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We present a theoretical study of various definitions of laser beam width in a given cross section. Quality of the
beam is characterized by dimensionless beam propagation products (BPPs) Δx · Δθx∕λ, which are different for the
21 definitions presented, but are close to 1. Six particular beams are studied in detail. In the process, we had to
review the properties for the Fourier transform of various modifications and the relationships between them:
physical Fourier transform (PFT), mathematical Fourier transform (MFT), and discrete Fourier transform
(DFT). We found an axially symmetric self-MFT function, which may be useful for descriptions of diffraction-
quality beams. In the appendices, we illustrate the thesis “the Fourier transform lives on the singularities of
the original.” © 2015 Optical Society of America
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1. INTRODUCTION
The problem of characterizing and measuring the transverse
quality of a laser beam has a long history in the literature, and
specifically, it is worth mentioning a monograph by Siegman
[1] and a paper by Siegman [2] as examples. Most laser beams
have very small angular divergence θx (≤10−2 rad). Transfor-
mation of such beams by lenses without aberrations may sep-
arately change δθx and the waist radius Δx. However, the
product Δx · Δθx (of dimension meters) is not changed by
such transformation, and for almost-diffraction-quality beams,
it is of the order of wavelength λ. Particular dimensionless
quantity Δx · Δθx∕λ depends on the formal definition of Δx
and Δθx in theoretical discussions of the problem, and it
depends on the measuring procedures in an experiment.

One possible definition of Δx · Δθx is the root mean square,
and related to it is the dimensionless parameterM2

x, which has
been adopted as ISO standard [3]:

Δxrms �
�������������������������
h�x − hxi�2i

q
; Δθrms �

�����������������������������
h�θx − hθxi�2i

q
;

M2
x � �4π∕λ� · Δxrms · Δθrms: (1)

Separate measurements of M2
x and M2

y are often necessi-
tated by the not quite axially symmetric character of the beam,
including possible astigmatism. The particular coefficient, 4π,
is chosen in such a manner that the minimum value of M2

x

equals 1, and this is achieved for an ideal beam with a perfect
Gaussian profile.

It is assumed in Eq. (1) that Δxrms is measured at the
z-position of its minimum (at the focal waist in the case of
a focused beam), while Δθrms is measured in the far-field zone
of the beam. Quite often in the experiment, the far-field zone

with its angular distribution of intensity I�θx� is substituted by
the profile Iwaist�x � F · θx� in the focal plane of a positive lens
with focal distance F . This often leads to confusion regarding
which parameter, Δxrms or Δθrms, corresponds to the near
field and which one is related to the far field. Luckily, this
modest confusion in terminology does not result in a change
of M2

x, because as we have already mentioned, the product
Δx · Δθx is invariant under transformation by paraxial optical
elements without aberrations.

Many researchers have noted that the quantities Δxrms,
Δθrms and therefore M2

x � 4π · Δxrms · Δθrms∕λ put too much
emphasis upon distant wings of distributions I0�x� and
I1�θx�, e.g., [4–7]. This includes an experimental paper by
Lantigua et al. [7].

Our personal preference is for the use of a criterion involv-
ing the “width of the slit, containing 85% of total power,” and
the ratio of the beam propagation product (BPP) to the BPP
for an ideal Gaussian beam by the same criterion. The chosen
fraction of 85% seems to be reasonable for energy-delivering
applications of laser beams. Meanwhile the slit technology is
relatively easy to implement in field devices.

Given field E0�x; y� in the near-field zone, one finds the in-
tensity profile there as I0�x; y� � jE0�x; y�j2. Besides that, the
angular amplitude profile, i.e., the amplitude profile in the far-
field zone, is proportional to

G2�θx; θy� �
1
2π

ZZ
E0�x; y�e−ik�x·θx�y·θy�dxdy: (2)

The resultant angular intensity profile is I2�θx; θy� �
jG2�θx; θy�j2. In the �1D� z� case, E0�x; y� ≡ E0�x� and

538 J. Opt. Soc. Am. A / Vol. 32, No. 4 / April 2015 Kaim et al.

1084-7529/15/040538-11$15.00/0 © 2015 Optical Society of America

http://dx.doi.org/10.1364/JOSAA.32.000538


G1�θx� �
1������
2π

p
Z

E0�x� exp�−ikx · θx�dx: (3)

Additionally, I1�θx� � jG1�θx�j2. Here and below, the wave-
number k � 2π∕λ, and λ is the wavelength in the medium
of the propagation path (typically in a vacuum).

For that reason, in Section 2 we review three definitions of
the Fourier transform (FT): the physical Fourier transform
(PFT), the mathematical Fourier transform (MFT), and the
discrete Fourier transform (DFT). Specifically, in Section 2B,
we discuss the one-dimensional self-MFT functions. In
Section 2C, we discuss the DFT and its relationship to PFT
and MFT. In Section 2D, we introduce a new axially symmet-
ric self-MFT function based on the 1D self-MFT function
1∕ cosh�x

��������
π∕2

p
�.

In Section 3, we consider 21 quantitatively different defini-
tions of the beam width and produce a calculation table of
those widths for 6 different smooth transverse profiles in
the near field. We also calculate their far-field profiles. In this
manner, we were able to find BPPs for these beams according
to the 21 different criteria. The tables of BPPs are compiled
with the assumption that one and the same criterion of width
(out of the 21 considered) was taken for both the near field
and far field. Meanwhile, we provide data from the calcula-
tions, which allow one to take one criterion in the near field
and another in the far field, and thus arrange for such a com-
pound BPP. Section 4 summarizes the results of this work. In
Appendix A we illustrate the thesis “the Fourier transform
lives on the singularities of the original.” While this thesis
is not scientifically new, we failed to find a mathematical pre-
sentation of it in textbooks or papers. In Appendix B, we apply
DFT for the study of self-MFT functions.

2. FOURIER TRANSFORMS: PHYSICAL,
MATHEMATICAL, AND DISCRETE
FOURIER TRANSFORMS AND THE
SELF-MATHEMATICAL FOURIER
TRANSFORM FUNCTION
A. Physical Fourier Transform (PFT)
We start with the FT as it is used in the PFT. Consider the func-
tion f �x� of real variable x (for example, of dimensions of Car-
tesian coordinate �x� � �meter�). This function may have real
or complex values. We define the new function G�q� for the
new real argument q (of dimensions �q� � �radian∕meter�) by

G�q� � A������
2π

p
Z �∞

−∞
exp�iqx�f �x�dx; (4)

where A ≠ 0 is some constant. Then, as it is well known in
mathematics, under certain (not very restrictive) conditions,
the original function f �x� may be found by inverse Fourier
transformation as follows:

f �x� � 1

A
������
2π

p
Z �∞

−∞
exp�−iqx�G�q�dq: (5)

Traditional choices of constant A are, for example, A � 1,
A �

������
2π

p
, and A � 1∕

������
2π

p
, but any A ≠ 0, even a complex

number, does the job. Equation (4) defines the linear operator
of the PFT; it maps the space of functions f �x� of argument x
onto the space of functions G�q� of a different argument q,

dimensions of q being inverse to the dimensions of x:
�q� � �1∕x�. Parseval’s theorem claims that

jAj2 ·
Z �∞

−∞
jf �x�j2dx �

Z �∞

−∞
jG�q�j2dq: (6)

It looks especially elegant for A � 1.

