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Abstract: As optical fiber communications and fiber lasers approach
fundamental limits there is considerable interest in multimode fibers. In
nonlinear science, they represent an exciting environment for complex
nonlinear waves. As in single-mode fiber, solitons may be particularly
important. Multimode solitons consist of synchronized, non-dispersive
pulses in multiple spatial modes, which interact via the Kerr nonlinearity of
the fiber. They are expected to exhibit novel spatiotemporal characteristics,
dynamics and, like single-mode solitons, may provide a convenient intuitive
tool for understanding more complex nonlinear phenomena in multimode
fibers. Here we explore experimentally and numerically basic properties
and spatiotemporal behaviors of these solitons: their formation, fission, and
Raman dynamics.
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1. Introduction

1.1. Background

Single-mode optical fibers (SMFs) provide a convenient platform for the study of the solitons
of the nonlinear Schrödinger equation (NLSE), which are now among the most thoroughly
studied phenomena in nonlinear dynamics [1, 2]. The formation and interaction of these ob-
jects provides a conceptual framework for understanding many nonlinear optical phenomena,
from supercontinuum generation in SMFs [3, 4] to mode-locked lasers [5, 6] and optical rogue
waves [7]. In multimode systems like multimode fibers (MMFs), more complex multimode
solitons (MM solitons) are theoretically possible [8–16]. For the purposes of this article, we
will use the following definition: MM solitons are non-dispersive pulses whose energy is dis-
tributed over multiple spatial modes. They hence counter both intra- and intermodal dispersion
(i.e., group velocity dispersion and modal velocity mismatch) and should come in a variety of
different spatiotemporal shapes, depending on the modes involved. Like (1+1)-D solitons for
SMF, MM solitons may provide a simple framework for the interpretation of complex nonlin-
ear dynamics in MMFs. This is a key reason for interest in MM solitons. They should exhibit
multimode spatiotemporal dynamics unlike single-mode solitons, and represent an important
potential platform for applications in multimode fiber lasers and spatial division multiplexing.

In spite of considerable theoretical work [8–17], to date there is only one experimental
study [18] of MM solitons in MMFs. Other studies on nonlinear optics in MMFs have fo-
cused primarily on few-mode intermodal frequency mixing effects, as modal dispersion allows
phase-matching of efficient, broadband four-wave mixing [19–21] and dispersive wave radia-
tion [22–25]. Studies in the normal dispersion regime have shown strong intermodal Raman
effects [26–28]. Intermodal nonlinear effects are also important in gas-filled photonic crys-
tal fibers, where Raman-free tunable nonlinearity, tunable dispersion and plasma effects make
for a powerful experimental platform [24, 25]. The recent work by Renninger et al. [18] stud-
ied solitons in a graded-index (GRIN) MM fiber, whose relatively small intermodal dispersion
facilitates intermodal nonlinear effects. This study provided the first experimental evidence to-
wards confirming the numerous theoretical predictions [8,9,11–13,17] of and about multimode
solitons. However, as the soliton was comprised primarily (>90%) of the fundamental mode
and contained a relatively small total energy (0.5 nJ), nonlinear effects – including the syn-
chronization of the pulses from two higher spatial modes – were due almost exclusively to the
fundamental mode. Consequently, the soliton behaved very similarly to a single-mode soliton.
Many properties and behaviors of the full range of MM solitons hence remain unknown or un-
confirmed by experiment. First, it will be important to confirm that solitons with higher energy
and with higher energy in higher-order modes (HOMs) exist. Second, we should investigate
how MM solitons form from a given launched pulse, and understand the analogue of soliton
fission. Similar to the fission of polarization vector solitons [29], we should expect the soliton
fission process in MMFs to result in MM solitons and dispersive radiation with various spa-
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tiotemporal distributions. Finally, the response of MM solitons to perturbative effects such as
Raman scattering should be studied. These aspects will help to build up a knowledge base that
may eventually allow for intuitive interpretations of nonlinear multimode dynamics such as su-
percontinuum in MM fibers. In this work, we study numerically and experimentally these issues
in a multimode GRIN fiber and provide a first look at the complex spatiotemporal dynamics of
MM solitons. In doing so, we also provide promising indications for the application value of
multimode optical solitons.

