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Coherent random walks in free space
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Two-dimensional continuous time quantum random
walks (CTQRW) are physical processes where quantum
particles simultaneously evolve in different permissible
directions within discrete graphs. In order to force the
quantum walkers (QWs) to evolve in such a fashion, one
generally requires periodic potentials. Here, we demon-
strate that two-dimensional CTQRW can be generated
in free space by properly tailoring the initial wave func-
tions. We analytically show that within a certain spatial
region the arising probability distribution quantitatively
resembles the probability pattern exhibited by a QW
traversing a periodic lattice potential. These theoretical
predictions were experimentally verified using classical
laser light, appropriately shaped by a spatial light
modulator. Expanding the presented results to the case
of multiple walkers may open new possibilities in quan-
tum information technology using bulk optics. ©2014
Optical Society of America

OCIS codes: (270.0270) Quantum optics; (270.1670) Coherent optical
effects.
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Classical random walks are ubiquitous in various research fields
such as physics, biology, and finance theory [1-4]. In most of
these disciplines, classical random walks are among the most
powerful mathematical tools used for developing advanced al-
gorithms [3]. Within the framework of quantum mechanics,
where the inherent superposition principle and entanglement
enable parallelization, random walks of quantum particles may
surpass the potential offered by their classical counterpart
[5-7]. In that vein, for instance, computational algorithms
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based on quantum random walks have been presented to over-
come several fundamental problems more efficiently [8].

In essence, one-dimensional (1D) continuous time quan-
tum random walks (CTQRWS) can be implemented via tun-
neling of quantum particles between adjacent sites in discrete
systems [9]. In other words, the wave dynamics occurring in
coupled systems, such as crystalline structures and periodic
photonic lattices, is essentially equivalent to quantum walks
of single particles [2,6,10]. In fact, CTQRWs have been dem-
onstrated using different physical platforms ranging from nu-
clear magnetic resonance [11] and optical resonators [12] to
evanescently coupled waveguide lattices [13]. Additionally,
an approach to extend the concept of CTQRW: to some other
physical setting where the so-called quantum walkers (QWs)
can freely evolve might be of interest. That is, provided the fact
that such free evolution—in the absence of any external
potential—would exhibit a dynamical behavior comparable
to a CTQRW.

In this Letter, we demonstrate that CTQRWSs can be real-
ized in free space through the spatial evolution of a single QW
whose initial wave function y is appropriately shaped so as to
exhibit the highest probability amplitude around the origin.
We experimentally demonstrate our theoretical findings by
using paraxial optical beams. Evidently, the usage of such
classical beams to explore the propagation dynamics of
point-like quantum particles is possible since both phenomena
are mathematically described by the same equation. This, in
turn, makes our approach suitable for the realization of ran-
dom walks using different quantum particles, including elec-
trons and single photons [14]. For instance, the feasibility of
tailoring electron wave packets is by now possible employing
nanoscale holograms [15].

Since the terms quantum random walk and coherent ran-
dom walk can be used synonymously [6], and because our ex-
periments were conducted using classical light, throughout our
Letter we refer to coherent random walks (CRWs). To study
the spatial evolution of a general wave function envelope
v (x, 9, z), we consider the paraxial wave equation
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which can be derived from first principles for both quantum
particles and light beams. Here, we use Vi = 0%/ox*+
0 /0y?*; z is the propagation distance and # = 2x/4 is the wave
number. As previously mentioned, the evolution of quantum
particles and classical light follows the same mathematical
description. Thus, Eq. (1) is equivalent to the Schrodinger
equation, which describes the temporal evolution of free par-
ticles. In fact, the temporal evolution can also be mapped to a
spatial propagation; for instance, this formalism has been
successfully used in Ref. [15] to study the generation of elec-
tron Airy beams.

We start our analysis with the initially localized wave func-
tion envelope

w(x,y 0) = Ne D120 (ax) ], (ay), 2

which is symmetric around the origin (x =y =0), and
Ja(ax) represents a Bessel function of the first kind of order
n. Note that the Gaussian apodization guarantees the require-
ment of finite energy, while V provides the necessary normali-
zation. Importantly, the Bessel profiles introduced here are not
azimuthally symmetric as the usual diffraction-free Bessel
beams. Following the approach reported in Refs. [16,17],
one can show that the evolution dynamics of such initally
Gaussian-apodized Bessel envelopes is analytically described by
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Here, we have A(s, z) = ako’s/(ko? - iz) and B(z) =
a*(z + iz* [ (ko* - iz)) [ (4k), with s taking the place of x
and y, respectively.

Of particular interest for our work is the case where the
initial probability amplitude is given by

w(x,0) = N exp[-x?/26%] ] (ax). 4)
In this 1D scenario, the arising probability distribution within
a parabolic region in the (x,2) plane (depicted in Fig. 1)
resembles not only qualitatively but quantitatively [18] the
probability pattern exhibited by a QW traversing a uniform
periodic potential [9,13]. This is true, despite the fact that
the evolution takes place in free space, i.e., a lattice potential
is not present at all.