B. Mathematical Fourier Transform (MFT)
If one wants to discuss eigenfunctions of FT, then the FT op-
erator must map space functions f �y� onto itself, G�y�. In that
case, dimensions �q ≡ y� coincide with dimensions �1∕y�. In
other words, argument x of functions f �x� for the MFT should
be dimensionless. All this gives justification to the following
definition of the MFT operator as

MFTff g�x� � h�x� � 1������
2π

p
Z �∞

−∞
exp�ixx0�f �x0�dx0: (7)

Parseval’s theorem shows that the MFT operator is unitary:

Z
jh�x�j2dx �

Z
jf �x0�j2dx0: (8)

Inverse PFT in Eq. (5) differs (at A � 1) from the original
PFT in Eq. (4) only by the sign of phase in the exponential.
This allows us to conclude that application of the MFT oper-
ator to a function f �x� two times returns f �−x�:

�MFT�2ff g�x� � f �−x�: (9)

From that one gets

�MFT�4ff g�x� � f �x�; or �MFT�4 � 1̂; (10)

i.e., the 4th power of the MFT operator is the unit operator. As
a result, eigenvalues Λ of the MFT operator satisfy condition
Λ4 � 1,

MFTfhg�x� � Λ · h�x�; Λ4 � 1: (11)

Thus, there are only four possible eigenvalues of MFT:
Λ0 � 1, Λ1 � i, Λ2 � −1, and Λ3 � −i (or Λn � in, where
n � 0, 1, 2, 3).

Differentiation and integration by parts in MFT Eq. (7)
allow one to show that if f �x� is an eigenfunction of MFT with
eigenvalue Λf , i.e., if

MFTff g�x� � Λf · f �x�; (12)

then functions

g�x� �
�
x −

d
dx

�
f �x�; h�x� �

�
x� d

dx

�
f �x� (13)

are also eigenfunctions of MFT, and

Λg � i · Λf ; Λh � −i · Λf : (14)

Function g0�x� � exp�−x2∕2� is a well known eigenfunc-
tion of MFT with an eigenvalue Λ0 � �1. Moreover, Hermite
polynomials Hn�x� multiplied by g0�x�, i.e.,
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Hn�x� exp�−x2∕2�; (15)

up to constant factors, can be produced from g0�x� by appli-
cation of the “creation operator” �x − d∕dx� sequentially n
times. Therefore, they are eigenfunctions of MFT with eigen-
values Λn � in.

Another function,

c0�x� �
h
cosh

�
x

��������
π∕2

p �i
−1
; (16)

is also an eigenfunction of MFT with an eigenvalue Λ0 � �1.
The main difference between g0�x� and c0�x� is in their
asymptotic behavior at jxj → ∞: g0�x� � exp�−x2∕2� (exact);
meanwhile, c0�x�≐2 · exp�−jxj

��������
π∕2

p
�. Functions constg · g0�x�

and constc · c0�x� normalized to
R jf �x�j2dx � 1 have almost

100% overlapping integrals:

‖g0c0‖2 ≡

hR�∞
−∞ g0�x�c0�x�dx

i
2

hR�∞
−∞ jg0�y�j2dy

i
·
hR�∞

−∞ jc0�z�j2dz
i � 0.994: (17)

Property �MFT�4 � 1̂ allows one to construct eigenfunc-
tions of MFT out of an arbitrary function f �x� of the dimen-
sionless argument. For example,

f β�x� � f �x� � iβMFTff g�x� � i2β�MFT�2ff g�x�
� i3β�MFT�3ff g�x� (18)

is an eigenfunction of MFT with eigenvalue Λ � iβ, where β is
any integer number from 0 to 3. For the case with Λ � �1, i.e.,
when β � 0 is considered, formula of the type in Eq. (18) was
suggested in [8,9].

Curious examples of MFT eigenfunctions are

reven�x� �
1������
jxj

p ; rodd�x� �
x
jxj ·

1������
jxj

p ; (19)

with respective eigenvalues Λeven � �1, Λodd � �i. However,
each of them has a logarithmically divergent normalization
integral (both at jxj → 0 and at jxj → ∞).

C. Discrete Fourier Transform (DFT) and
Approximation of PFT by DFT
Discrete FT is usually introduced as an approximation for the
PFT. Consider function f �x� at the interval a ≤ x < a� L, and
for definiteness, let dimensions of x be �x� � �meters�. Let us
characterize this function by its values at the set of N equidis-
tant points n � 0; 1;…; N − 1,

x0 � a; x1 � a� sx;…; xn � a� nsx;…;

xN−1 � a� �N − 1�sx; sx � L∕N: (20)

Here, sx is a step of the x-coordinate. It is convenient to
assume that function f �x� is continued outside the interval
a ≤ x < a� L in a periodic manner with period L, so that
f �x� � f �x� L�. Then, one can consider an extra point
xextra � a� sxN ≡ a� L with the value f �a� L� � f �a�≡
f 0, which is already accounted for by f 0. The corresponding
vector f⃗ of N -dimensional linear space has components

f⃗ � �f 0 � f �x0�; f 1 � f �x1�;…; f N−1 � f �xN−1��: (21)

Function G�q� [i.e., PFT from Eq. (4)] may be approximated
by a trapezoid formula:

G�q� ≈ A������
2π

p sx�0.5f 0eiqx0 � f 1eiqx1 � f 2eiqx2 �…

� f N−1eiqxN−1 � 0.5f �xextra�eiqxextra �: (22)

The periodicity assumption yields f �xextra� ≡ f 0. Evidently,
there are only N linear independent values of function G�q�
defined by Eq. (22). To express this idea, we can choose to
consider N discrete values of argument q:

q0 � 0; q1 � sq; q2 � 2sq;…; qN−1 � �N − 1�sq: (23)

The periodicity condition in the x-coordinate with period L
may be satisfied if the value of the step sq in q-space is chosen
as sq � 2π∕L (of dimensions [radian/meter]). In that case,
f �xextra�eiqm ·xextra � f 0eiqm ·x0 , and the trapezoid approximation
for G�q� becomes

Gm ≡ G�m · sq� ≡ G
�
m ·

2π
L

�

≈
L · A

N
������
2π

p exp
�
2πi

ma
L

�XN−1

n�0

f n exp
�
2πi

n ·m
N

�
: (24)

Vector g⃗ of N -dimensional linear space is called the DFT of
vector f⃗ from the same space, if its components are defined by

gm � �DFTff g�m � 1�����
N

p
XN−1

n�0

f n exp
�
2πi

n ·m
N

�
: (25)

The operator of the DFT is implemented in every widely
used mathematical software package like Mathcad, MatLab,
Maple, Mathematica, etc. What wewere able to formulate here
is that the PFT G�q� from Eq. (4) may be approximated by

G
�
qm ≡

2πm
L

�
≈ exp

�
2πi

ma
L

�
L · A����������
2πN

p �DFTff g�m: (26)

Intuitively, it is clear that the DFT of Eq. (25) is a certain
approximation of the PFT. What is important is that the par-
ticular qm-dependent coefficient in Eq. (26) expresses the PFT
via the DFT.