1.2. Methods

We use two complementary approaches to numerically model propagation of spatiotemporal
optical pulses in the multimode GRIN fiber. The first and most direct is a generalized (3+1)-D
nonlinear Schrödinger equation (GNLSE):

∂zA(x,y,z, t) =
i

2ke(ωo)
∇2

T A+ D̂A+ i
ke(ωo)

2
((n(x,y)/ne f f )

2 −1)A

+ iγ(1+
i

ωo
∂t)[(1− fR)|A|2A+ fR

∫ t

−∞
dτhR(τ)|A(x,y,z, t − τ)|2] (1)

where ∇2
T = ∂ 2

x + ∂ 2
y , ke(ω) = ne f f ω/c, ne f f is the average index, D̂ is the Taylor series ap-

proximation to the chromatic dispersion operator =
3
∑

m=2
im+1 βm

m! ∂ m
t , hR is the Raman response

of the fiber medium, fR ≈ 0.18 is the Raman contribution to the Kerr effect , γ = n2ke(ωo) and
n2 is the nonlinear index. In the case of a quadratic index profile (and neglecting Raman, shock
and dispersion orders greater than β2), Eq. (1) is a Gross-Pitaevskii equation, which is used to
model Bose-Einstein condensates [30]. Alternatively, one may employ a set of coupled (1+1)D
GNLSEs, for N modes of consideration, each with temporal envelope Ap. This is known as the
generalized multimode NLSE (GMM-NLSE) [31, 32]:

∂zAp(z, t) = iδβ (p)
0 Ap −δβ (p)

1 ∂tAp + D̂pAp + i
n2ωo

c
(1+

i
ωo

∂t)
N

∑
l,m,n

[(1− fR)S
K
plmnAlAmA∗

n

+ fRSR
plmnAl

∫ t

−∞
dτhR(τ)Am(z, t − τ)A∗

n(z, t − τ)] (2)

, where δβ (p)
0 (δβ (p)

1 ) are the differences relative to the fundamental mode of the 1st (2nd)
coefficient in the Taylor series expansion of the wavenumber for the mode p about ωo, D̂p is
D̂ as defined above for mode p, and SR

plmn and SK
plmn are the nonlinear coupling coefficients for

the Raman and Kerr effect respectively [32]. For all simulations using Eq. (2) discussed in the
present work, we assume all modes share a single linear polarization and neglect the shock term.
For all simulations we use n2 = 2.3×10−20m2/W , and in Eq. (1) use β2 = -25 f s2/mm and β3

= 140 f s3/mm. For Eq. (2), the spatial modes and dispersion parameters are calculated at 1550-
nm following the same method as in previous work [18], modelling the chromatic dispersion of
the core index by Ge-doped fused silica [33]. The GMM-NLSE has, for example, been used to
model supercontinuum, self-focusing and FWM in MMFs [33–35].

1.3. Example simulation results

Before introducing our experimental results, we consider numerical simulations of pulse prop-
agation using Eq. (2). These simulations show qualitatively the different energy regimes and
characteristic nonlinear dynamics in each (Fig. 1) and will serve as a conceptual guide through-
out the rest of the article. We consider for simplicity an arbitrary particular initial condition
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Fig. 1. Mode-resolved simulation results for 25 m propagation of a pulse equally distributed
amongst the first 5 modes of a graded index fiber (zero angular momentum modes). The
initial pulse duration is 500 fs and center wavelength 1550 nm. Left: temporal evolution
of each mode. Middle: final temporal profiles, linear scale. Right: final spectra. The final
spectrum and temporal intensity for each mode are normalized to the maximum spectral and
temporal intensity for the given mode and are vertically offset for visibility. The temporal
evolution plots are normalized to the initial peak intensity of the fundamental mode. For
the temporal evolution plots, the distributions are plotted for 2.5, 8.75, 15 and 21.25 m.
The modes are color-coded as in adjacent plots, and offset along the distance axis slightly
to increase visibility. Top row: linear propagation. Middle row, energy regime 1: nonlinear
propagation with each mode seeded with 0.34 nJ pulse energy. A dotted line shows the
center wavelength in each mode. Bottom row, energy regime 2: nonlinear propagation with
each mode seeded with 2.74 nJ pulse energy.

where the first five modes of the GRIN fiber are excited with identical pulses with equal energy.
As will be discussed below, details of the observed behavior depend on the initial launch condi-
tions (distribution among modes). For example: the modal distribution of the soliton(s) formed
and the energy level at which fission first occurs both depend on the initial mode distribution.
However, for nearly all conditions we have considered, the main features of the observed dy-
namics are qualitatively similar. We consider only the modes without angular momentum (i.e.,
m = 0 in the notation used by Mafi [33]). These modes are the ones excited by a centered Gaus-
sian beam, and over short distances are relatively unaffected by linear mode coupling from, e.g.
bending [33]. Simulations conducted with a mixture of m = 0 and m �= 0 modes produced qual-
itatively similar results as those with only m = 0 modes. We assume a GRIN fiber with 0.275
numerical aperture (NA) and a 62.5 μm core diameter. We launch 1550 nm, 500-fs Gaussian
pulses and monitor propagation through 25 m of fiber.

