) = (2/π)3/4/u0·exp(–r4/u0

4) at beam waist position. 
Calculations (15) for self-phase modulation of this profile give
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r
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(19)

Here Θ0 is the central value of the phase distortion profile 
proportional to the intensity profile. A generalized analyti-
cal expression for arbitrary localized phase aberration similar 
to equation  (16) can be obtained by introducing orthogonal 
modes based on a power series of r4 with the common factor 
exp(−2r4/u0

4) of the intensity profile and performing calcula-
tions (15).

The resulting values of Mx
2 in equations  (15) and (19) 

for both beam profiles depend on the central phases Φ0 and 

Θ0 which are proportional to the central intensities |UG(0)|2 
and |UsG(0)|2, which on their own depend on the corre-
sponding beam sizes w0 and u0. So, in order to compare 
self-phase modulation sensitivities we have to use certain 
criteria for the size ratio of their beam sizes. If both beams 
have the same power and have the same mean square aver-
age size π= =x w u / (2 )2 1

4 0
2

0
2 3/2 1/2  then they will have cen-

tral phases caused by the same self-phase modulation process 
and are related to each other by Θ0 = |UsG(0)|2/|UG(0)|2·Φ0 = 
(2/π)1/2(w0/u0)2·Φ0 = 2/π·Φ0.

The size u0 of the super-Gaussian beam can be increased 
even more in comparison with w0 because of a faster decrease 
of its profile at large r. In the case of a specific 1%-residual 
power criterion, when both beams outside the same radius 
rc,1% have the same amount of power 0.01⋅P the beam size 
ratio is equal u0/w0 = 1.337, rc,1% = 1.517w0, which deter-
mines new phase relation Θ0 = 0.446·Φ0 different from the  
previous one.

Figure 2(a) demonstrates this super-Gaussian profile rela-
tive to a Gaussian one of the same power with additional profile 
Us-6-G(0)·exp(–r6/s0

6). We denoted it by ‘super-6-Gaussian’. 
Widths of the profiles are mutually adjusted by the same 
1%-residual power criterion. Figure 2(b) presents deterioration 
of Mx

2 for these three beam profiles due to the same self-phase 
modulation effect. The chosen argument is the central phase 
Φ0 of the Gaussian beam, so the phase Θ0 of the super-Gauss-
ian profile in equation (19) is expressed through Φ0 according 
to their last mutual relation presented above.

Figure 1. (a) Polynomial fits ΨN(r) with N = 4,8,12 of phase profile Φ(r) with Φ0 = 1 of the self-phase modulated Gaussian beam with size 
w0 = 0.4. (b) Convergence of beam quality parameter Mx

2 of amplitude profile ρ(r)·exp(iΨN(r)) with N; compare with equations (14) and (15).
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Figure 2. (a) Intensity profiles of beams with the same power and sizes adjusted by 1%-residual power criterion. (b) Deterioration of 
their Mx

2 with self-phase modulation, e.g. due to increasing of beam power; the argument Φ0 is the central phase for Gaussian beam in 
equations (14) and (15).
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One can notice that for a particular value Mx
2 = 1.5, the 

super-Gaussian beam provides more than three times better 
tolerance for self-phase modulation parameter n2 or ∆z or 
beam power according to equation  (14) despite its initially 
higher Mx

2 = 2/π1/2 = 1.128. Higher-order super-Gaussian 
beams with significantly higher initial Mx

2 do not provide a 
further advantage.

7. Conclusion

We have derived analytical expressions (15) and (19) for the 
propagation invariant beam quality parameter Mx

2 of self-
phase modulated Gaussian and super-Gaussian beam pro-
files correspondingly. The result formulated for the Gaussian 
profile is applicable for self-phase modulation occurring at 
arbitrary position relative to its waist location due to propaga-
tion self-similarity of the Gaussian beam. Those expressions 
depend only on corresponding central phases of self-phase 
modulation. We also have discussed generalization of the 
derived analytical results in cases of arbitrary localized radial 
phase distortions. We have found that a beam with a super-
Gaussian profile may be preferable in high-power laser appli-
cations than a Gaussian beam for a reasonable ratio of their 
sizes due to its greater resistance to deterioration of beam 
quality because of self-phase modulation. The obtained results 
can be applied to measurements of optical nonlinearity. The 
main technical advantage of our results presented in the form 
of relatively simple analytical expressions is that traditional 
approaches based on polynomial representation of aberrations 
cannot efficiently reproduce them due to the poor convergence 
of power series for Gaussian profiles. Finally, the presented 
results can be applied for fast performance evaluation of ther-
mally distorted optical elements.
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