Remarkable mathematical facts about the operator of the
DFT defined by Eq. (25) are as follows: 1) the DFT is an uni-
tary operator in N -dimensional linear space; 2) the inverse
DFT operator (IDFT) looks like an approximation of
Eq. (5) for the inverse PFT (IPFT), but it is actually an exact

inverse operator with respect to DFT:

f n � �IDFTfg⃗g�n � 1�����
N

p
XN−1

m�0

gm exp
�
−2πi

n ·m
N

�
: (27)

The proof of this fact uses the following formula for the sum
of geometrical progression:
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XN−1

k�0

ηk � �N; if η � 1; �1 − ηN �∕�1 − η�otherwise�; (28)

where η � exp�2πi�n −m�∕N �.
An additional problem to be considered is that physically

both the positive and negative values of q�rad∕meter� in
Eqs. (4) and (5) are important. At first glance, qm � sq ·m �
2πm∕Lwithm � 0; 1;…; N − 1 cover positive values of q only.
This difficulty can be resolved rather simply. For values
qN∕2 � Nπ∕L, the exponential factors exp�iqm · xn� �
exp�iqm · a� · exp�iπn� oscillate versus n as exp�iπn�≡
�−1�n. This is a manifestation of the failure of discretization
of f �x� into f n � f �xn�. In other words, we expect the PFT
of our function f �x� to be negligibly small at qm with
m ≈ N∕2. However, subtracting Q � 2πN∕L from any of
the qm does not change the exponential factors in the
DFT. Indeed, exp�i�qm −Q�xn� � exp�i�qm −Q�a� · exp�iqmsxn�·
exp�−iQsxn�. But exp�−iQnsx� � exp�−2πin� ≡ 1. Therefore,
one can subtract Q � 2πN∕L from any qm without changing
the resultant DFT. We can now introduce function

phys�m� �
�

m; if m < N∕2
−N �m; otherwise

; (29)

so that qm�physical� � sq · phys�m� values represent the pos-
itive q in the range of 0 ≤ m < N∕2 and negative q � −Q� qm
in the range of N∕2 ≤ m ≤ N − 1.

D. Generation of Eigenfunctions of 2D MFT via
Eigenfunctions of 1D MFT
The definition of MFT for functions of two dimensionless var-
iables x, y is a trivial generalization of the 1D case:

2DMFTff g�x; y� � 1
2π

ZZ
∞

−∞
ei�xx

0�yy0�f �x0; y0�dx0dy0: (30)

Consider two eigenfunctions of 1D MFT: f 1�x� and f 2�x�,
with eigenvalues Λ1 � �i�β1 and Λ2 � �i�β2 , respectively.
Functions f 1�x� and f 2�x� may be identical; in that case,
Λ1 ≡ Λ2. Besides that, f 1�x� and f 2�x� may be different eigen-
functions of MFT with the same or with different eigenvalues
Λ1 and Λ2. In any of these cases, the factorized function of two
dimensionless variables

F factor�x; y� � f 1�x�f 2�y�; Λfactor � Λ1 · Λ2 (31)

is an eigenfunction of the unitary 2DMFT operator of Eq. (30),
and Λfactor � Λ1 · Λ2. The proof of this simple statement is
based on factorization of the exponential kernel in the 2D
MFT (30) as follows:

eix·x
0�iy·y0 � eix·x

0
· eiy·y

0
: (32)

Besides that, the scalar product �r · r0� ≡ xx0 � yy0 in that
kernel is invariant with respect to simultaneous rotation of
coordinates by arbitrary angle ψ :

�x; y�new � �x; y�R̂; �x0; y0�new � �x0; y0�R̂;

R̂ �
� cos ψ sin ψ

− sin ψ cos ψ

�
: (33)

Therefore, another function,

Fnew;ψ �x; y� � f 1�xnew�f 2�ynew�
� f 1�x cos ψ � y sin ψ� · f 2�−x sin ψ � y cos ψ�;

(34)

which generally is not factorized into h1�x� · h2�y�, is still an
eigenfunction of the 2D MFT with Λnew � Λ1 · Λ2. Linearity of
the 2D MFT operator guarantees that any superposition of
such functions with ψ -dependent weight W�ψ�,

F superp�x; y�

�
Z

2π

0
W�ψ�f 1�x cos ψ � y sin ψ�f 2�−x sin ψ � y cos ψ�dψ ;

(35)

is still an eigenfunction of the 2D MFT. Using polar coordi-
nates x � ρ cos φ, y � ρ sin φ in the x, y-plane, one can trans-
form this superposition to

F superp�x; y� � Fnew�ρ;φ�

�
Z

2π

0
W�ψ�f 1�ρ cos�φ − ψ��f 2�ρ sin�φ − ψ��dψ

(36)

Let us assume that function W�ψ� is periodic with period
2π, i.e., W�ψ � 2π� � W�ψ�. Introducing the new variable
α � φ − ψ , one transforms the integral of Eq. (36) up to a fac-
tor (−1) into

Fnew�ρ;φ� � −

Z
2π

0
W�φ� α� · f 1�ρ cos α� · f 2�ρ sin α�dα:

(37)

A minor problem may arise if the integral in the right-hand
side of Eq. (37) turns out, for some or other symmetry reason,
to be exactly zero. Then, one gets a function equal to zero
identically, which is not interesting, albeit it may formally
be considered as an eigenfunction of any linear operator.

Special interest is presented by the case when W�ψ� �
�−1∕2π� exp�imψ� to elucidate the rotation symmetry in the
�x; y�-plane. Then,

Fnew�ρ;φ� � eimφRm�ρ�;

Rm�ρ� �
1
2π

Z
2π

0
eimαf 1�ρ cos α�f 2�ρ sin α�dα: (38)

We are especially interested in the case of completely ax-
ially symmetric �m � 0� 2D self-MFT functions:

R0�ρ� �
1
2π

Z
2π

0
f 1�ρ cos α�f 2�ρ sin α�dα: (39)

If f 1�x� � f 2�x� � exp�−x2∕2�, then the axially symmetric
result is trivial, where R0�ρ� � exp�−ρ2∕2�.
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We were lucky to find another example of a completely
symmetric 2D self-MFT function with eigenvalue Λ � �1:

C00�ρ� �
1
2π

Z
2π

0
c0�ρ cos α�c0�ρ sin α�dα; Λ � 1; (40)

where c0�x� � 1∕ cosh�x
��������
π∕2

p
�. A graph of this new function

is presented in Fig. 1.
Behavior of this function at small and large ρ (remember

that ρ is dimensionless) is as follows:

C00�ρ� � 1 −
π

4
ρ2 � O�ρ4� at ρ → 0; (41)

C00�ρ�≐
h
4∕

�
ρ ·

��������
π∕2

p �i
exp

�
−ρ

��������
π∕2

p �
at ρ → 0: (42)

Normalized (by
R∞
0 jf �x�j2ρdρ) function C00�ρ� is mostly

very similar to the normalized axially symmetric function
g0�ρ� � exp�−ρ2∕2�. Indeed,

j R∞
0 C00�ρ�g00�ρ�ρdρj2R

∞
0 �C00�ρ��2ρdρ ·

R
∞
0 �g00�ρ��2ρdρ

� 0.992: (43)

However, the asymptotic behavior of C00�ρ� at ρ → ∞ is
radically different from that of the Gaussian function. In
this respect, C00�ρ� is a better approximation of the radial pro-
file of a single-mode step-profile dielectric fiber with a low
V-number.