At very low pulse energy, pulses in each mode disperse individually due to intramodal (group
velocity) dispersion and separate from one another due to intermodal dispersion (Fig. 1, top
row). As pulse energy increases, a single MM soliton may form, consisting of synchronized
pulses from several modes. The pulse in each mode synchronizes due to wavelength shifts
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Fig. 2. Simulated (left) and experimental (right) spectra for increasing pulse energy
launched into a 25 m GRIN fiber. For simulated spectra, the full-field spatially-averaged
spectra are shown, which accurately represents the spectral energy distribution in the field.
The energies are 3.2, 5, 10, 14, 24 and 34 nJ (experiment) and 0 (i.e., linear propaga-
tion), 1, 10, 14, 19 and 22 nJ (simulation). The purpose of the comparison is to show
the qualitative similarity; the two plots correspond to different initial modal energy dis-
tributions, the experimental launched pulse has a non-Gaussian spectrum, and there is a
strong wavelength-dependent loss which is not considered in the simulation. Nonetheless,
the quantitative agreement is acceptable until loss becomes important (when the Raman
soliton exceeds 1800 nm). The energy in the most red-shifted peak is calculated to vary
from 0 to approximately 40%, in agreement with a measurement made using a Ge window.

caused by intermodal nonlinear effects. In the GRIN fiber considered here, lower-order modes
shift to redder wavelengths in order to speed up and reach a common group velocity with pulses
in HOMs. Note that the cause of this wavelength shift can be intermodal Raman scattering,
or purely Kerr effects such as intermode cross-phase modulation or four-wave mixing (as in
Ref. 18, where Raman was neglected). In Fig. 1 (middle row, energy regime 1: roughly <
5 nJ), most of the soliton’s energy is within the first 4 modes. At greater energy, the pulse
undergoes fission into multiple MM solitons and MM dispersive radiation (Fig. 1 bottom row,
energy regime 2: roughly > 5 nJ). The resulting MM solitons show a remarkable spatiotemporal
diversity: many different combinations of modes can comprise a MM soliton. The most intense
soliton typically contains more of the fundamental mode than any higher-order mode (HOM),
but also usually contains non-negligible energy from HOMs - it remains a MM soliton. In
the fission process and subsequently, stimulated Raman scattering leads to amplification of
the lower-order components of these MM solitons. Their spectrum shifts red due to a process
resembling the well-known soliton self-frequency shift (SSFS) [36, 37], but pulses in all the
modes shift their spectrum in a staggered manner, preserving their temporal synchronization.
The Raman scattering bias towards the fundamental mode is due to two cooperating factors.
First, because the low-order modes in the MM solitons are redshifted to form the soliton, they
are spectrally positioned to receive Raman gain from the bluer HOMs. Secondly, of all the
modes in a GRIN fiber, the fundamental mode has the most overlap with the other modes
[38]. This typically causes it to experience the highest Raman gain in a multimode amplifier,
an effect commonly called ’Raman beam cleanup’ [38, 39]. Together, these factors account
for the strong intermodal energy transfer, via Raman scattering, into the fundamental mode.
The combined effect produces an ultrashort, spatiotemporally-localized pulse red-shifted from
the pump field and was evidently observed in early experiments in the >1300 nm emission
produced by excitation with 90 μJ, 150 ps, 1064 nm pulses. However, the authors were unable
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to fully explain their observations [27].

1.4. Experimental methods

Experimentally, we launch 500-fs pulses at 1550 nm from an amplified erbium fiber laser into
GRIN fibers with 0.275 NA and 62.5 μm core diameter. A lens, half-wave plate, polarizing
beamsplitter, and three-axis translation stage allow control of the initial energy and modal ex-
citation. The important distinctions from previous work are that a) the fiber has a graded-index
profile, b) we deliberately attempt to excite combinations of, rather than individual, modes, and
c) we interpret our results in the context of simulations which show clear multimode soliton be-
havior. Mode coupling due to mechanical waveguide perturbations is minimized by primarily
centered excitation (exciting m= 0 modes), by use of a relatively short, jacketed, connectorized
fiber, and by minimizing bending [33]. As the spectrum of the field varies with space, a given
measurement of the spectrum depends on the alignment and may not reflect accurately the to-
tal spectral energy distribution. Therefore, we record an overall averaged spectrum by using a
defocused lens to couple the light into single mode fiber before measuring the spectrum. By
using a germanium window, which acts as a long-pass filter cutting on at roughly 1800 nm,
we can determine the amount of energy that is shifted beyond 1800 nm. These two spectral
measurements (the spectrum analyzer, and the power meter after a long-pass filter) agree with
one another and with simulations, indicating that the Raman soliton at wavelengths greater than
1800 nm contains 10-50% (depending on launch conditions) of the total launched energy. To
measure the pulse in the time domain, use of a two-photon autocorrelator is critical as it avoids
the problem of phase-matching a complex, broadband spatiotemporal pulsed beam.

Figure 2 (left panel) shows the spectrum of the field generated by solving Eq. (2) with the
initial condition mentioned above, for increasing energy. Figure 2 (right panel) shows the spec-
tra measured for increasing energy in an experiment with a 25-m GRIN fiber. As the launch
conditions and initial pulse spectra are by no means identical and because the simulation ne-
glects infrared-wavelength loss, the comparison is meant only to show the qualitative similarity.
Neglecting the energy scale (in Fig. 2, the experimental 2100-nm Raman soliton has 14 nJ en-
ergy and 90 fs duration), both plots are also qualitatively similar to the result which would be
expected in a single-mode fiber [36, 40]. It is natural to wonder if the experimental results can
be explained by propagation of the fundamental mode only. Pulses in HOMs excited initially
could simply disperse, rather than becoming involved in a MM soliton. In this case, the beam
at the output of a fiber would still show multiple modes. However, the modes would not be
nonlinearly coupled.