In order to analytically derive the evolution dynamics of the
initial wave function as given in Eq. (4), we consider the case of
a very broad Gaussian envelope (k6? > z; 6 > x) apodizing a
Bessel profile of order zero, as given in Eq. (4), such that the
evolution dynamics can be approximated by
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Fig. 1. Theoretical probability evolution. (a) Probability distribution
[Wlaice (7 2) |* expected for a quantum walker traversing a uniform lat-
tice, where the lattice sites are labeled by 7. (b) Calculated free space
probability density, |wg(x,, 2)|?, plotted for the different transverse
positions x,, = nx/a. (c) The difference |y (%, 2) - Wiagice (> 2) %

- a*z
v = e ()@

Note that Eq. (5) is only valid within a finite transverse win-
dow and for a certain propagation distance, both determined
by the apodization envelope (k6 > z; 6 > x). From Eq. (5),
one can readily see that at x = 0, the evolution is simply given
by w(x = 0,z) = Jo(a’z/4k), which is identical to the prob-
ability amplitude of a single QW in the excited site of a uni-
form lattice [10,13]. Furthermore, for every x,, = mn/a, m
being an integer, one can show [18] that the evolution equa-
tion Eq. (5) becomes

w(x,, 2) = (=0)"] ,(a’z/4k), (6)

which is mathematically identical to the probability amplitude
described by a QW along the mth site within a periodic lattice
[10,13]. To be precise, Eq. (6) is a good approximation within
the aforementioned parabolic region bounded by z >
2,, 2 16k(m* + 2m + 1) /a® [18

In Fig. 1, we illustrate these effects by comparing the prob-
ability pattern of a QW traversing a periodic potential, given
by Eq. (6), and the probability distribution corresponding to a
single QW propagating in free space described by Eq. (5). In
order to have a meaningful comparison between |y qice (7 2)|?
and |y (x,, 2)|?, it is important to be aware of the fact that
[W1actice (7 2)|? is a probability distribution, whereas |y (x, z)|*
is a probability density. Consequently, in Fig. 1, we actually

plot [7407 lw (3 2) Pdx
grate over a very small transverse distance. For brevity, we
omitted the Ax in the caption of Fig. 1. Note that in an experi-
ment, the transverse width Ax is associated with the detector
width. Figure 1(c) depicts the difference between both space-
evolved wave functions, [Wg - Wiaice|*- [t is well perceived that
within the specified region the deviation between both propa-
gation patterns, which includes their respective phases, is al-
most negligible.

In order to experimentally verify our theoretical findings,
we have shaped the amplitude and phase of a collimated light
beam using a spatial light modulator (SLM). The correspond-
ing setup is shown in Fig. 2. In order to generate the desired
input field in the z = 0 plane, we implement its Fourier trans-
form w (&, 1) = FT[y] on the SLM. In general, the field at the
SLM plane can be written as (&, 17) = M (&, n) explip(& )],

|y (x,, 2)|? Ax, where we inte-
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Fig. 2. Experimental setup consisting of a Helium Neon laser
(A = 633 nm), telescope for beam expansion, spatial light modulator
(Holoeye Pluto VIS) for amplitude and phase modulation, spherical lens
(f =300 mm) for Fourier transformation, microscope objective (10x
Olympus Plan Achromat) for imaging, and movable CCD camera (Basler
Ace 1600-20gm).

where M (& n) and (&, ) represent the amplitude and phase
distribution, respectively. Following [19], any complex func-
tion, such as (&, 77), can be obtained by applying a phase-only
modulation given by

x(&n) = expliM (& P& n) + ¢ (&l (7)

Importantly, the imposed periodic phase ¢g(&n) =
27(&, n)/d acts as a grating that separates the different diffrac-
tion orders. When Fourier transforming the beam using a
spherical lens and postselecting the first diffraction order,
the desired field distribution is obtained at z = 0. In our case,
we set 4 = 64 pm and the focal length of the lens to
f =300 mm. The three-dimensional intensity distribution
of the light was recorded using a 10x microscope objective
and a CCD camera mounted on a movable linear stage.
The propagation distance under study was chosen to
be Az = 2.5 cm.