In particular, consider the axially symmetric mode LP01�r�
of a single-mode fiber with core radius a and V -number

V � �2πa∕λ��n2
core − n2

cladding�1∕2;

where V � 1.7, which is well below the threshold V < 2.4 for
single-mode operation. Our new 2D self-MFT function C00�ρ �
r∕u� has the best overlapping with V � 1.7 normalized mode
LP01�r� at u � 1.077 · a, and it is equal to

FC �
�� R∞

0 C00�ρ � r∕u�LP01�r�rdr
��2R

∞
0 �C00�ρ � r∕u��2rdr · R∞

0 �LP01�r��2rdr
� 0.9986

≡ 1 − 1.14 · 10−3: (44)

Meanwhile, the same mode has an optimum overlapping in-
tegral with the Gaussian function g00�ρ� � exp�−�ρ � r∕u�2∕2�
at u � 1.076 · a; the square of overlapping equals

Fg �
�� R∞

0 g00�ρ � r∕u�LP01�r�rdr
��2R∞

0 �g00�ρ � r∕u��2rdr · R∞
0 �LP01�r��2rdr

� 0.9855

≡ 1 − 1.45 · 10−2: (45)

At V � 2.4 (the threshold value of V , below which single
mode exists only), the Gaussian function g00�ρ� has some
advantages over C00�ρ�:

Fg;optimum � 1 − 3.3 · 10−3; FC;optimum � 1 − 5.0 · 10−3:

However, both approximations are pretty good. A detailed
study of the approximation for fundamental modes of a fiber
by use of the Gaussian function was done by Marcuse [10],
where he considered a variety of smoothed profiles for the
fiber refractive index.

3. CALCULATION OF DATA FOR THE
BEAM PROPAGATION PRODUCT (BPP)
ACCORDING TO 21 POSSIBLE CRITERIA
FOR 6 PARTICULAR HIGH-QUALITY
BEAMS
Now, we consider numerous possible criteria for the beam
width, be it in the near field waist (in units of meters) or in the
far field (in units of radians). Below is the list of the 21 criteria
that were covered, and these were formulated for quantities of
the dimensions [meters]. Similar definitions can be taken for
θx or for θ � �θ2x � θ2y�1∕2 dimensions [radians].

1. Δx (HWHIM): half-width at the level of half the inten-
sity at maximum.

2. Δx (HWe−1IM): half-width at the level e−1 ≡ 0.368 of the
intensity at maximum.

3. Δx (HWe−2IM): half-width at the level e−2 ≡ 0.135 of the
intensity at maximum.

4. Δx (HW10−2IM): half-width at the level 10−2 of the in-
tensity at maximum.

5. r (PIB f � 0.5): radius of a circle containing fraction
f � 0.5 of the total power in the bucket of that radius.

6. r (PIB f � 0.75): radius of a circle containing fraction
f � 0.75 of the total power in the bucket of that radius.

7. r (PIB f � 0.865): radius of a circle containing fraction
f � 0.865 � 1 − e−2 of the total power in the bucket of that
radius.

8. r (PIB f � 0.9): radius of a circle containing fraction
f � 0.9 of the total power in the bucket of that radius.

9. r (PIB f � 0.95): radius of a circle containing fraction
f � 0.95 of the total power in the bucket of that radius.

10. r (PIB f � 0.975): radius of a circle containing fraction
f � 0.975 of the total power in the bucket of that radius.

11. r (PIB f � 0.99): radius of a circle containing fraction
f � 0.99 of the total power in the bucket of that radius.

12. s (PIS f � 0.5): half-width of the minimum width of the
slit containing fraction f � 0.5 of the total power in that slit for
the total width 2s.

13. s (PIS f � 0.75): half-width of the minimum width of
the slit containing fraction f � 0.75 of the total power in that
slit for the total width 2s.

14. s (PIS f � 0.865): half-width of the minimum width of
the slit containing fraction f � 0.865 of the total power in that
slit for the total width 2s.Fig. 1. Self-Fourier transform function C00�ρ�.
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15. s (PIS f � 0.9): half-width of the minimum width of the
slit containing fraction f � 0.9 of the total power in that slit for
the total width 2s.

16. s (PIS f � 0.95): half-width of the minimum width of
the slit containing fraction f � 0.95 of the total power in that
slit for the total width 2s.

17. s (PIS f � 0.975): half-width of the minimum width of
the slit containing fraction f � 0.975 of the total power in that
slit for the total width 2s.

18. s (PIS f � 0.99): half-width of the minimum width of
the slit containing fraction f � 0.99 of the total power in that
slit for the total width 2s.

19. xrms �
���������������������
h�x − x̄�2i

p
, root mean square of variation for

the x-coordinate.
20. x1 � hjx − x̄ji, average modulus of variation for the

x-coordinate.

21. x0.5 � �hjx − x̄j1∕2i�2, square of the average of the
square root for the modulus of the coordinate variation.

We calculated the data for six different profiles of the
field in the near-field zone: 1) Gaussian E�x; y� �
exp�−�x2 � y2�∕w2�; 2) super-Gaussian E�x; y� � exp�−�x2�
y2�2∕w4�; 3) axially symmetric 2D sech profile: self-FT profile

found in this work, E�x; y� � C00�ρ �
�����������������
x2 � y2

p
∕u�; 4) profile

of the axially symmetric mode of a single-mode fiber with V �
2.4 and of core radius a, E�x; y� � LP01�r �

�����������������
x2 � y2

p
�;

5) round top hat profile E�x; y� � 1 at
�����������������
x2 � y2

p
≤ w,

E�x; y� � 0 otherwise; 6) factorized hyperbolic secant profile,

E�x;y��c0�X�x∕u�c0�Y�y∕u�, c0�t��1∕cosh�t
��������
π∕2

p
�. The

data are presented in Table 1.
Since the table contains dimensionless numbers, clarifica-

tions should be made in terms of what units of dimensions of

Table 1. Calculation of Individual Widths of Various Beams According to Different Criteria (See Text)