In the following sections, we consider an experimental test to confirm multimode soliton
behavior and to disprove the null hypothesis just mentioned. The results of this test indicate
that multimode solitons are observed, with similar behavior as expected from simulations. Fur-
ther analysis of the experimental results provides some deeper insights into the behavior of
multimode solitons. Then, we turn to a higher energy regime and study the spatiotemporal
effects of multimode soliton fission and Raman scattering. The present work is the first to se-
riously consider multimode pulse propagation and multimode solitons except under extremely
limited and simplified conditions. Furthermore, direct spatiotemporal or modal measurements
(e.g., [41–49]) are not practical given the relatively low energy and average power, the rela-
tively large number of modes, and the relatively poor performance of InGaAs technology in
comparison with Si used for shorter wavelengths. Therefore, in order to interpret the results
correctly, we need to account for and verify several different assumptions. While this analysis
is necessary to justify the conclusions, the conclusions themselves can be understood without
consideration of the detailed methods and analysis. These conclusions have been summarized
in the first paragraph of most sections below.

#227079 - $15.00 USD Received 4 Dec 2014; revised 24 Jan 2015; accepted 24 Jan 2015; published 4 Feb 2015 
© 2015 OSA 9 Feb 2015 | Vol. 23, No. 3 | DOI:10.1364/OE.23.003492 | OPTICS EXPRESS 3498 



2. Main results

2.1. Outline of a test to experimentally observe multimode solitons

In this section we outline a test to prove that multimode solitons are formed. This test is con-
ducted in energy regime 1 (Fig. 1 middle row), where a single MM soliton forms from the
launched pulse. The core of our test is that the required nonlinear phase shift needed to balance
dispersive effects and form a MM soliton of a given duration should be at least equal to the en-
ergy required for a single-mode soliton of equivalent spacetime localization. This test confirms
MM solitons without need for simulations. However, for an added layer of evidence, we also
perform and find excellent agreement with a similar numerical experiment using Eq. (1). As
in previous works, we consider only one transverse dimension [11–13, 18] and assume a radial
symmetry of the results in order to compare with experiment. The main conclusion of this sec-
tion is that MM solitons are observed in our experiments, as in simulations, for a wide range of
sizes and mode distributions, including up to 8-13 modes and with average spatial dimensions
up to ≈ 3 times the fundamental mode size.

In the following analysis two implicit approximations are made. At the end, we will confirm
that they are both justified. The first is that the experimentally measured beam size is roughly the
average beam size, which in general a MM soliton will oscillate around. For the fiber considered
here, this oscillation has a period of about 400 μm [18]. The phase of this oscillation depends
on many conditions of the experiment which fluctuate over the many pulses that contribute to an
experimental measurement (e.g., the phase front and position of the beam as it enters the fiber,
or as it exits the fiber), and may vary across the wavelength of the broadband pulse. The phase
also depends on conditions which vary uncontrollably from experiment to experiment (e.g., the
fiber length to within 100 μm or the precise launch position). Hence over the many pulses that
contribute to most measurements, and over many experiments, spatial measurements should
tend to reflect the average spatial dimensions. Second, we assume that, provided the pulse does
not split apart (which occurs in a higher energy regime discussed in a later section) the total
energy is relatively close to the energy contained within the soliton. Since the pulse will emit
dispersive radiation as it reshapes into a soliton, this approximation is not completely accurate.
Nonetheless, it will turn out to be accurate enough for our present purpose of proving the
observation of MM solitons and investigating their qualitative behavior.

For a single-mode soliton, the relationship between the energy, Ep, and duration, τ , is:

Epτ = |β2|R2
gλo/n2 = M1(Rg) (3)

where λo is the center wavelength. Rg is the spatial dimension (waist) of a Gaussian beam
or mode, so that Ep/(Rgτ) is the pulse intensity. For beams in a multimode fiber, different
combinations of modes can produce a total beam with Rg that is on average greater than or
equal to the fundamental mode size, Ro.

To form a MM soliton, nonlinearity must somehow balance intramodal dispersion (group
velocity dispersion) as well as intermodal dispersion (modal velocity mismatch). The nonlinear
phase shift φ ∝ n2I ∝ n2Ep/(τR2

g) should therefore be greater than or equal to the nonlinear
phase shift required for a single-mode soliton of the same spatiotemporal localization τR2

g. For
a fixed Rg, a plot of measurements 1/τ as a function energy, Ep, may be fitted by a straight line.
The line’s slope, M, characterizes the relationship between the nonlinear and linear dispersive
phases at balance. If the observed pulses are MM solitons, then they will require relatively more
nonlinear phase for a given τ . Hence the single-mode soliton slope, M1(Rg) (Eq. (3)), should
be a lower bound for the slope M(Rg) measured for a MM soliton.