For the creation of a 1D free space CRW, we generate the
initial field distribution given by Eq. (4) with @ = 125 mm™!
and ¢ = 0.13 mm. The experimental propagation pattern
over the (x, ) plane is shown in Fig. 3(b) along with the actual
camera images of the intensity distribution at z = 0 cm and
z = 2.5 cm on bottom and top, respectively. Note the good
agreement between the experimental data, Fig. 3(b), and our
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theoretical predictions, Fig. 3(a). This is possible since for the
chosen experimental parameters, ¢ = 0.13 mm, the propaga-
tion distance under consideration falls within the established
limits, that is, z < k6? and k6? = 18 cm. To quantitatively
assess the agreement between the observed and the theoreti-
cally expected results, in Fig. 3 we superimpose both intensity
patterns. Figure 3(c) depicts the intensity distribution in the
initial plane for y = 0. The intensity contrast between the
central maximum and the first side minimum, for instance, is
1 nax/ I min = 143, whereas no emphasis has been laid on maxi-
mizing this ratio. Moreover, to fully quantify the agreement
between theory and experiment, we calculated the coefficient
of determination which, for the values depicted in Fig. 3(c), is
R? = 0.9915. Figure 3(d) shows the longitudinal intensity dis-
tribution along z at xy = 0 and x; = 7/ = 25 pm, as well as
the theoretically predicted Bessel patterns. From this graph one
can clearly see that the most pronounced difference between
the experimentally observed evolution and the Bessel pattern is
found at x; for z & 0 whereas, for larger propagation distances,
the deviation decreases.

We would like to emphasize that single-photon CRW's can
be realized in our setup by replacing the continuous wave laser
with a single-photon source and scanning the transverse posi-
tion x,, using photon-counting detectors.

Another interesting scenario occurs when a linear superpo-
sition of two transverse Bessel profiles of order zero, y(x, 0) =
exp[-x?/26%|(Jo(ax) + Jo(ax - nr)), is considered as initial
wave envelope. In this case, the arising probability distribution
corresponds to a situation where a single QW is initially pre-
pared in a coherent superposition of states. In this setting, the
initial wave function features two main lobes separated by a
transverse distance of Ax = nz/a. In Fig. 4, this process is
depicted for the specific case of » = 2. In addition, in [18],
it is shown that within a certain region the dynamics obeyed
by the QW propagating in free space is indeed identical to the
one exhibited by a QW being simultaneously launched into
two sites of a periodic lattice. The experimental results pre-
sented in Fig. 4(b) were obtained analogously to the single
excitation case.
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Fig. 3. Theoretical and experimental comparison for a 1D CRW in free space. (a) Theoretical free-space probability evolution corresponding to the
initial wave profile given by Eq. (4) using the parameters @ = 125 mm™! and 6 = 0.13 mm. (b) Bottom, experimental intensity envelope as produced in
our setup at z = 0 cm. Center, recorded intensity evolution of the light beam at the plane y = 0. Top, final intensity pattern after a propagation distance
of 2 =2.5 cm. (c) Comparison between theoretical and experimental intensity distribution in the initial plane at y = 0. (d) Comparison between
theoretical and experimental intensity evolution at two different transverse positions. xy = 0 and x; = z#/a = 25 pm.
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Fig. 4. Theoretical and experimental comparison for a 1D CRW in a
coherent superposition of states. (a) Theoretical free-space probability
evolution of the initial wave function y(x, 0) = exp[-x?/26%](J,(ax) +
Jo(ax - 27)) using the parameters @ = 145 mm™' and ¢ =1 mm.
(b) Bottom, experimental initial intensity profile. Center, top view of
the intensity evolution. Top, intensity pattern recorded after a propaga-
tion distance of z = 2.5 cm.

Finally, in order to demonstrate the potentiality of this ap-
proach for the realization of 2D free space CRWs, we consider
the experimental propagation of the initial field profile
given by

w(x 9, 0) = exp[-(x* + y*) /26%) o (ax) /o (). (8)
To do so, we tune the SLM such that @ = 310 mm™! and
0 = 0.13 mm. The experimental propagation dynamics are
presented in Fig. 5, where now the intensity pattern resembles
the probability distribution of a QW evolving through a 2D
square lattice. Figures 5(a)-5(c) show the experimental inten-
sity patterns registered at three planes perpendicular to the
propagation direction. These observations fully confirm
our theoretical predictions depicted in Figs. 5(d)-5(f). The
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Fig. 5. Experimental results for a 2D CRW. Top row, experimental
images taken with a CCD camera. Central row, theoretical intensity
evolution. Bottom row, stitched image from all camera images, showing
the 2D CRW of a “single excitation.”
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3D picture at the bottom of Fig. 5 shows the experimental
evolution of the registered light spots where the intensity is
a local maximum. We emphasize again that the evolution takes
place in free space and no lattice potential is present.

In conclusion, we have demonstrated theoretically and ex-
perimentally that CRWs can be generated in the absence of
any periodic environment, e.g., in the bulk of a uniform
material or even in free space. We performed experiments us-
ing classical light beams that resemble a probability distribu-
tion of QW as if a lattice potential were present. With current
technology, we foresee that experiments will soon be feasible
using real quantum particles, in particular photons and elec-
trons (see, e.g., [15]). As CTQRWs carry the potential of sub-
stantially accelerating computation schemes [2,8], our results
may open new possibilities in quantum information technol-
ogy using bulk optics. However, this potential can only be
fully tapped by expanding the presented results to the case
of muldiple walkers.
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