Gauss,
E�r� � exp�−�r∕w�2�

Super Gauss,
E�r� � exp�−�r∕w�4�

2D Sech
C00�r∕w � u�

Fiber Mode
LP01�r�,
V � 2.4

Round Top Hat
of Radius w

Factorized 1D
Hyperbolic Secant

c0�x∕w � u�
Δx HWHIM, [width∕w] 0.5887 0.7677 0.6930 0.6840 1 0.7032
Δx HWe−1IM, [width∕w] 0.7070 0.8409 0.8476 0.8052 1 0.8657
Δx HWe−2IM, [width∕w] 1 1 1.2685 1.0699 1 1.3225
Δx HW10−2IM, [width∕w] 1.5170 1.2318 2.1956 1.6923 1 2.3882
θx HWHIM, angle · �w∕λ� 0.1874 0.2447 0.1099 0.1493 0.2572 0.1119
θx HWe−1IM, angle · �w∕λ� 0.2250 0.2913 0.1345 0.1825 0.3048 0.1378
θx HWe−2IM, angle · �w∕λ� 0.3183 0.3993 0.2012 0.2724 0.4112 0.2105
θx HW10−2IM, angle · �w∕λ� 0.4829 0.5499 0.3483 0.4518 0.5442 0.3801
r PIB f � 0.5, [width∕w] 0.5887 0.5807 0.7830 0.6394 0.7070 0.7848
r PIB f � 0.75, [width∕w] 0.8326 0.7584 1.1551 0.8893 0.8660 1.1591
r PIB f � 0.865, [width∕w] 1.0006 0.8641 1.4370 1.0699 0.9299 1.4450
r PIB f � 0.9, [width∕w] 1.0730 0.9069 1.5677 1.1574 0.9487 1.5765
r PIB f � 0.95, [width∕w] 1.2239 0.99 1.8547 1.3573 0.9747 1.8686
r PIB f � 0.975, [width∕w] 1.3581 1.0586 2.1304 1.5559 0.9874 2.1509
r PIB f � 0.99, [width∕w] 1.5174 1.1349 2.4842 1.8161 0.9950 2.5158
θ PIB f � 0.5, angle · �w∕λ� 0.1874 0.2327 0.1246 0.1654 0.2654 0.1249
θ PIB f � 0.75, angle · �w∕λ� 0.2650 0.3237 0.1838 0.2414 0.3917 0.1845
θ PIB f � 0.865, angle · �w∕λ� 0.3185 0.3838 0.2287 0.2963 0.7766 0.2300
θ PIB f � 0.9, angle · �w∕λ� 0.3415 0.4095 0.2495 0.3208 0.9063 0.2509
θ PIB f � 0.95, angle · �w∕λ� 0.3896 0.4638 0.2952 0.3720 1.7802 0.2974
θ PIB f � 0.975, angle · �w∕λ� 0.4323 0.5203 0.3391 0.4175 2.9031 0.3423
θ PIB f � 0.99, angle · �w∕λ� 0.4830 0.8080 0.3954 0.4705 5.1887 0.4004
s PIS f � 0.5, [width∕w] 0.3372 0.3357 0.4488 0.3684 0.4040 0.4383
s PIS f � 0.75, [width∕w] 0.5752 0.5423 0.7864 0.6220 0.6347 0.7763
s PIS f � 0.865, [width∕w] 0.7467 0.6727 1.0498 0.8031 0.7607 1.0465
s PIS f � 0.9, [width∕w] 0.8224 0.7257 1.1724 0.8845 0.8054 1.1747
s PIS f � 0.95, [width∕w] 0.9800 0.8283 1.4425 1.0652 0.8783 1.4615
s PIS f � 0.975, [width∕w] 1.1207 0.9121 1.7024 1.2463 0.9237 1.7431
s PIS f � 0.99, [width∕w] 1.2880 1.0037 2.0371 1.4860 0.9587 2.1117
θs PIS f � 0.5, angle · �w∕λ� 0.1073 0.1335 0.0714 0.0946 0.1590 0.0697
θs PIS f � 0.75, angle · �w∕λ� 0.1831 0.2257 0.1252 0.1647 0.2838 0.1235
θs PIS f � 0.865, angle · �w∕λ� 0.2377 0.2907 0.1671 0.2179 0.4194 0.1665
θs PIS f � 0.9, angle · �w∕λ� 0.2618 0.3190 0.1866 0.2420 0.6093 0.1869
θs PIS f � 0.95, angle · �w∕λ� 0.3119 0.3782 0.2296 0.2935 1.1172 0.2326
θs PIS f � 0.975, angle · �w∕λ� 0.3567 0.4343 0.2709 0.3403 1.9249 0.2774
θs PIS f � 0.99, angle · �w∕λ� 0.4100 0.5308 0.3242 0.3966 3.7706 0.3361
hx2i12, meter∕w 0.5 0.4465 0.7193 0.5509 0.5 0.7236
hjxji, meter∕w 0.3989 0.3701 0.5564 0.4363 0.4244 0.5530
�h

������
jxj

p
i�2, meter∕w 0.3380 0.3205 0.4641 0.3693 0.3723 0.4586

hθ2xi12, angle · �w∕λ� 0.1591 0.2011 0.1145 0.1474 0.7182 0.1152
hjθxji, angle · �w∕λ� 0.1270 0.1581 0.0885 0.1154 0.3148 0.0880
�h

��������
jθxj

p
i�2, angle · �w∕λ� 0.1076 0.1336 0.0739 0.0968 0.2093 0.0730

Kaim et al. Vol. 32, No. 4 / April 2015 / J. Opt. Soc. Am. A 543



meters those data are given. For the Gaussian and Super-
Gaussian beams, 1 and 2, the data are given in units of
traditional notations of w, where w � Δx�HWe−2IM�. For
the new self-FT function E�x; y� � C00�ρ �

�����������������
x2 � y2

p
∕u�,

defined by Eq. (40), the coordinate width is given units u.
The parameter u in C00�ρ �

�����������������
x2 � y2

p
∕u� coincides with

the Δx�HW0.2622IM� of the said beam, so that
jC00�ρ � 1�j2 � 0.2622, while jC00�ρ � 0�j2 � 1.

For the mode of the step-profile fiber with V-number
V � 2.4, the data are given in units of core radius a.
Finally, for the factorized hyperbolic secant E�x; y� �
c0�X � x∕u�c0�Y � y∕u�, c0�t� � 1∕ cosh�t

��������
π∕2

p
�, parameter

u may be considered as Δx�HW0.2788IM�.
As for the angular profile corresponding to those beams,

their parameters, like δθ[radians], are expressed in units
�λ∕w� for the (i) Gaussian, (ii) super-Gaussian, and (v) round
top hat beams; units of �λ∕u� were used for the (iii) axially
symmetric sech beam and the (vi) factorized sech beam.
Finally, for the (iv) LP01-mode of a fiber with V -number
V � 2.4, the angular width is expressed in units of �λ∕a�.