As a null hypothesis, consider the hypothetical scenario in which the only observed solitons
are purely in the fundamental mode, and pulses in all other modes only broaden and move away
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(i.e., propagate linearly). That is, the field is a fundamental mode soliton plus a higher-order
mode background (HOMB). This is an important case to consider, as measurements would
imply Rg > Ro, and M > |β2|R2

oλo/n2 (i.e. the slope for a single-mode soliton in the fundamen-
tal mode only), but no MM solitons would be present. For this situation it is straightforward
(see Appendix) to derive the measured slope as modified by the effect of the HOMB, MFHB,
as a function of Rg. However, the precise form of MFHB(Rg) is unimportant. The important
conclusion is simple: since the energy within the actual single-mode soliton is less than the
total measured energy, the slope measured for a single-mode soliton plus HOMB, MFHB(Rg),
is always less than or equal to the single-mode soliton slope M1(Rg). Therefore, as long as the
measured slope M(Rg) exceeds M1(Rg), it automatically exceeds MFHB(Rg). Furthermore, by
additional analysis (see Appendix) we can show that the presence of a HOMB will cause the
slope measured for a MM soliton to decrease, and therefore should only cause a false negative
rather than a false positive result. This proves that the presence of a HOMB does not invalidate
the test.

In experiments and simulations, 500-fs, 1550-nm pulses are launched into GRIN fibers as
Gaussian beams of various sizes. These excite MM solitons with various sizes Rg. The near-
field beam profile is measured and fit with a Gaussian. For each Rg, the energy is varied, and for
each value of Ep the pulse duration is measured. Note that, for the energies considered in this
section (energy regime 1 in Fig. 1), changing Ep did not cause Rg to change in any significant
or consistent way. The Ep vs 1/τ data is fit by a line to retrieve the slope M(Rg).

For the simulations, in order to account for the possible spacetime coupling of the field, we
compute the spatially-integrated interferometric autocorrelation

S(t) ∝
∫ ∞

−∞
dτ

∫ ∞

0
rdr|(E(r, t)+E(r, t − τ))2|2 (4)

which for an uncoupled field simplifies to the usual result. In all cases, a Gaussian fit is used
to characterize the real spatial dimension of the field. As the fit is only used to determine the
equivalent-size Gaussian beam, the beam profile needn’t be precisely Gaussian. However for
most cases the observed beam profiles are relatively Gaussian, reflecting the center launch
condition. For the simulation, Rg is the average over the last ≈ 50 cm of fiber.

2.2. Results of the test to observe multimode solitons

When this test is carried out, we find that the experimental results confirm observation of MM
solitons, and furthermore agree quite well with the simulation results. Mathematically, the slope
of Ep versus 1/τ , M, should fulfil the condition M(Rg)≥ M1(Rg). Figure 3 shows the resulting
M vs Rg values for both simulation and experiment, as well as the expected relationship for
single-mode solitons, M1(Rg) (Eq. (3)), and MFHB(Rg) for the case where only the fundamental
mode contains a soliton (Eq. (8), in the Appendix). The result from Ref. 18 is shown as a point
of reference. This illustrates how the MM solitons observed in the current work differ from
single-mode solitons much more significantly than MM solitons dominated by the fundamental
mode. The shaded region shows the experiments and simulations which satisfy the condition
for MM soliton observation: M(Rg)> M1(Rg)> MFHB(Rg). All the experiment and simulation
points lie in this MM regime. Therefore, we can confirm the observation of MM solitons over
a wide range of spatiotemporal sizes. Experiment and simulation furthermore agree relatively
well.

2.3. Analysis of test results and properties of multimode solitons

We now revisit the two approximations/assumptions made in our test. This also allows us to
conveniently compare the current work to previous work [18], and to connect the modal picture
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Fig. 3. Summary of experimental and simulated results, and a comparison with the funda-
mental mode plus higher-order background null hypothesis (FHB). For a range of initial
seed conditions, plots of pulse energy (Ep) versus the inverse pulse duration (1/τ) ex-
hibit a roughly linear relationship, as in the (1+1) D soliton area theorem. The slope, M,
of this curve is a measure of the characteristic scale of energy (nonlinearity) required to
balance linear intramodal (group velocity dispersion) and intermodal dispersive (modal ve-
locity mismatch) effects. The y-axis shows M(Rg), the slope calculated from experiment
and simulation Ep versus 1/τ data, versus the measured beam size, Rg. Rg is the average
size of the multimode beam in the fiber, which can have a minimum size of Ro the funda-
mental mode size, ≈ 6.5 μm) if only the fundamental mode is excited. Also shown are the
slope for single-mode solitons of the same spatial localization (M1(Rg)), and the slope for
single-mode solitons in the fundamental mode, with a dispersive multimode background
(MFHB(Rg)). The values are normalized to M1(Ro) = |β2|R2

oλo/n2, the slope for a single-
mode soliton in the fundamental mode. As a point of reference, the result of Ref. 18 is
plotted.

