OSE6347: Quantum (Spring 2024)

Grading

30% midterm; 40% final; 30% homework

Suggested textbooks

M. O. Scully and M. S. Zubairy, "Quantum Optics"

P. Lambropoulos and D. Petrosyan, "Fundamentals of Quantum Optics and Quantum Information"

W. H. Louisell, "Quantum Statistical Properties of Radiation"

Week 1:

Introduction; review of quantum mechanics

<u>Week 2:</u>

Quantum harmonic oscillator; Quantization of the optical field

<u>Week 3:</u>

Single-photon states I: Interferometry

Week 4:

Single-photon states II: Applications, quantum cryptography (BB84)

<u>Week 5:</u>

Two-photon states I: Entanglement

<u>Week 6:</u>

Two-photon states II: Bell's inequality

<u>Week 7:</u>

Two-photon states III: Applications, quantum communications (cryptography, dense-coding, teleportation)

<u>Week 8:</u>

Two-photon states IV: Spontaneous parametric down-conversion

<u>Week 9:</u>

GHZ states, Quantum coherence, Glauber coherent states

Week 10:

Light-matter interactions, semiclassical treatment I: Refractive index, optical nonlinearities

Week 11:

Light-matter interactions, semiclassical treatment II: Electromagnetically induced transparency

Week 12:

Cavity quantum electrodynamics

Week 13:

Jaynes Cummings model