The round top hat beam has a well known angular distribu-
tion of amplitude and intensity:

jG�θx; θy�j2 � const
�
J1�v�
v

�
2
;

v � 2πw
λ

·
����������������
θ2x � θ2y

q
; (46)

so that the 1st zero of intensity of the so-called “Airy disk”
corresponds to �θ2x � θ2y�0.5 � 1.22λ∕2w. Power-in-the-bucket
fraction for the intensities profile in Eq. (46) is given by

f �θ� � 1 −
	
J0

�
2πwθ

λ

�

2
−

	
J1

�
2πwθ

λ

�

2
: (47)

Here and in Eq. (46), J0 and J1 are Bessel functions. Fraction
of power-in-the-bucket of the radius θAiry � 1.22λ∕�2w� is
f �PIB θ � 1.22λ∕�2w��; numerically, it is equal to f �
1 − �J0�3.8317��2 � 0.8378. Intensity wings of this angular dis-
tribution yield logarithmically divergent hθ2xi. The finite value
of θ2x for that table is calculated by truncation of the integral
for θ2x at a value of θmax � 10λ∕w.

Table 2 contains the BPP values for those six beams:
Δθ · Δx∕λ or δθ · r∕λ. In these BPPs, we assumed one and
the same criterion (out of 21) for the coordinate size (Δx or
r) and for the angular size (Δθx or θ). In principle, one can com-
pile 21 × 21 × 6 � 2646 products if different criteria are used
for the near field and far field; Table 1 contains all the necessary
data. Table 3 follows the ideology of Lantigua et al. [7], i.e., to
divide the BPP of the measured beam by the BPP of the
Gaussian beam,which is taken by the samecriteria. In Lantigua
et al. [7], the authors used experimentally measured coordi-
nates and angular widths taken by particular criterion PIS
f � 0.85 (which is very close to our 0.865 � 1 − e−2).

The results depicted in Table 3 disprove a deeply en-
trenched myth that the Gaussian field profile has the best
BPP. This myth is definitely valid for the root mean square
criterion (i.e., M2

x criterion), but not necessarily for other cri-
teria. Particular boxes where other beams show BPPs smaller
than Gaussian are emphasized by the bold font. However, the
“advantage” of the other beams is not very strong.

Observing the data from Tables 1–3, we can see that the six
beams of essentially diffraction quality all have a BPP of about
1. Therefore, the particular choice of criteria should depend
on the task for which the beam is intended in a particular ap-
plication. Experimental work by Lantigua et al. [7] used (PIS
f � 0.85) criteria for both the near-field and far-field zones.
Power-in-the-slit is easier to measure in an experiment than
PIB, especially power-in-the-circular bucket. However, PIB
may be more important in a number of applications for laser
beams.

Table 2. Beam Propagation Products for Various Near-Field Profiles E�x;y� (See Text)

r · θ∕λ, s · θx∕λ, M
Gauss,

E�r� � exp�−�r∕w�2�
Super Gauss,

E�r� � exp�−�r∕w�4�
2D Sech
C00�r�

Fiber Mode
LP01�r�, V � 2.4

Round
Top Hat

Factorized 1D
Hyperbolic Secant

HWHIM 0.1103 0.1878 0.0764 0.1021 0.2572 0.0787
HWe−1IM 0.1591 0.2450 0.1143 0.1469 0.3048 0.1193
HWe−2IM 0.3183 0.3993 0.2561 0.2915 0.4112 0.2783
HW10−2IM 0.7329 0.6774 0.7672 0.7645 0.5443 0.9078
PIB f � 0.5 0.1103 0.1351 0.0976 0.1058 0.1877 0.0980
PIB f � 0.75 0.2206 0.2455 0.2123 0.2147 0.3392 0.2138
PIB f � 0.865 0.3183 0.3316 0.3286 0.3170 0.7221 0.3323
PIB f � 0.9 0.3665 0.3714 0.3911 0.3713 0.8598 0.3955
PIB f � 0.95 0.4768 0.4591 0.5475 0.505 1.7352 0.5557
PIB f � 0.975 0.5871 0.5508 0.7223 0.6496 2.8666 0.7363
PIB f � 0.99 0.7329 0.9169 0.9822 0.8544 5.1627 1.0073
PIS f � 0.5 0.0362 0.0448 0.0320 0.0348 0.0642 0.0306
PIS f � 0.75 0.1053 0.1224 0.0985 0.1025 0.1801 0.0959
PIS f � 0.865 0.1775 0.1955 0.1754 0.1750 0.3191 0.1743
PIS f � 0.9 0.2153 0.2315 0.2188 0.2141 0.4907 0.2196
PIS f � 0.95 0.3057 0.3133 0.3312 0.3126 0.9812 0.3400
PIS f � 0.975 0.3998 0.3962 0.4613 0.4241 1.7781 0.4836
PIS f � 0.99 0.5280 0.5327 0.6605 0.5893 3.6150 0.7097
M2

x � �4π∕λ� ·
������������������
hx2ihθ2xi

p
1 2∕

���
π

p � 1.1281 1.0349 1.0182 4.5771 (∞) 1.0472
M1 � �4π∕λ� · hjxjihjθxji 0.6366 0.7349 0.6192 0.6326 1.6784 0.6117
M0.5 � �4π∕λ�h

������
jxj

p
i2h

��������
jθxj

p
i2 0.4569 0.5381 0.4308 0.4493 0.9787 0.4206
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4. CONCLUSION
We discussed 21 different criteria for the width of a laser
beam. Those criteria are applicable both for the near-field
waist, where the width Δx or r has dimensions of [meters],
and for the far-field zone, where the width Δθx or θ has dimen-
sions of [radians]. Since the field amplitude in the far-field
zone is a FT of Eqs. (2) or (3) of the profile of the field in the
waist, we provide necessary information about the properties
of the FT using the PFT approach [Eq. (4)], the MFT approach
[Eq. (7)], and the computationally convenient DFT [Eq. (25)].
We established simple quantitative relationships between the
PFT, MFT, and DFT.

That information has allowed us to find an axially symmet-
ric eigenfunction of MFT Eq. (40).

Using Fourier transformation, we were able to find the
values of Δx and Δθx (or r and θ) according to 21 criteria
for slightly different beams of almost diffraction quality.

In our opinion, the use of particular criterion involving the
“width of the slit, containing 85% of total power,” constitutes a
reasonable compromise between following the energy budget
of the beam, on one hand, and the suppression of unimportant
wings of intensity distribution and measurement noise, on the
other hand. Such a technique has been demonstrated in recent
physical experiments [7]. Dividing the BPP to that of the ideal
Gaussian beam provides the quality parameter, which is close
to well known M2

x-criterion, but without the drawbacks of the
latter.

Results of our theoretical work show that taking some
other diffraction-quality beam as etalon for comparison (in-
stead of the Gaussian) does not introduce much of a change.

In Appendices A and B, we further illustrate the important
properties of the PFT and the connections between the DFT
and MFT.