to the spatiotemporal one used so far. In Fig. 3, the simulation and experimental points are
overall similar in their trend and magnitudes. Since the simulation values of Rg were obtained by
averaging over the beam oscillations, the assumption that the measured beam size corresponds
to the average beam dimension is supported. In both cases the measured beam size could be
inflated by dispersive radiation in HOMs, so the value may actually slightly exceed the average
size of the soliton. However, since this would only increase the value of M required to prove
MM soliton behavior, the test results remain valid. As is apparent in Fig. 3 and from Eqs. (8)
and (9), energy in a HOMB causes the measured value of M for either a single-mode soliton
or MM soliton to increase quite slowly with Rg compared to the observed behavior for both
MM and single-mode solitons. In essence, the test M(Rg)≥ M1(Rg) is sufficient to prove MM
solitons, whether a HOMB of dispersive radiation is present or not. Therefore, neglecting the
dispersive HOMB is justified.

The beam size of the MM solitons oscillates and so a certain modal distribution corresponds
to a range of beam sizes. Figure 4 shows the number of modes contributing more than 0.5% of
the total energy to a multimode beam with a Gaussian spatial profile as a function of Rg. The
points are extracted by computing the mode overlap integrals for the first 30 m = 0 modes of
the GRIN fiber with a Gaussian beam with varying Rg. There are two branches of points, which
correspond to the maximum and minimum beam sizes. To extract the average beam size as a

#227079 - $15.00 USD Received 4 Dec 2014; revised 24 Jan 2015; accepted 24 Jan 2015; published 4 Feb 2015 
© 2015 OSA 9 Feb 2015 | Vol. 23, No. 3 | DOI:10.1364/OE.23.003492 | OPTICS EXPRESS 3501 



1 5 9 13 17 21 25
1

5

9

13

17

M
od

es
 w

ith
 >

 0
.5

%
 e

ne
rg

y

Rg (µm)

Maximum R

Minimum R
Average

Fig. 4. Mode content of Gaussian-shaped multimode solitons. The red and blue points are
computed from the overlap integrals of the first 30 m= 0 modes of the GRIN fiber. Rg is the
size of the (multimode) Gaussian beam. Ro, the size of the fundamental mode, is 6.5 μm.
The y-axis shows the number of modes that contribute more than 0.5% of the total energy
the beam with size Rg. To provide a continuous measure of the mode content as a function
of average beam size, we fit the points, and then averaged the resulting curves to produce
the average curve. For Gaussian-shaped beams/solitons, this line represents the number of
modes contributing as a function of the average spatial localization of the beam/soliton.

function of mode content, we fit curves to each set, and then average these curves. The resulting
average curve provides a measure of the number of modes required to represent a beam of a
given average spatial localization. Since we are presently considering only m= 0 modes, a prac-
tical upper limit on the number of modes in a MM soliton is approximately 20, as beyond that
the maximum spatial dimension would exceed the core dimensions. The maximally-multimode
solitons in the present work contain between 8-13 modes. More importantly, the MM soli-
tons exhibit characteristics that are quite distinct from solitons dominated by the fundamental
mode [18].

2.4. Fission and Raman scattering: energy regime 2

Having now explored the first energy regime, where only a single MM soliton forms and where
higher-order effects are not important, we turn to the higher energy regime. This regime, corre-
sponding to the bottom row of Fig. 1, emphasizes the spatiotemporal aspects of MM solitons.
For the range of conditions considered here, the typical sequence is as follows. The launched
MM pulse first compresses, then undergoes fission into numerous MM solitons, each contain-
ing a different mode distribution, as well as MM dispersive radiation. The most intense soliton
is redshifted by intrapulse Raman scattering, while preserving its multimode characteristic. The
transition from the previous energy regime occurs at a total energy that evidently depends on
the initial mode energy distribution, and it is apparent experimentally as the spectrum shows the
formation of a clear red-shifting peak. Furthermore, additional pulses are usually observed and
the duration of the main peak of the autocorrelation ceases to decrease with increasing energy,
or decreases at a slower rate than observed for lower energy launch pulses. This behavior is
qualitatively similar to single-mode fiber solitons. However, for MM solitons the processes are
spatiotemporal and, owing to the diversity of possible MM solitons, more varied and rich.
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Fig. 5. Simulation results using Eq. (1) for 2 m of GRIN fiber. Left: 10 μm waist launched
beam, final autocorrelations accounting for spacetime distribution, Middle: same for 15 μm
waist launched beam, Right: spacetime spectrum corresponding to the 28 nJ case, top: after
4 cm, bottom: after 200 cm. Energies and durations in the left and middle panels correspond
to the total coupled energy and the pulse duration assuming a Gaussian pulse.

Simulations based on Eq. (1) with one transverse dimension illustrate this behavior in 2 m of
GRIN fiber (Fig. 5). The left (middle) panel shows the expected interferometric autocorrelation
for several pulse energies when the initial launched beam has a 10 μm (15 μm) waist. The auto-
correlation of a spatiotemporal field (Eq. (4)) has some limited spatial information. Particularly
when the Raman effect is prevalent, the relatively higher intensity (lower-order mode content)
of the Raman soliton as compared with the remnant components causes the secondary peaks ob-
served in the autocorrelation to decrease in amplitude. The degree to which secondary peaks are
reduced relative to their actual energy content reflects how much less spatially localized they are
than the Raman MM soliton. The right panel shows the spatiotemporal spectrum corresponding
to the uppermost autocorrelation in the middle panel (28 nJ). After 4 cm, the spectrum shows
that numerous modes are excited, evidenced by the non-Gaussian angular distribution (top).
However, the spectral and spatial distributions are still separable. Following soliton formation
and fission, the redshifted portion of the spectrum, which corresponds to the accelerated Ra-
man soliton, exhibits relatively little structure as compared to the remnant MM solitons and
non-solitonic radiation. Evidently, the field is spatiotemporally coupled and complex (Fig. 5
right bottom).

Our experimental measurements show similar spatiotemporal phenomena. We are spectrally
limited by the 1750-nm absorption edge of the InGaAs camera used to measure the beam pro-
file. Hence, in order to observe a strong spatial nonlinear effect, we need significant initial
HOM content in order to ensure the primary elements of the dynamics occur within the spectral
range 1550 nm to 1750 nm. Therefore the alignment into the fiber is adjusted until the low-
energy output beam profile has significant energy in HOMs (two-peaked and elliptical, Fig. 6).
The experimental measurements of the spectrum, beam profile and interferometric autocorre-
lation, as well as their trends with increasing energy, all agree qualitatively very well with the
simulations. Consequently, following the simulations we interpret the dynamics as follows. At
4 nJ, the interferometric autocorrelation (Fig. 6 left) suggests a MM soliton is formed (with
secondary features in the AC corresponding to HOMB pulses, as in the middle row of Fig.
1). As the energy is increased to 7 nJ, a larger fraction of the launch energy is coupled into
the MM soliton, and the pulse compresses. At higher energies, the pulse undergoes fission,
and the most intense soliton produced is Raman shifted. Secondary peaks in the autocorrela-
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tion are quite weak, as in the simulation results. These weaker, localized pulses correspond
to less-energetic MM solitons (or those containing primarily HOMs) and/or MM dispersive
waves. Given that the spectrum measurements, including the Ge transmission, suggest ≈ 40%
of the launched energy is transferred into the Raman soliton, the autocorrelation implies a spa-
tiotemporal distribution similar to those observed in simulations: the Raman soliton occupies
lower-order, more-localized modes than the remnant soliton(s) and dispersive radiation. With
21 nJ launched, the 1740-nm Raman soliton has ≈ 80 fs duration and 11 nJ energy. The beam
profiles measured after the GRIN fiber show the initial spatial focusing corresponding to the
Raman amplification of the lower-order modes (Fig. 6, middle). In a similar experiment with
95 m of fiber, we place a bandpass filter at 1620 nm and adjust the input energy so that the
Raman soliton coincides with the filter (spectrum Fig. 6, top right). We thus image the Raman
soliton’s beam profile (Fig. 6, bottom right) separately from the entire field’s beam profile (ad-
jacent). The result confirms that the Raman soliton contains relatively low-order mode content
but remains multimode, having a spatial dimension Rg = 10 μm = 1.54Ro. We note that, as in
simulations, the spatial profile of the Raman soliton depends on the initial mode excitation. In
some cases, the Raman soliton appears very nearly single mode (Rg = Ro). While further work
is required to understand the initial conditions necessary for this spatiotemporal fission out-
come, the possibility of deterministically controlling the spatial shape of the Raman soliton is
promising since it could allow diffraction-limited beams which may be necessary, for example,
in microscopy.
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Fig. 6. Experimental results on MM soliton fission in GRIN fiber. Left: autocorrelations
for labelled energy launched into a 7 m GRIN fiber (duration = AC width/1.41). Middle:
beam profiles corresponding to the ACs in the left panel, showing the intermodal nonlinear
energy transfer during and post-fission. Right, top: by adjusting the launch conditions and
energy, the Raman soliton was arranged to center at 1620 nm, where it was spectrally
filtered and imaged separately (bottom right, 1620 nm RS) from the full spectrum beam
(bottom left). In agreement with simulations, the Raman soliton remains MM (its spatial
width is larger than the fundamental mode by a factor of 1.54) but is more biased to lower-
order modes. The results all display good qualitative agreement with simulations. All scale
bars correspond to 20 μm.