APPENDIX A: NOTION OF EDGE WAVES—
ASYMPTOTIC BEHAVIOR OF FOURIER
TRANSFORM AT LARGE “q”
The Fraunhofer zone, i.e., far-field amplitude, may be
presented in the following form (see Goodman [11,12] and
Gbur [13]):

E�X; Y; Z� � k
2πiZ

exp�ikjRj�G2�qx; qy�;

G2�q� �
ZZ

dx0dy0E�z0 � 0; r0� exp�−iq · r0�: (A1)

Here, �qx; qy� � �θx; θy��2π∕λ� � �X∕Z; Y∕Z��2π∕λ�, and we
assume exp�−iωt� time dependence. This means that the
angular-dependent diffraction amplitude is a 2D-Fourier trans-
form of the original field.

Appendix A is devoted to discussion of the properties of the
1D-Fourier transform,

G�q� � G2�qx � q; qy � 0� �
Z �∞

−∞
E�x� exp�−iqx�dx: (A2)

Here,

E�x� �
Z �∞

−∞
E�x; y0�dy0: (A3)

We assume that E�x → −∞� � E�x → �∞� � 0. Consider the
question of asymptotic behavior of the diffraction amplitude,
i.e., 1D-Fourier transformation (A2) at large values of jqj [the
actual small parameter for this asymptotic expansion is
�jqjΔx�−1]. With this aim in mind, one can identically trans-
form A�q� from (A2) to

Table 3. Ratios of Beam Propagation Products for the Beams under Study to Those of the Gaussian Beama

r · θ∕λ, s · θx∕λ, M
Gauss,

E�r� � exp�−�r∕w�2�
Super Gauss,

E�r� � exp�−�r∕w�4�
2D Sech
C00�r�

Fiber Mode
LP01�r�, V � 2.4

Round
Top Hat

Factorized 1D
Hyperbolic Secant

HWHIM 1 1.7026 0.6927 0.9257 2.3318 0.7135

HWe−1IM 1 1.5399 0.7184 0.9233 1.9158 0.7497

HWe−2IM 1 1.2545 0.8046 0.9158 1.2919 0.8744

HW10−2IM 1 0.9243 1.0468 1.0431 0.7427 1.2392
PIB f � 0.5 1 1.2248 0.8849 0.9592 1.7017 0.8887

PIB f � 0.75 1 1.1129 0.9624 0.9733 1.5376 0.9693

PIB f � 0.865 1 1.0418 1.0324 0.9959 2.2686 1.0440
PIB f � 0.9 1 1.0134 1.0671 1.0131 2.346 1.0793
PIB f � 0.95 1 0.9629 1.1483 1.0591 3.6393 1.1655
PIB f � 0.975 1 0.9382 1.2303 1.1065 4.8826 1.2541
PIB f � 0.99 1 1.2511 1.3402 1.1658 7.0442 1.3744
PIS f � 0.5 1 1.2376 0.884 0.9613 1.7735 0.8445

PIS f � 0.75 1 1.1624 0.9354 0.9734 1.7104 0.9108

PIS f � 0.865 1 1.1014 0.9882 0.9859 1.7977 0.9820

PIS f � 0.9 1 1.0752 1.0163 0.9944 2.2791 1.0200
PIS f � 0.95 1 1.0249 1.0834 1.0226 3.2097 1.1121
PIS f � 0.975 1 0.991 1.1538 1.0608 4.4475 1.2095
PIS f � 0.99 1 1.0089 1.2509 1.1161 6.8466 1.3440
M2

x � �4π∕λ� ·
������������������
hx2ihθ2xi

p
1 1.1281 1.0349 1.0182 4.5771 (∞) 1.0472

M1 � �4π∕λ� · hjxjihjθxji 1 1.1544 0.9727 0.9937 2.6365 0.9609

M0.5 � �4π∕λ�h
������
jxj

p
i2h

��������
jθxj

p
i2 1 1.1777 0.9429 0.9834 2.142 0.9205

aWe have emphasized in bold font the particular cells of the table where the ratios are smaller than 1. We can see that the completely symmetric self-Fourier
transformed beam C00�ρ� based on hyperbolic secant functions [Eq. (40)] yields certain advantages over the Gaussian beam, albeit for a limited number of criteria.
Actually, the advantages are rather modest at about 4% to 30%, depending on the particular criterion.
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G�q� ≡ i
q

Z �∞

−∞
E�x� d

dx
exp�−iqx�dx: (A4)

Integration of this formula by parts, with account of
E�x → −∞� � E�x → �∞� � 0, yields

G�q� ≡ −
i
q

Z �∞

−∞
exp�−iqx� d

dx
E�x�dx: (A5)

If function E�x� contains several discrete steps at points
x � a, x � b, with the magnitude of steps ΔEa �
E�x → a� ε� − E�x → a − ε�, ε → �0, etc., then the function
dE∕dx contains a corresponding number of δ-functions:

dE
dx

� ΔEa · δ�x − a� � ΔEb · δ�x − b� �…�
�
dE
dx

�
extracted

:

(A6)

Here, �dE∕dx�extracted denotes the part of the �dE∕dx� function
with extracted ΔEj · δ�x − xj� terms. As a result, G�q� takes
the form

G�q� � −
i
q
�ΔEae−iqa � ΔEbe−iqb �…�

−
i
q

Z �∞

−∞
e−iqx

�
dE
dx

�
extracted

dx: (A7)

Under several applications of the same procedure to
�dE∕dx�extracted, one gets the asymptotic expansion of Fourier
transform amplitude G�q� in the form

G�q� �
�
−
i
q

�
�ΔEae−iqa � ΔEbe−iqb �…�

�
�
−
i
q

�
2
	
Δ
�
dE
dx

�
a
e−iqa � Δ

�
dE
dx

�
b
e−iqb �…




�
�
−
i
q

�
3
	
Δ
�
d2E

dx2

�
a
e−iqa � Δ

�
d2E

dx2

�
b
e−iqb �…



�…:

(A8)

Surprisingly, we have not seen an analog of expansion Eq. (A8)
in any mathematical textbook, albeit qualified people defi-
nitely do know this result. Citing Professor M. V. Berry and
late Professor V. I. Arnold, “This result is well known to those,
who know well”, though they used this phrase on another oc-
casion.

There are several separate corollaries of the result for
Eq. (A8). Consider the function E�x�, which has zero limits at
x → �∞ by itself, and all its derivates have the same prop-
erty. Then,

1) If E�x� has a finite number of steps (discontinuities),
then

G�q� �
�
−
i
q

�
�ΔEae−iqa � ΔEbe−iqb �…� � o

�
1
q

�
; (A9)

i.e., G�q� decreases as �1∕q� at jqj → ∞, with the particular
coefficient given by Eq. (A9). Graphs in Fig. 2 illustrate quali-
tatively the structure of functions E�x�, ΣΔjδ�x − xj��

�dE∕dx�extracted, as if E�x� were a real function. In actual
applications, E�x� may be complex-valued.

2) If E�x� is continuous by itself, but has several discrete
steps for the derivative, then

G�q�≐
�
−
i
q

�
2
	
Δ
�
dE
dx

�
a
e−iqa � Δ

�
dE
dx

�
b
e−iqb �…



: (A10)

3) If the function E�x� and its derivatives [including the
1st, 2nd, …, up to the (N − 1)st] are continuous, then

G�q�≐
�
−
i
q

�
N�1

	
Δ
�
dNE�x�
dxN

�
a
e−iqa �…



: (A11)

4) If the function E�x� and ALL its derivatives are continu-
ous, then G�q� at jqj → ∞ goes down faster than any power
of jqj.

A physical reason for amplitude E�x� to have discontinuity
at the integration plane is the presence of sharp, dark edges of
aperture; these edges limit the passage of the beam. The cor-
responding terms in G�q� are “edge waves,” which are emitted
in the process of diffraction of the incident wave upon that
edge; compare this to the exact theory of Fresnel diffraction
by a semi-infinite plane [14]. The contribution of steps for the
field derivative may be considered as resulting from diffrac-
tion by the edge of the transparent refractive prism or as a
contribution from the sharp corner in an aperture.

Consider an interesting example of the function
E�x� � exp�−jxj∕a�. It is continuous by itself, but has a step
in the derivative, and as a result

dE
dx

� −
1
a

x
jxjE�x�;

d2E
dx2

� −
2
a
δ�x − 0� �

�
1
a

�
2
E�x�;…:

(A12)

Fig. 2. Example of a function possessing steps and the derivative of
that function with δ-type singularities.
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In this way one can write

d2kE

dx2k
� −

2
a
δ�x − 0� 1

a2k−2
�

�
1
a

�
2k
E�x�;

G�q� � −2a
X∞
k�0

�
−

1
�qa�2

�
k
� 2a

1� �qa�2 : (A13)

So, the summation of the asymptotic series in Eq. (A8) yields
an exact Lorentzian profile of G�q�.

The general statement “the Fourier transform lives on the
singularities of the original” is valid even for the infinitely
smooth Lorentzian original,

E�x� � 1
1� �x∕b�2 ; (A14)

if one is allowed to consider singularities x � ib and x � −ib
in the complex plane x � Re�x� � i Im�x�. Indeed, for this
function E�x�, contour integration in the complex plane is
elementary and yields

G�q� �
� �πb� exp�−iq��ib�� for q > 0;
�πb� exp�−iq�−ib�� for q < 0;

i.e.,

G�q� � �πb� exp�−bjqj�; (A15)

which 1) is the exact result and 2) is in agreement with the
general ideology of Eq. (A8): “the Fourier transform lives
on the singularities of the original.”

Similar observations can be made for E�x� � 1∕ cosh�x∕c�,
with singularities at x � �i · c · π · �n� 1∕2�, n � 0; 1; 2;….
Indeed, in that case

E�x� � 1
cosh�x∕c� → G�q� � cπ

cosh�qcπ∕2� ; (A16)

and the asymptotic behavior of A�q� at large jqj is

G�q�≐2πc exp�−jqjcπ∕2�; (A17)

due to contributions of those poles xn � �iπc�n� 1∕2� of the
original, which are closest to the real axis �n � 0�, and in com-
plete accord with the ideology of Eq. (A8). Moreover, the tra-
ditional way of exactly calculating the Fourier transform for
E�x� from Eq. (A16) is to elucidate the contributions of those
two poles.

We also were able to find a function f c�x�with the following
curious asymptotic behavior of MFT at jxj → ∞. Its MFT de-
creases faster than any power of jxj−n, but slower than
exp�−γjxj� with any γ > 0. To possess such an unusual prop-
erty, f c�x� must have singularity (or several of them) on the
real axis in the plane, Im�x � x0 � ix00� � 0. However, this sin-
gularity should not have discontinuity of f c�x� or of any
derivative dNf ∕dxN of finite order N . Here is an example of
such a function:

f c�x� �
	
1 − exp

�
−

1
jxj

�

exp

�
−

������������������
�1� x2�4

q ���
2

p �
: (A18)

By itself, f c�x� is not an eigenfunction of MFT. However, we
were able to check numerically that application of procedure

Eq. (18) from the main text to f c�x� transforms it to an MFT
eigenfunction, while preserving property

f self−MFT�x� � exp
�
−c · jxj12 � O�ln jxj�� at x → ∞; c ≈ 1.6:

(A19)

However, the resultant self-MFT function at jxj≳ 1 had oscil-
lations (changes of sign).

APPENDIX B: STUDY OF EIGENFUNCTIONS
OF MFT VIA DFT
The discussion of eigenfunctions of the MFT operator acting
upon functions of the dimensionless argument x requires a
large symmetric interval −L∕2 < x < L∕2, i.e., a � −L∕2,
and L is also dimensionless. Using DFT as an approximation
of MFT means that the step in the x-coordinate is the same as
the step in the q-coordinate. Recalling that sx � L∕N and
sq � 2π∕L, we obtain from the requirement sq � sx the
relationship 2π∕L � L∕N , that is,

L �
����������
2πN

p
; sx � sq �

������������
2π∕N

p
: (B1)

So the length L of the x-interval −L∕2 < x < L∕2 is a dimen-
sionless number in that application of DFT, and it grows as����������
2πN

p
with the growth of N . For example, N � 210 � 1024

yields an interval of dimensionless length L ≈ 80 and step
sx � sq ≈ 0.08; and for N � 220 � 1; 048; 576 one gets L ≈ 2.6 ·
103 and sx � sq ≈ 2.5 · 10−3. A larger N yields a better approxi-
mation of MFT by DFT. In its turn, approximation of

h�x� � MFTff g�x� � 1������
2π

p
Z

f �x0� exp�ixx0�dx (B2)

via DFT is made by the following formulae:

f n � f �−0.5L� n · L∕N�; ym � L
N

· phys�m�;
h�ym� � �−1�m�DFTff g�m: (B3)

The difference between Λ · f n and �−1�n ·
�DFTff g�phys�n��N∕2 characterizes the error in the hypothetical
relationship

f �x� � ? � Λ
1������
2π

p
Z �∞

−∞
f �x0� exp�ixx0�dx: (B4)

We verified this procedure with functions g0�x� �
exp�−x2∕2� and c0�x� � 1∕ cosh�x

��������
π∕2

p
�, both corresponding

to eigenvalues of Λ0 � 1, and function g1�x� �
0.5�x − d∕dx�g0�x� ≡ xg0�x�, corresponding to an eigenvalue
of Λ1 � �i. Even for a very small N , N � 32, and L ≈ 14
and s ≈ 0.4, the maximum modulus of error under that pro-
cedure was 10−11 for g0�x�, 10−10 for xg0�x�, and 10−4 for
c0�x�. For N � 512, L ≈ 56, and s ≈ 0.11, the maximum modu-
lus of error was less than or about 10−15 for all of these three
functions.
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