3. Discussion

Several aspects of MM solitons merit further study, such as whether qualitatively different
kinds of MM solitons can exist, how they propagate under conditions with weak mode cou-
pling or mode-dependent loss, and how MM solitons collide or interact with one another. Since
most other multimode fibers have larger modal dispersion than GRIN fiber, it will be impor-
tant to establish if multimode solitons can occur within non-degenerate modes in other types
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of fiber, such as step-index fiber. Although not considered here, promising theoretical results
have been achieved for fibers with high disorder [50,51], suggesting MM fibers should provide
a platform for the study of incoherent spatially-multimode solitons. In gas-filled hollow-core
photonic crystal fibers [25], where MM nonlinear effects have been observed [24, 25], we can
furthermore expect to find MM solitons and soliton interactions. Of particular interest will be
the fission of MM solitons in the absence of Raman scattering, and the influence of plasma
interactions. Finally, we note the significance of this work towards the development of short-
pulse fiber sources and other applications. Multimode fibers allow considerably higher pulse
energy and average powers than single-mode fibers and, furthermore, MM solitons may have
even higher energy than single-mode solitons of comparable spatiotemporal dimensions. As
a result, MM solitons may be of key importance in future high-energy ultrashort-pulsed fiber
sources. In addition, due to their spatial complexity they may be useful for optical informa-
tion processing and telecommunications. On the other hand, their spontaneous formation could
become a limiting factor in future spatial-division multiplexing schemes.

4. Conclusion

We have observed multimode optical solitons in GRIN fiber and studied their dynamics. There
is good qualitative and often quantitative agreement between simulations and experiments, al-
lowing us to reach the following key conclusions:

• MM solitons are observed over a range of spatiotemporal sizes up to ≈ 3 times the fun-
damental mode size (containing up to an estimated 8-13 modes).

• MM pulses undergo a spatiotemporal soliton fission process, which results in MM soli-
tons and dispersive waves with different distributions of modes.

• During fission, intrapulse Raman scattering typically causes energy from HOMs to trans-
fer into lower-order modes.

• The most intense MM soliton produced from spatiotemporal fission tends to experience
a soliton self-frequency shift. The center wavelength of the pulse in each mode redshifts
synchronously, so that the entire MM soliton is redshifted.

Ultimately however, much of the behavior and properties of MM solitons remains mysterious.
Furthermore, the MM solitons considered in this work represent only a small fraction — co-
herent multimode solitons in anomalous dispersion GRIN fiber — of the vast parameter space
of nonlinear dynamical objects which are expected to be possible in multimode optical fibers.

5. Appendix

If the field contains a higher-order mode background (HOMB) and a fundamental mode soliton,
we can determine how much energy is actually contained in the fundamental mode compare to
the total energy, Ep. For the energy in the single-mode soliton, Eq. (3) is obeyed:

EpT (Ro,Rg)τ = M1(Ro) = |β2|R2
oλo/n2 (5)

where T (Ro,Rg) is the overlap integral between the measured beam and the fundamental mode,
Ep is the total energy, spread over all modes, and EpT is the energy in the fundamental mode.
Meanwhile the relationship between the total energy and the measured pulse duration is:

Epτ = MFHB(Rg) (6)
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For a Gaussian field Eg with waist Rg, the overlap integral with the fundamental mode (Eo) can
be easily calculated,

T (Ro,Rg) =
|∫ ∞

−∞
∫ ∞
−∞ E∗

o (x,y)Eg(x,y)dxdy|2∫ ∞
−∞

∫ ∞
−∞ |Eo(x,y)|2dxdy

∫ ∞
−∞

∫ ∞
−∞ |Eg(x,y)|2dxdy

=
|∫ ∞

−∞
∫ ∞
−∞ e

− (x2+y2)

R2
o e

− (x2+y2)

R2
g dxdy|2

∫ ∞
−∞

∫ ∞
−∞ e

−2 (x2+y2)

R2
o dxdy

∫ ∞
−∞

∫ ∞
−∞ e

−2 (x2+y2)

R2
g dxdy

=
|π(R2

oR2
g)/R2

o +R2
g)|2

(πR2
o/2)(πR2

g/2)
=

4R2
oR2

g

(R2
o +R2

g)
2

(7)

Dividing Eq. (5) by T , plugging in the above expression and equating with Eq. (6) gives an
expression for the relationship between the spatial size of the whole beam, Rg and MFHB,

MFHB(Rg) =
M1(Ro)

T (Ro,Rg)
= M1(Ro)

(R2
o +R2

g)
2

4R2
gR2

o
(8)

For a MM soliton with an actual average size R′
g, a HOMB can cause the measured size to

be inflated to Rg. In this case, the HOMB slightly increases the slope measured from the actual
value for the MM soliton, M′. Repeating the analysis above with Ro replaced by R′

g and M1

replaced by M′ yields:

MMHB(Rg) =
M′

T (R′
g,Rg)

= M′ (R
′2
g +R2

g)
2

4R2
gR′2

g
(9)
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